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Abstract 
 
We consider in this paper some frontiers in finite element procedures, and frontiers 
of novel applications. We focus on theoretically well-founded procedures that 
advance the solution of practical problems in engineering and the sciences. For the 
analysis of shells, the use of interpolation covers to enhance solutions is presented 
and the new MITC3+ shell element is discussed. For transient dynamic solutions, 
insights in implicit and explicit time integration methods and the solution of large 
eigenvalue problems are given. For multi-physics analyses, the full coupling 
between solid, fluid, electromagnetic and thermal effects is considered. Finally, we 
briefly also focus on the finite element modelling of Protein and DNA nano-scale 
structures by coarse graining, which represents a very important frontier for future 
research.  
 
Keywords: Finite element methods, shells, MITC elements, transient dynamics, 
explicit and implicit methods, large eigenvalue problems, modelling of proteins and 
DNA structures 
 
1  Introduction 
 
Finite element procedures have been extensively researched and developed during 
the last decades and are nowadays applied routinely in engineering and the sciences 
[1]. However, research to improve the currently available methods is continuing and 
very valuable advances are continuously achieved. These advances aim to establish 
more effective techniques for problems that can already be solved and novel 
techniques to be able to simulate wider ranges of physical events. The advances also 
pertain to applying finite element methods ingeniously to new areas of simulations. 
Furthermore, there are important advances that make the use of finite element 
procedures easier in practical analyses. 
 
 
 

                                                 
(1) The paper is copyright Civil-Comp Ltd and will be presented at the 

Conferences CST2014 and ECT2014, Naples, Italy, Sept. 2 - 5, 2014 

Frontiers in Finite Element Procedures & Applications (1) 
 

by 
 

Klaus-Jürgen Bathe 
Massachusetts Institute of Technology 

Cambridge, MA 02139, USA 



2 

The research for more effective techniques is driven by the desire to model physical 
problems more accurately, using novel approaches or just finer meshes leading to an 
increasing number of equations to be solved. Ideally, novel techniques become 
available and we present in this paper new developments for the more effective 
analysis of shells and dynamic problems. 
 
The simulation of wider ranges of physical problems means primarily the analysis of 
more complex nonlinear and multi-physics events. Here the solution of structures, in 
steady state or dynamic situations, with fluid-structure interactions, thermal effects, 
and electro-magnetic effects is of great interest. We shall briefly present our 
developments in these areas. 
 
Two new areas of valuable applications of finite element methods are the coarse 
graining and modelling of proteins and DNA structures. The modelling of proteins is 
of great interest to understand their general mechanical behaviours, for example, to 
be able to identify changes due to disease. The modelling of DNA structures is 
pursued, for example, to build new devices for harvesting energy. We present below 
some research results in these two areas. 
 
To make the use of finite element methods evermore easy for non-specialists is also 
a most important endeavor. The aim is here to reduce the amount of effort needed to 
build a finite element model. Fundamental advances in discretization methods, like 
the use of mesh-free techniques, have been made with some success but the 
techniques have not yet reached the required reliability and effectiveness for general 
applications.  
 
Of course, the more easy use of finite element methods is an aim of great interest to 
industry, where the easier use is also accomplished by establishing more effective 
and more easy-to-use graphical user interfaces. The development of these interfaces 
is of major importance, but an area that we shall not comment upon.   
 
This paper builds on two survey papers earlier written [2, 3]. In these earlier papers, 
we pointed out that the strategic aim, or philosophy, of a research group in its work 
is important. Our aim – as pursued for many years now – is to focus on the 
development of methods that are general, reliable and efficient, and advance the 
frontiers of simulations as practiced in engineering and the sciences [4]. Our 
experience is that with the general keen interest to solve increasingly more complex 
and difficult physical problems in practice, such analysis procedures are quickly 
adopted in applications and our aim is to make a contribution in that regard.  
 
While these are our research aims on which we will focus in this paper, it is clear 
that, however, considering the complete research and development scene, as 
advanced by numerous researchers, many achievements published in widely 
available journals and books and not mentioned in this paper are also very exciting 
and very valuable.  
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In the following sections we review the latest developments in our research, with 
figures largely taken from our earlier papers. We refer almost only to our books and 
papers that however give numerous references to related accomplishments. 
 
2  Frontiers in the analysis of shells 
 
The analysis of shells has been pursued for decades and yet there are still important 
improvements needed in the effectiveness of shell elements. In practice, low-order 
elements are much preferred because of their ease of use in meshing, their 
robustness and computational efficiency, but a significant drawback is the rather low 
accuracy in the calculated stresses. The stress predictions can be improved by the 
‘stress improvement scheme’ published by Payen and Bathe [5] and by the 
‘interpolation cover scheme’ presented by Kim and Bathe  [6, 7]. Both schemes 
were originally developed for the analysis of solids. In the following, we present the 
development of the interpolation cover scheme for a 3-node shell element, to obtain 
an enriched formulation [8], and we present a new more powerful 3-node shell 
element, the MITC3+ element [9]. Since this element formulation is based on the 
MITC technique, the extension to nonlinear analyses is directly achieved [10]. 
 
2.1 The use of interpolation covers for the MITC3 shell element 
 
The geometry of the 3-node continuum mechanics based triangular shell finite 
element is interpolated using [4,11]  

 

 

3 3
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( , , ) ( , ) ( , )

2= =

= +∑ ∑x x V i
i i i i n

i i

tr s t h r s a h r s    with 1h r= , 2h s= , 3 1h r s= − −  (1) 

 
where r , s , and t  are the isoparametric  coordinates, ih  is the  interpolation 
function corresponding to node i , ix  is the position vector of node i  in the global 
Cartesian coordinate system, and ia , i

nV  denote the shell thickness and the director 
vector at node i , respectively.  
 
The standard displacement interpolation of the shell element is given by 
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in which [ ]T
i i i iu v w=u  is the nodal displacement vector in the global 

Cartesian coordinate system, 1 1 1 1[ ]i i i i T
x y zV V V=V  and 2 2 2 2[ ]i i i i T

x y zV V V=V  
are unit vectors orthogonal to i

nV  and to each other, and iα  and iβ  are the rotations 
of the director vector i

nV  about 1
iV  and 2

iV  at node i . 
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To enrich the displacement interpolation in Equation (2), we use a linear 
interpolation cover over the elements attached to node i  [6, 7, 8]. The enriched 
displacement interpolation for the 3-node triangular shell finite element is given by 

 
 ˆ= +u u u  (3) 
 

with 
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Here we employ the somewhat unusual notation that iξ  and iη  denote coordinates 

in the plane of the element measured from the node i. 

  
The covariant strain components are directly obtained by 

 

 ( ), ,
1
2ij i j j ie = ⋅ + ⋅g u g u  (6) 

 

where i
ir

∂
=
∂

xg ,  ,
ˆ( )

i
i ir r

∂ ∂ +
= =
∂ ∂
u u uu  with 1r r= , 2r s= , 3r t=  

 

Therefore, the enriched covariant strain components are also divided into two parts 
 

 ˆij ij ije e e= +    with ( ), ,
1
2ij i j j ie = ⋅ + ⋅g u g u  and ( ), ,

1ˆ ˆ ˆ
2ij i j j ie = ⋅ + ⋅g u g u  (7) 



5 

 
in which the ije  and îje  correspond to the standard linear and additional quadratic 
displacement interpolations, respectively.  
 
To alleviate the locking phenomenon, we use the MITC procedure but different 
assumed covariant transverse shear strain fields need to be employed for the 
standard and additional quadratic displacement interpolations. The assumed 
covariant transverse shear strain fields of the MITC3 and MITC6 shell elements are 
used for the strains ije  and îje , respectively [11].  

 
The final assumed covariant transverse shear strain field for the enriched MITC3 
shell element is given as 

 
 ˆAS AS AS AS

jt jt jt jte e e= + = B U    with ,=j r s  (8) 
 
in which AS

jtB  is the covariant transverse shear strain-displacement matrix and U  is 
the vector that contains the degrees of freedom iu , iα ,  iβ  and the additional 
degrees of freedom iû , ˆ iα , ˆ

iβ .  
 
The element matrices can now be constructed in the standard manner [4], and of 
course, without the cover interpolation enrichment, the element is identical to the 
original MITC3 shell element. With this solution approach, the covers need only be 
applied in certain regions of the analysis domain.  

 
The enriched MITC3 shell element passes the membrane, bending, and transverse 
shearing patch tests for arbitrary local enrichments, see reference [4] for the patch 
tests performed.  

 
As discussed in reference [8], the enriched MITC3 shell element is quite effective 
computationally and gives good convergence in solutions. Figures 1 to 6 show the 
convergence behaviour in the analysis of the hyperboloid shell problems that 
represent encompassing tests [4, 12, 13]. We use the s-norm (with the error as a 
relative value to the very accurate solution) to measure the solution error [8].  Good 
convergence behaviour is observed in particular when highly distorted meshes are 
used.  
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Figure 1. Hyperboloid shell problem ( 11100.2 ×=E , 3/1=v  and p( ) cos (2 )θ = θ ). 
(a) Shell geometry; only shaded part is meshed, (b) Graded mesh for the clamped 

case ( 88×  mesh, 1000/1/ =Lt ), (c) Mesh for the free case ( 88×  mesh). 
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Figure 2. Distorted meshes used when (a) 4=N  and (b) 8=N . The number of 

triangular elements for an NN ×  mesh is 22N . 
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Figure 3. Convergence curves for the clamped hyperboloid shell problem with 
uniform meshes. The bold line represents the optimal convergence rate, which is 2.0 

for linear elements and 4.0 for quadratic elements.  
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Figure 4. Convergence curves for the clamped hyperboloid shell problem with the 
distorted meshes shown in Figure 2  
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Figure 5. Convergence curves for the free hyperboloid shell problem  
with uniform meshes  
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Figure 6. Convergence curves for the free hyperboloid shell problem with the 
distorted meshes shown in Figure 2 

 
An important use of the ‘cover interpolation scheme’ is that covers need only be 
applied for certain nodes and elements; hence, for example, only in regions of high 
stress gradients. The example in Figures 7 and 8 illustrates this point [8]. More 
solutions showing the capabilities of the enriched MITC3 shell element are given in 
reference [8]. 
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Figure 7. Shaft-shaft interaction problem with fillets ( 111007.2 ×=E , 29.0=v ) 
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(DOFs = 10,805, Reference stress)
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Figure 8.  Effective stress for the shaft-shaft interaction problem: (a) 2,193 node 
model, (b) 2,582 node model, (c) 641 node model, (d) 641 node model fully 
enriched, and (e) the 641 node model locally enriched, where the red dots represent 
enriched nodes. DOFs: total number of degrees of freedom used, Error = 

ref h ref
v v v(( ) / ) 100σ −σ σ ×  with h

vσ  and ref
vσ denoting the calculated and reference von 

Mises stresses. 
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2.2 A new 3-node shell element, the MITC3+ element 
 
While the MITC3 shell element enriched by the interpolation covers is quite 
effective, a  major challenge is to obtain a more powerful general 3-node shell 
element without the use of the interpolation cover scheme. In the following, we 
review the MITC3+ element formulation, which we developed with that important 
objective in mind [9, 10].  

 
The element is based on using the usual three corner nodes and an internal forth 
node for a cubic bubble that however is only used to enrich the interpolation of the 
section rotations.  The geometry interpolation of the MITC3+ shell element is hence 
given by  

 
3 4
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i i

tr s t h r s a f r s   with 4 1 2 3
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1 ( )
3

= + +V V V Vn n n na a a a  (9) 

in which the ( , )if r s  are two-dimensional interpolation functions that include the 

cubic bubble function 4f  corresponding to the internal node 

 

 1 1 4
1
3

f h f= − ,  2 2 4
1
3

f h f= − ,  3 3 4
1
3

f h f= − ,  4 27 (1 )f rs r s= − −  (10) 

 

The corresponding displacement interpolation is [4, 9]  
 

 
3 4

2 1
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( , , ) ( , ) ( , )( )
2= =

= + − +∑ ∑u u V Vi i
i i i i i i

i i

tr s t h r s a f r s α β  (11) 

 

in which 4α  and 4β  are the rotation degrees of freedom at the bubble node. 
 
The bubble node, with the rotation degrees of freedom only, is positioned on the flat 
surface of the element. Hence static condensation can be carried out effectively on 
the element level for the rotations 4α  and 4β , and the element is in practice a 3-
node shell element.  

 
Of course, the mixed interpolation for the transverse shear strain components must 
now include the effects of the bubble function, which gives zero contribution along 
the element edges. To achieve an effective MITC tying scheme we need to look 
deeper into the transverse shear strain field. Considering the MITC3 shell element 
[11], this field can be separated into the constant part corresponding to the transverse 
shearing modes and the linear part corresponding to an in-plane twisting mode 
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 3 .MITC const linear
rt rt rte e e= + ,   3 .MITC const linear

st st ste e e= + . (12) 
 
A similar linear decomposition can be used for the strain components of the 
MITC3+ element, which shows that different tying schemes can be used for the 
constant and the linear parts of the new element.  The details of these schemes are 
given in reference [9]. The difficulty in the development was to achieve that the 
element is isotropic, not contain any spurious zero energy mode, pass all patch tests 
and show good convergence behaviour.  

 
Figures 9 to 12 give the convergence curves in the s-norm obtained in the analysis of 
the hyperboloid shell problems described in Figure 1, using the uniform meshes in 
that figure and the distorted meshes in Figure 2. The good convergence behaviour of 
the new element is seen. Further problem solutions are given in references [9, 10].  
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Figure 9. Convergence curves for the clamped hyperboloid shell problem with 

uniform meshes. The bold line represents the optimal convergence rate.  
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Figure 10. Convergence curves for the clamped hyperboloid shell problem with the 

distorted meshes shown in Figure 2   
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Figure 11. Convergence curves for the free hyperboloid shell problem  
with uniform meshes   
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Figure 12. Convergence curves for the free hyperboloid shell problem with the 

distorted meshes shown in Figure 2  
 
3 Frontiers in methods for dynamic analyses 
 
While the development of improved solution techniques for dynamic analyses has 
been pursued for a long time, there is still interest in more effective techniques for 
nonlinear solutions, wave propagation analyses, and the solution of very large finite 
element models. Considering direct time integration methods, implicit time 
integration is frequently used and can be much preferable to explicit integration, due 
to the time step size restrictions and the sensitivity of the solutions to the time step 
size in explicit integration [4].  In the following, we briefly review an implicit 
scheme and an explicit scheme with new insights in the techniques, and then we 
consider briefly the solution of frequencies and mode shapes of very large finite 
element systems. 
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3.1 Implicit direct time integration 
 
The implicit time integration scheme recently proposed and analysed in refs. [14-17] 
is increasingly employed. The technique has been presented earlier but we shall 
report here on some additional new insights [16,17].  The method uses two sub-steps 
per time step t∆ .  In the first sub-step, the trapezoidal rule is employed and in the 
second sub-step the 3-point Euler backward method is used. Of course, these two 
integration schemes by themselves have been employed for a long time. Considering 
the trapezoidal rule by itself, it is in linear analysis unconditionally stable, second 
order accurate, shows reasonable period elongation and no amplitude decay. 
However, the property of no amplitude decay can result in spurious oscillations, in 
linear and nonlinear analyses, and in unstable behaviour in large deformation 
analyses with long time durations [14,15]. Considering the Euler method by itself, it 
is also unconditionally stable in linear analysis, second-order accurate and shows 
period elongation and amplitude decay, indeed too much thereof. The proposed 
combination of these techniques gives an unconditionally stable, second-order 
accurate method that displays some amplitude decay and reasonable period 
elongation. In particular, this scheme does not show the undesirable characteristics 
of the trapezoidal rule.  

 
Since the time step t∆  is subdivided into two sub-steps of sizes tγ∆  and (1 ) tγ− ∆ , it 
is of interest to optimize the value of γ . With 2 2γ = − , the amplitude decay is 
maximized, the period elongation is minimized and in linear analysis the same 
effective stiffness matrix is used for each sub-step. Figures 13 to 15 show the 
excellent properties of the scheme, referred to as the Bathe method, in that the 
spectral radius is equal to 1 up to large time step to period ratios, the period 
elongation and amplitude decay show small error, but the amplitude decay increases 
rapidly as the time step becomes large. The figures also show that using γ  = 0.5       
(referred to as “Bathe”) gives almost the same results as when using 2 2γ = − .  
 
The consequences of these properties are that high spurious frequency response is 
effectively cut out of the time integration solution, while the lower frequencies are 
integrated very accurately. Figures 16 to 18 illustrate this behaviour in a vibration 
analysis. The stiff spring represents stiff components in a structural model, which 
may be largely due to modelling constraints with stiff elements, as frequently used 
in practice. The trapezoidal rule gives very large errors in this linear analysis 
whereas the Bathe method gives the desired response, just like obtained in a mode 
superposition solution only including the lowest mode response with the static 
correction. Further results for this problem are given in reference [16] where it is 
also shown that the error in the reaction 1R  is very large when using the trapezoidal 
rule. Finally, considering Figure 18, we note the overshoot in the prediction of the 
acceleration for the first time step when using the Bathe method. This overshot can 
be corrected by choosing different parameters in the method for this step, but that 
correction is probably not needed in practice.   
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Figure 13. Spectral radii of approximation operators, case of no physical damping, 

for various methods  
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Figure  14. Percentage period elongations for various methods 
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Figure 15. Percentage amplitude decays for various methods 
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Figure 16. Model problem of three degrees of freedom spring system 
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Figure 17. Acceleration of node 2 for various methods 
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Figure 18. Close-up of acceleration of node 2 for various methods 

 
Figures 19 and 20 give the results of an analytical study of the trapezoidal rule and 
the Bathe method in a wave propagation solution [17]. The figures show that the 
high frequency waves that cannot be resolved are simply cut out when using the 
Bathe method, whereas these waves remain present as errors when using the 
trapezoidal rule. This phenomenon is illustrated in solving the problem shown in 
Figure 21, see Figures 22 and 23 for the wave propagation solutions. The figures 
show that the Bathe method gives a significantly more accurate response prediction, 
and indeed using the mesh of 75×75 4-node elements with the Bathe method at its 
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optimal CFL = 1.0 gives a better response prediction than using the mesh of 
165×165 4-node elements with the trapezoidal rule at its optimal CFL = 0.65.  
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Figure 19. Relative wave speed errors of the Bathe method for various CFL 
numbers; results for discarded wave modes are given by dotted lines.  

0c = exact wave speed, c = numerical wave speed. 
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Figure 20. Relative wave speed errors of the trapezoidal rule for various 
 CFL numbers 
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Figure 21. Pre-stressed membrane problem and load applied, 0 1c = , initial 
displacement and velocity are zero, computational domain is shaded 

 
 
Considering nonlinear analyses, the choice of an “optimal” value of γ  for problem 
solutions is of interest. Since the Newton-Raphson iteration is used in each time step 
to establish equilibrium, a value resulting into fast convergence and good accuracy 
of the response should be used. Hence given a problem to be solved and a prescribed 
accuracy to be obtained in the solution, strictly, the optimal value of γ  would result 
into the least computational effort, that is, the least number of Newton-Raphson 
iterations.  

 
To illustrate the difficulties of choosing an optimal value, Figures 24 to 27 show the 
obtained solutions for two problems and the effect of using different values of γ  on 
the calculated response. We see that when small time steps are employed, the use of 
different γ  values has little effect on the calculated solution response.  However, for 
larger time steps, there is an optimal value of γ  (resulting for a given time step size 
into the most accurate response prediction) and this value is different for the two 
problems, namely it is γ = 0.2 for the problem in Figure 24 and γ = 0.5 for the 
problem in Figure 26.  Based on these and similar studies, we are, so far, using in 
nonlinear analyses γ = 0.5. In this case the period elongation and amplitude decay 
are almost the same as for 2 2γ = −  as shown in Figures 14 and 15, and good 
overall experience has been obtained in nonlinear solutions. In particular, our 
experience is that for reasonable (and almost optimal)  time step sizes, of course 
different for the trapezoidal rule and the Bathe method, used to obtain the same 
solution accuracy in structural vibration problems, the total number of Newton-
Raphson iterations for the complete solution can be significantly less using the 
Bathe method compared to when using the trapezoidal rule.  
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Figure 22. Snapshots of displacements at time 13t = , Bathe method, CFL = 1.0, 

using various uniform meshes 
 

(a) 30 by 30  (b)  45 by 45  

(c)  75 by 75  

(e)  135 by 135 (f)  165 by 165  

(d)  105 by 105  
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  (a) 30 by 30    (b) 45 by 45  

  (c) 75 by 75    (d) 105 by 105  

  (e) 135 by 135    (f) 165 by 165  
 
Figure 23. Snapshots of displacements at time 13t = , trapezoidal rule, CFL = 0.65, 

using various uniform meshes  
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Figure 24. Simple pendulum problem solved using the Bathe method 
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(a) t∆  =  0.25s   
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(b) t∆  = 0.1667s 
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(c) t∆  = 0.125s 
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(d) t∆  = 0.0625s 
 

Figure 25. Problem of Fig. 24 solved with various values of γ   
and time step sizes 
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Figure 26. Double pendulum problem with contact considered using  
the Bathe method. 
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Figure 27. Problem of Fig. 26  solved with the Bathe method and various  
values of γ ; t∆ = 0.005s 

 
3.2 Explicit direct time integration 
 
While implicit time integration is in general preferable, explicit time integration can 
be more effective in the solution of certain problems, specifically in three-
dimensional wave propagation solutions. Hence, we have developed a new explicit 
time integration scheme based on the ideas employed in the Bathe implicit scheme. 
In the procedure also two sub-steps are employed [18].  

 
We use in the first sub-step  
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 t p t t p t t p t t p t+ ∆ + ∆ + ∆ + ∆+ + =M U K U RU C  (13) 
 

 [ ] 21 [ ]
2

t p t t t tp t p t+ ∆ = + ∆ + ∆U U U U   (14) 

 
 [ ]t p t t ttp+ ∆ = + ∆U U U   (15) 
 

 [ ]1 )(
2

t p t t t t p ttp+ ∆ + ∆= + ∆ +U U U U   (16) 

 
and in the second sub-step, 

 
 t t t t t t t t+∆ +∆ +∆ +∆+ + =M U C U K U R   (17) 
 

 [ ] 21 [(1 ) (1 ) ]
2

t t t p t t p t t p tp tp t+∆ + ∆ + ∆ + ∆= + ∆ + −− ∆U U U U   (18) 

 
 [ ](1 )t t t p t t p tp t+∆ + ∆ + ∆−= + ∆U U U  (19) 
 
 [ ] 0 21(0(1 ) ( ).5 )t t tt t t p t t p tp q qt q +∆+∆ + ∆ + ∆= ∆ + + +−+U U U U U  (20) 
 

with 
 
 (1 )t p t t t tp p+ ∆ +∆= − +RR R  (21) 
 
and where 0 1 2,q q and q are a function of p, see reference [18].   A mathematical 
analysis of the scheme shows that p = 0.54 is good to use for stability and accuracy, 
with the CFL number 1/ p . Figures 28 and 29 show the spectral radius, period 
elongation and amplitude decay of the scheme, referred to as the Noh-Bathe method, 
and Figures 30 and 31 show that in a wave propagation solution, like in the Bathe 
implicit scheme, the high frequency waves are cut-out of the solution whereas when 
using the central difference method, these waves appear as solution errors. Figures 
32 and 33 show the calculated response for the membrane (for the problem 
description see Figure 21) and we see that the Noh-Bathe method performs 
significantly better than the commonly used central difference scheme. 
 
A practical solution is shown in Figures 34 and 35, where results of a crash 
simulation of a tube are shown. The spurious oscillations using the central difference 
scheme are clearly seen, and these are not present when using the Noh-Bathe 
procedure. In such crash and crush simulations, involving very large strains, the 3D-
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shell element presented in reference [19] is valuable. Such problems can also 
frequently be solved quite effectively using implicit time integration [2, 20].  
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Figure 28. Spectral radii of approximation operators, case of no physical damping, 
for various methods; for the Noh-Bathe explicit scheme, 0.54p = is used 
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Figure 29. Percentage period elongations and amplitude decays of the 
 Noh-Bathe scheme 
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Figure 30. Relative wave speed errors of the Noh-Bathe scheme for various CFL 
numbers, using 0.54p = ; results for discarded wave modes are given  

by dotted lines. 0c = exact wave speed, c = numerical wave speed 
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Figure 31. Relative wave speed errors of the central difference method  
for various CFL numbers 
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(a)  44 by 44 
 

 
(b)  88 by 88 

 

(c)   132 by 132 
 

(d)  176 by 176 
 

Figure 32. Snapshots of displacements at 9.25t = , central difference method,  
CFL = 1, uniform meshes of 4-node elements used  
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(a)  44 ×44 
 

 
(b)  88 ×88 

 

(c)   132 ×132 
 

(d)  176 ×176 
 

Figure 33. Snapshots of displacements at 9.25t = , Noh-Bathe method, CFL = 1.85, 
0.54p = , uniform meshes of 4-node elements used 

 
 

 
It is interesting to note that considering the response predictions in Figures 32 and 
33, the Noh-Bathe method gives a more accurate response with the 44×44 mesh 
than when using the 176×176 mesh with the central difference method.  This is an 
illustrative example that, as also implied by Figures 30 and 31, the meshes used in 
wave propagation analyses should depend more than in structural vibration problems 
on the specific time integration scheme employed.  
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Figure 34. Tube-crush problem: Noh-Bathe method predicted deformations at t = 
0.000, 0.010, and 0.015s 
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Figure 35. Impactor acceleration-time response for the tube in Figure 34 

 
A particular advantage is that damping with a non-diagonal damping matrix can 
directly be included in the solution, see Equations (13) to (21).  Hence the scheme 
can sometimes be used for large finite element systems to obtain the static solution 
by introducing, for example, Rayleigh damping [4].  
 
In practical analyses it may also be of advantage to perform partly explicit and partly 
implicit time integration for the response solution.  For example, for a short initial 
duration the explicit scheme may be used and then the implicit method may be more 
effective. Such solution is directly possible because we use the same element 
formulations in the different time integrations. Also, a static analysis followed by a 
transient dynamic analysis is directly possible, as may be required in the snap-
through buckling response solution of a shell [4].  
 
While we focused here, for dynamic analyses, on time integration schemes, it is of 
course also important to achieve advances in the basic spatial finite element 
discretizations for dynamics. We have pursued the enrichment of traditional finite 
elements and the method of finite spheres for dynamic analyses using harmonic 
functions [21, 22]. These schemes show also considerable promise. 
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3.3 The solution of large eigenvalue problems: using component 
mode synthesis with subspace iterations 
 
The accurate solution of large eigenvalue problems, with millions of governing 
finite element equations and hundreds of frequencies and mode shapes to be solved 
for, is now quite common. The Lanczos iterative scheme and the Bathe subspace 
iteration method are mostly used to calculate the eigenvalues and vectors [4, 23].  
However, in engineering designs and analyses of very large physical systems, like 
airplanes, first, the individual components (like the wings, the main body of the 
airplane) might be considered and optimized and then thereafter the complete 
physical system is also analysed in detail. In these cases a component mode 
synthesis solution might be used, for example the Craig-Bampton scheme or a 
variation thereof. The drawback of using these component mode synthesis schemes 
is that the error in the frequency and mode shape solutions of the complete model is 
hardly assessed. 
 
A natural way to proceed is, however, to consider the component mode synthesis 
scheme to be a Rayleigh-Ritz analysis and then to continue with subspace iterations 
[23, 24]. As part thereof, proven error bounds are calculated and can be used to 
assess the error in the solutions [4, 24].  As an illustrative example, Figure 36 shows 
a pipe bend, modelled using shell elements with 258,900 degrees of freedom, for 
which the lowest 100 frequencies and corresponding mode shapes are required. 
Figure 37 shows the calculated frequencies obtained using the Craig-Bampton 
scheme and performing one and two additional subspace iterations. As expected, the 
subspace iterations greatly reduce the error in the solution and can be used to control 
the error. Additional results are given in reference [24]. 
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Figure 36. Pipe bend used in Craig-Bampton scheme and Bathe subspace 
 iteration method 
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Figure 37. Calculated frequencies using the Craig-Bampton scheme and subsequent 
subspace iterations; use of 200 vectors 

 
4 The solution of multi-physics structural problems 
including electromagnetic effects 
 
The solution of multi-physics problems is now given increasing attention. The multi-
physics effects on structures may be due to the interactions with fluids, heat flows, 
and electromagnetic effects. To include the electromagnetic interactions opens the 
possibilities to problem solutions in many new analysis areas, but is particularly 
difficult. Here we briefly discuss our latest developments to include electromagnetic 
effects in the analysis of structures and fluids.  
 
4.1 The solution of Maxwell’s equations by conservative forms 
 
The electromagnetic effects are governed by the general Maxwell’s equations that 
must be written in an appropriate form for finite element solutions. Since the 
electromagnetic effects are largely governed by expressions involving the curl 
operator, nodal edge-based elements are employed. However, for coupling to the 
commonly used fluid and structural elements, electromagnetic elements that are 
described by degrees of freedom at the usual corner and mid-side nodes could be 
much more effective. 
 
To reach a suitable formulation, we write the fundamental first-order Maxwell’s 
equations as second-order equations, with appropriate boundary conditions, and in 
conservative form [2, 25].  The second-order equation system gives suitable 
divergence conditions, considering Faraday’s law 
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 ( )( )*
0p I E I K 0ρ ε∇ + −∇ + × =i  (22) 

 
and the Ampere-Maxwell law 
 
 ( )qI H I J 0∇ −∇ − × =i  (23) 
 
where E and H  are the electric and magnetic field intensities, respectively,  I  is the 
identity tensor, K is an imposed magnetic current density that includes the effect of 
the magnetic field B , where  µ=B H , J is an imposed electric current density that 
includes the Maxwell displacement current, *ε  and µ  are the effective permittivity 
(for static and harmonic solutions)  and permeability of the material in the fields, 0ρ  
is a charge density source, and we introduced the solution variables 
 
 *

0p E ρ ε=∇ −i ;     q H=∇i  (24) 
 
Equations (22) to (24) form the -E H  mathematical formulation that we use for our 
finite element solution. The divergence form of the governing equations is used to 
directly satisfy conservation like in the FCBI formulation of fluid flows [26 - 28]. 
Indeed to solve these equations we employ the same weight and interpolation 
functions and control volumes as in the fluid flow solutions. 
 
While the use of the E-H formulation can be effective, depending on the given 
boundary conditions, a potential formulation has advantages of less degrees of 
freedom and the boundary conditions are given in terms of potentials, which may be 
attractive. Hence we also use a potential formulation but again based on 
conservative forms of the governing equations [25]. 
 
4.2 Coupling of electromagnetic effects into fluid flows and 
structures  
 
Using the -E H  formulation, the Lorentz force and Joule heating rate are computed 
directly to couple into the structural and fluid flow response without further 
differentiations that are required in the potential formulation. We then establish the 
coupled governing equations as in fluid-structure interaction solutions [27, 28].   
 
Consider the multi-physics analysis of water flowing through a duct in which the 
water is heated by a guided microwave at the frequency of 915MHz. Figure 38 
shows the system schematically. 
 
At the inlet of the fluid flow, the velocity is prescribed, varying between 0.015 m/s 
and 0.060 m/s, and the temperature is prescribed at 293K.  At the outlet, zero 
pressure and zero heat flux are specified.  The sides of the duct are modelled as no 
slip adiabatic walls.  
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Figure 38. Schematic figure of the microwave heating system, square duct, 
dimensions in meters: L = 1.212, W=0.248, H=0.124, L1= 0.99, W1=0.105, H1=0.15, 

a=0.038, d=0.0001 
 

 
Figures 39 to 42 show some solution results. In particular, Figure 42 gives the 
averaged water temperature in the duct along the flow direction, due to the 
electromagnetic heating for different inlet velocities.  Further details of this analysis 
and results, as well as other physical problem solutions are given in reference [25].  
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Figure 39. Calculated real Y-component of the electric field intensity 
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Figure 40. Calculated imaginary Y-component of the electric field intensity 
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Figure 41. Temperature distribution in the cross-section of the duct at the mid-plane 
of the wave guide 

 

 
 

Figure 42. Averaged water temperature in the duct along flow direction for different 
inlet velocities 0V  
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5 Finite element simulations at the nano-scale: protein and 
DNA structures 
 
The finite element analysis of nano-scale structures has been given significant 
attention, in various research areas. For example, nano-tubes have been studied in 
detail to understand their mechanical behaviours.  
 
Our interest has been in the finite element simulations of proteins and DNA 
structures. Figure 43 gives an overview of how these structures are basic building 
blocks of cells, and hence of life.  

 

 
Figure 43. Overview, courtesy US Department of Energy 

 
5.1 The simulation of proteins  
 
Proteins have been studied for many years. The interest lies in understanding the 
mechanical behaviour of proteins in their various configurations, including their 
dynamic response. Using the results of these studies, the premise is, for example, 
that the malfunction of proteins and hence the development of disease can be 
predicted. The most basic approach is to use molecular dynamics to solve for the 
response of proteins.  However, such simulations are extremely expensive 
computationally. Indeed, such studies can only be conducted on very small single 
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proteins using very powerful computers, whereas we are in fact interested in 
studying assemblages of proteins. Hence simplified models must be used to study 
protein behaviours.  
 
Conceptually simple models include, for example, the elastic network model and the 
bead model, in which the structures of proteins are represented, in essence, by rigid 
bodies connected by springs. Also, the block normal mode method is used. 
However, recently, M. Bathe proposed the use of the finite element method as a 
much more general and powerful modelling procedure [29]. With the finite element 
discretization technique, frequencies and mode shapes not including the solvent 
effects can be studied, and normal mode solutions can be obtained [30]. 
Furthermore, the mechanical behavior of proteins including solvent effects can also 
be simulated using Langevin or Brownian dynamics [31]. 
 
In the finite element analysis approach, the surface of the protein is used to mesh the 
volume with solid elements, see Figure 44.  

 
 
 

 
 

 
Figure 44. A protein in its fine and coarse finite element representations [29] 

 
 

The governing equations of the finite element system in Langevin dynamics are 
 
 ( )t+ + =M x Z x K x f  (25)  
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where M is the mass matrix, Z is the friction matrix, K is the stiffness matrix, f is 
the solvent-induced forcing, and x  is the vector of nodal displacements. In 
Brownian dynamics, the inertia effects are neglected.  
 
The key difficulty is to establish an appropriate friction matrix. This has been 
accomplished in reference [31] by modelling the solvent as an incompressible 
Stokes fluid and establishing an influence matrix corresponding to all surface 
degrees of freedom of the protein model.  Using the friction matrix, typical results 
obtained in a Brownian dynamics solution are given in Figure 45. The figure shows 
the root mean square fluctuations for different points of the protein.  
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Figure 45. The protein Taq polymerase; results using finite element coarse graining 
with a Brownian dynamics, BD, solution compared to using the block normal mode 
method, BNM (NMA), not including the effect of solvent (residue number refers to 
a point); ST= solution time used 
 
5.2 The simulation of DNA structures  
 
The design and simulation of DNA structures is of great interest because these tiny 
structures might be fabricated to serve various purposes, like for certain 
functionalities in computers, for therapeutic purposes to carry medication, and in 
energy harvesting.  
 
Figure 46 shows an array of DNA structures [32]. The key here is to design DNA 
structures from initial configurations to obtain optimal shapes for specific 
functionalities.  The shapes need to be calculated through highly nonlinear analyses, 
largely using beam and alignment elements, in which buckling and ultimate load 
points are encountered with softening and hardening regimes [33]. Figure 47 shows 
a calculated DNA shape using the CanDo program [34] and a comparison with 
laboratory test data. 
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Figure 46. Various DNA structures 

 

 
(a) Finite element simulation   
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(b) Electron microscope measurements 

 
Figure 47. A DNA finite element solution 

 
 
This field of finite element analysis promises to have a very significant impact in the 
areas of sciences and engineering, and is still wide open for major contributions. The 
field requires multi-physics simulations for which novel finite element analysis 
schemes are needed because, for example, the analyses will involve strong coupling 
to chemical and electromechanical phenomena. Furthermore, in some areas, the 
simulations at the nano-scale will ultimately have to be coupled to models of large-
scale structures in order to study the effects seen at the nano-scale on the behaviour 
of these structures, see Figure 43. As in practically all analyses but particularly here 
— an important ingredient for all these simulations is that the analyses need to be 
guided, as much as possible, by knowledge obtained through laboratory test data. 
However, the exciting part is that finite element analyses can guide the design of 
appropriate laboratory tests, will give crucial insights that cannot be measured and 
reached in these tests, and perhaps most importantly, the analyses can be used in the 
design of optimal DNA structures.  
 
 
 
6 Concluding remarks  
 
The objective in this paper was to survey some of our recent developments in 
frontiers of finite element procedures. In our research we focus on the development 
of novel finite element formulations, solution techniques, and applications.  
 

 



39 

As pointed out in the paper, we aim to establish new finite element procedures that 
are reliable and effective, and to obtain new insights in the properties of solution 
techniques through mathematical analysis and testing. 
 
As for new procedures, there are still many important challenges for developments 
to enlarge the applicability of finite element methods to wider areas of analysis and 
to increase the effectiveness of finite element techniques, specifically for multi-
physics solutions.  However, new insights through analysis and testing of 
established and already widely-used finite element methods are also very important 
and should be continuously pursued, see reference [35] for an example in this 
respect, with some surprises in results using finite elements with incompatible 
modes. 
 
The field of finite element analysis is already very large but the applications are 
bound to grow still very significantly, and in fact ‘we might conjecture that we are 
now only at the beginning of the use of finite element methods’.  In this continuous 
growth of applications, it is likely that the approach of ‘hierarchical modeling’ will 
play a significant role in all analyses, but in particular in nonlinear and multi-physics 
solutions [36]. 
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