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The objective in this paper is to present the method for the calculation of improved stresses published by
Payen and Bathe in [1] for the 4-node three-dimensional tetrahedral element. This element is widely used
in engineering practice to obtain, in general, only “guiding” results in the analysis of solids because the
element is known to be poor in stress predictions. We show in this paper the potential of this novel
approach to significantly enhance the stress predictions with the 4-node tetrahedral element at a rela-
tively low computational cost.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Most engineering problems in solids and structures are three-
dimensional in nature. Since the geometry and other data of the
problem are then usually complex, the structure is best analysed
using finite element methods. The crucial step in any finite ele-
ment analysis is to choose an appropriate mathematical model
for the physical structure (or more generally the physical phenom-
enon), since a finite element solution solves only this model, see
Ref. [2]. For example, if the structure is thin in one direction and
long in the other two directions a shell mathematical model is
appropriate, and the problem is solved efficiently using the MITC
shell elements, see Refs. [3-6]. However, if the length scales of
the structure are similar in all directions, and the loading is gen-
eral, then there is no option other than to solve the problem using
an assemblage of discrete three-dimensional solid elements, see
Refs. [2,7].

The simplest three-dimensional solid element available to the
finite element analyst is the 4-node constant strain tetrahedral ele-
ment. This element is used abundantly in practice because the ana-
lyst is able to mesh almost any volume regardless of complexity,
the element is robust in contact analysis, the element matrices
are inexpensive to calculate, and the resulting global stiffness ma-
trix has a relatively small bandwidth. In a typical approach, the
analyst would use a mesh of 4-node tetrahedral elements, in a first
analysis, to identify the locations of high stress concentrations, and
then based upon these results, the analyst would refine the mesh -
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or, if possible, convert the mesh to 10-node or 11-node tetrahedral
elements - in the localised regions of concern, see Ref. [7]. This is
necessary, simply because the stresses predicted using the 4-node
tetrahedral element are known to be poor, and the lack of accuracy
can be seen using stress band plots of unsmoothed stresses, see
Refs. [2,8].

Our objective in this paper is to apply the method published by
Payen and Bathe in [1] to the 4-node three-dimensional tetrahe-
dral element, and show that by using a simple algorithm, we are
able to enhance the stresses in localised regions of concern, with-
out having to refine the mesh or re-analyse the model. While we
focus in this paper on linear static analysis and smooth stress
conditions, the results are fundamental and might be used also
in dynamic analysis and nonlinear solutions [2,9,10].

The theory used for the method has been published in detail in
Ref. [1], and hence we shall only summarise the fundamental equa-
tions - and their properties - in this paper. The stress prediction is
based on the fact that the element nodal point forces are of higher
quality than the directly-calculated finite element stresses [2,7].
Hence we use two principle of virtual work statements involving
these nodal forces, as summarised in Section 2, to calculate the im-
proved finite element stresses. Indeed, the special properties of the
element nodal point forces have been known for many years;
however, relatively little attention has been given to their use to
improve the finite element stress predictions, see Refs. [1,11,12]
and the references therein. In Ref. [1] we mention why our ap-
proach is more general and powerful than those previously
considered.

When performing a properly formulated finite element solution,
two important facts hold, namely, (1) at each node, the sum of the
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element nodal point forces balances the externally applied nodal
pointloads,and (2)each elementis in force and moment equilibrium
under the action of its own nodal point forces, irrespective of the
coarseness of the mesh, see Refs. [2,7]. For this reason, it seems
somewhat natural to use these forces to calculate improved stress
predictions but the details of establishing a general and effective

Fig. 1. The stress calculation domain for the 4-node tetrahedral element; element
m would be the central element or a peripheral element.
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algorithm are far from apparent. We named the procedure given in
Ref. [1] the “nodal point force based stress calculation method” or
the “NPF-based method” giving “NPF-based stresses”, for short.

In Ref. [1] we showed that the NPF-based method can be used
effectively to significantly improve the accuracy of the finite ele-
ment stress predictions obtained using the 3- and 4-node displace-
ment-based elements in two-dimensional analyses. It is reasonable
to expect similar improvements for the 4-node three-dimensional
tetrahedral element, and our objective herein is to present a
detailed procedure towards that aim. We solve the same set of
problems considered in Ref. [1], but of course this time in
three-dimensional settings. As expected, we see a significant
improvement in the accuracy of the stress predictions for all
problems considered. These results are of particular interest, since
reliable improvements in stresses for the 4-node tetrahedral
element, using incompatible modes or enhanced strains, are
difficult to reach in general analyses [13-15].
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Fig. 2. Five test problems for the 4-node tetrahedral three-dimensional element (E = 72E9, v = 0.0, p = 100, F = 6,000, t = thickness): (a) the beam in pure bending problem, (b)
the finite plate with a central hole under tensile loading problem, (c) the square cantilevered plate under shear loading problem, (d) the curved structure in pure bending
problem, and (e) the tool jig problem.
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2. Fundamental equations of the method

A detailed review of the general and well-known principles
used in the nodal point force based stress calculation method is
given in Ref. [1], and hence we shall only summarise here the fun-
damental equations used. In Section 3 we then focus on the specific
details to apply these principles - and their properties - in order to
establish improved stress predictions for the 4-node three-dimen-
sional tetrahedral element. We assume linear analysis conditions
and use the notation of Ref. [2].

As is standard, we establish the stiffness matrix in the usual
manner, solve for the element nodal point displacements U, and
the directly-calculated finite element stresses are then given by

" = Mg = CmBmY M

where C™, ¢ and B™ are the stress—strain matrix, the finite ele-
ment strain vector, and the strain-displacement matrix of element
m, respectively.

The element nodal point forces F'™ corresponding to the di-

(m

rectly-calculated finite element stresses t,, ) are defined as

(m) _ (m)T J ~(m)
o= [ @

where V'™ is the volume of element m .
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If we assume that there exists and we can calculate improved
finite element stresses ™ from these element nodal point forces,
we obtain two fundamental equations involving these unknown
stresses (and hence the unknown coefficients used to express
7). The first fundamental equation states that for any virtual dis-
placement field contained in the element interpolation functions,
the virtual work by the element boundary tractions is equal to
the virtual work by the element nodal point forces (adjusted for
body force effects), and hence we call this equation “the principle
of virtual work in the form of boundary tractions”

/S HMT (gt ds — /V _HMpd 3)
I

where H™, S}"’) are the displacement interpolation matrix and the
total external surface area of element m, respectively, and n™ is
the unit normal to the element boundary. In the absence of body
forces f®, Eq. (3) reduces to

/s HMT (™} ds — Fm (4)
1

The second fundamental equation states that for any virtual dis-
placement field contained in the element interpolation functions,
the element internal virtual work is equal to the virtual work of
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Fig. 3. Longitudinal stress results for the beam in pure bending problem. The solution error is given in the parentheses.
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the element nodal point forces, and hence we call this equation “the
principle of virtual work in the form of internal stresses”

/ BT {xM}dv = (5)

where, of course, the element nodal point forces F™ always corre-
spond to the directly-calculated finite element stresses 1;,””, see Eq.
(2). We should note that in Egs. (3) and (5), the 7™ are assumed
stress fields over the element m and hence we do not only use un-
known tractions between finite elements.

The NPF-based method uses, as its ingredients, these two funda-
mental virtual work statements - Egs. (3) and (5) - to obtain finite
element stresses that we can expect to be more accurate than those
given by Eq. (1). We expect that, in general, more accurate stresses
are predicted because, firstly, the method allows us to assume a ri-
cher functional space for the stresses than that implicitly assumed
in establishing the stiffness matrix, and, secondly, the nodal point
forces are used which always satisfy the above-mentioned impor-
tant equilibrium requirements, irrespective of the coarseness of
the mesh. However, we do not have a proof that the stresses will
always be improved at a particular location of the model.
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3. Improving the stresses of the 4-node tetrahedral element

In order to establish improved stress predictions for a general
finite element m, the NPF-based stress calculation algorithm
employs four basic steps:

1. Solve, in the usual manner, for the element nodal point dis-
placements U, and the element nodal point forces F™, in accor-
dance with Eq. (2).

2. Assume appropriate functions for 7™ across a predetermined
patch of elements; we call this patch of elements “the stress cal-
culation domain”.

3. Use the two principle of virtual work statements — Egs. (3) and
(5) - to solve for the unknown stress coefficients in 7™ .

4. Finally, to establish the improved stresses for an individual ele-
ment m, the stress coefficients corresponding to all possible ele-
ment combinations to obtain stress calculation domains that
contain element m are calculated using the above steps, and
the results are averaged for element m.

Of course, it is important to select appropriate functions for
the stress fields in (™), since we aim to have a sufficiently rich

NPF-based stress
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Fig. 4. von Mises stress results for the finite plate with a central hole problem. The solution error is given in the parentheses.
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assumed stress space for the stress calculation domain. Clearly,
the dimension of the assumed stress space must depend on
the number of elements used within the stress calculation do-
main. That is, for a given dimension of assumed stress space,
we must have that the domain contains a sufficient number of
elements, such that the problem solution for the unknown stress
coefficients is well-posed for all possible domain geometries that
might be used.

In the specific case of the 4-node tetrahedral three-dimensional
element, we assume the stresses to be linearly interpolated and
continuous across the entire stress calculation domain,

(m)

T

M=o +odx+ody+ojz for m=1,2345

(6)
where the (i, j) refer to the coordinate directions, and the oc;i are the
twenty-four unknown stress coefficients to be found. As an aside,
we note that for the 3-node constant strain triangle considered in
Ref. [1] we instead assumed bilinear interpolations across its stress
calculation domain.

With the assumption in Eq. (6), each stress calculation domain
for the 4-node tetrahedral element shall contain at least five ele-

Shear Stress

Shear Stress

Shear Stress
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ments, this way we ensure a well-posed problem for the solution
of the coefficients. Although any five adjacent elements could be
used, we define a stress calculation domain in a quite natural man-
ner as the unique combination corresponding to a central element
surrounded by four peripheral elements, where each peripheral
element shares a face with the central element, as shown in
Fig. 1. This stress calculation domain allows us also to maximise
the accuracy of the stress prediction, since the averaging in step
4 is used, see above and the further comments below.

In general, the algorithm solves for the unknown stress coeffi-
cients in 7™ by imposing Eq. (3) to all possible closed contour
boundaries contained within the stress calculation domain, and
in addition Eq. (5) to the complete domain. However, in this case,
we have assumed the stresses to be linearly interpolated, and
hence we need to only apply Eq. (3) in order to solve for the
stress coefficients. The reason is that in the absence of body
forces, Eq. (5) is not independent of Eq. (3), see Ref. [1]. Further-
more, we assume inter-element stress continuity, and hence Eq.
(3) can be imposed to every possible closed contour boundary
by simply imposing the equation to the five tetrahedral element
boundaries.
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Fig. 5. In-plane shear stress results for the square cantilevered plate problem across section A.
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In this way, we generate sixty equations, of which, for the con-
figuration considered in Fig. 1, only thirty-three are linearly inde-
pendent. Since there are twenty-four unknown stress coefficients,
the system of equations is over-determined, and so, in general, a
solution which exactly satisfies Eq. (3) does not exist. Hence we
use the least squares method to solve for the unknown stress coef-
ficients, with the consequence that the element nodal point forces
calculated from the NPF-stresses (see Eq. (4)) will only satisfy the
individual element and nodal equilibrium properties mentioned
earlier, in a least squares sense.

Finally, to obtain the improved stresses for each tetrahedral
element m, we average the stress coefficients corresponding to
the possible stress calculation domains that contain element
m. Of course, for the chosen geometry there can be no more
than five domains that contain element m, that is, respectively,
one and four domains for the element taking the position of the
central element and the peripheral elements. In the exceptional
case that no domain, as described above, exists which contains
element m (e.g. in a corner of a meshed geometry), we simply
construct the stress calculation domain using four elements that
are properly connected to element m, and no averaging is
applied.

Since we assume the stresses to be linearly interpolated, the
numerical effort involved in improving the stress predictions for
each tetrahedral element is given by the effort required to solve
for twenty-four unknown stress coefficients at most five times
(that is, we must calculate the stress coefficients corresponding
to every possible domain which contains element m).

This computational effort is relatively small, but, also, an impor-
tant feature of the algorithm is that there is no need to apply these
stress calculations to all elements in the assemblage, instead only
to those elements where improved stresses should be calculated.
Indeed, in practice, the finite element analyst is not always able
to perform - due to stringent constraints on time and computa-
tional resources - a detailed mesh refinement stress convergence
study, especially for complex problems that are expensive to solve.
Instead, in many cases, the analyst will solve the problem only
once, using the finest mesh possible that for the available compu-
tational resources still results in a reasonable solution time. Given
this solution and the above rather simple algorithm, it is then pos-
sible to enhance the stress prediction with relatively little compu-
tational effort in only the specific areas of concern.

In addition to enhancing the stress prediction, the results ob-
tained with the algorithm give, of course, also insight into the accu-
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Fig. 6. Longitudinal stress results for the curved structure problem across section A.
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racy of the directly-calculated stresses. Namely, if the two stress
values are far apart, in important areas of the model, the mesh used
is too coarse for the directly-calculated stresses to be sufficiently
accurate.

We recognise that we have not mathematically proven stability
of the algorithm for all possible geometries of the stress calculation
domains. Therefore, it is possible, that for certain meshes
with grossly distorted elements the algorithm establishes
ill-conditioned matrices in which case the solution would have to
be abandoned for that particular domain (where the elements are
too distorted). However, we have tested the procedure in a large
number of domains containing highly distorted elements and have
not encountered this difficulty. Hence our experience is that as
long as the mesh is reasonable (which is anyways required for
the original displacement solution) the algorithm seems to be quite
robust and stable.

The effectiveness of the algorithm for the 4-node tetrahedral
element is illustrated using the same five test problems as consid-
ered in Ref. [1]: a beam in pure bending, a finite plate with a central
hole under tensile loading, a square cantilevered plate under shear
loading, a curved structure in pure bending, and a tool jig problem
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(like considered in Ref. [7]). We define these test problems in Fig. 2,
and show the results (rounded to full digits) in Figs. 3-8 respec-
tively, where the NPF-based stress refers to the stresses calculated
using the proposed nodal point force based stress calculation
method.

Considering these results, the values given in the band plots are
un-averaged, while the given numerical stress values are the
averaged nodal point values with the solution error shown in
parentheses. This error is measured with respect to the solution
(called “exact” in figures) obtained using a very fine mesh of 27-
node hexahedral elements.

Note that a given numerical stress value may be outside the
scale of the band plot because we selected the scale to reasonably
indicate the stress variation over the complete domain.

As expected, we see a significant improvement in the accuracy
of the predicted stresses for all problems solved. However, the
improvement in stresses is somewhat less than what we have
seen for the 3-node constant strain triangle in Ref. [1], which is
partly due to the fact that, for the three-dimensional analyses,
we are using linear, and not bilinear, stress interpolations, see
Eq. (6).
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Fig. 7. von Mises stress results for the tool jig problem. The solution error is given in the parentheses.
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Fig. 8. von Mises stress results for the tool jig problem. Radius A and radius B are defined in Fig. 2, and Mesh 1, Mesh 2 and Mesh 3 are shown in Fig. 7. The figures on the left
show the von Mises stress along radius A, whereas the figures on the right show the von Mises stress along radius B.

It is interesting to note that, for the problems considered in
Figs. 4 and 7, the percentage improvement in stresses increases
as the mesh is refined. Naturally, the improvement is most impor-
tant in the regions of high stress gradients, which, of course, is due
to the fact that the stresses 1}{”) are constant for the 4-node tetra-
hedral finite element.

In these problems, we have set the Poisson ratio to zero, to en-
sure consistency with Ref. [1]; however, the same level of improve-
ment is also observed for non-zero values of Poisson ratio, for
example, when v = 0.3, as long as the material is not almost or
fully incompressible. When the medium is incompressible, as
well-known, the 4-node displacement-based tetrahedral element

is not effective because it does not satisfy the inf-sup condition
[2,15,16] and is better not used.

4. Concluding remarks

In this paper we applied the approach given in Ref. [1] to estab-
lish a procedure for the calculation of improved stresses for the
widely-used 4-node three-dimensional displacement-based
tetrahedral element. As expected, when we applied the procedure,
we have indeed seen a significant improvement in the stress pre-
dictions for all problems solved.
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These results are quite encouraging, and the simple algorithm
might well be attractive in practice (after further studies, see
below) - especially, for complex problems that are expensive to
analyse - since the procedure allows the analyst to enhance the
stress predictions in localised regions of concern without having
to refine the mesh or re-analyse the model.

Regarding future research on the NPF-method for stress predic-
tions, as we pointed out already in Ref. [1], a strong mathematical
basis of the procedure would be of great value in order to identify
the optimal stress assumptions and associated stress calculation
domains to use. Given a specific scheme, theoretical studies of con-
vergence and numerical studies on more complex problems are
clearly needed to identify how, and how well, the NPF-based stress
predictions converge to the solutions sought. Then improvements
to the algorithms used in Ref. [1] and herein may well be identified,
and limitations may be established. In addition, the use of the NPF-
method for stress calculation might be explored in the analysis of
shells, dynamic analyses, and the solution of nonlinear problems.
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