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Abstract

We present a simple methodology to design isotropic triangular shell finite elements based on the Mixed Interpo-

lation of Tensorial Components (MITC) approach. Several mixed-interpolated isotropic triangular shell finite elements

are proposed. We perform well-established numerical tests and show the performance of the new elements.
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1. Introduction

It is well known that a shell structure is one of the

most effective structures which exist in nature. Also,

there exist countless man-made shell structures, which

have been constructed in the human’s history. To ana-

lyze shell structures, shell finite elements have been

developed for several decades and have been used

abundantly [1,2].

Shell structures can show different sensitivities with

decreasing thickness, depending on the shell geometry

and boundary conditions. As the thickness becomes

small, the behavior of a shell structure belongs to one of

three different asymptotic categories: the membrane-

dominated, bending-dominated, or mixed shell problems

[2–5]. An ideal finite element formulation should uni-

formly converge to the exact solution of the mathe-

matical model irrespective of the shell geometry,

asymptotic category and thickness. In addition, the

convergence rate should be optimal.

As is well known, displacement-based shell finite

elements are too stiff for bending-dominated shell

structures when the shell is thin, regardless of the dis-

placement interpolation order. In other words, the

convergence of the element formulation in bending-
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dominated problems deteriorates significantly as the

ratio of the shell thickness to characteristic length (t=L)
decreases. This dependency of the element behavior on

the thickness parameter is called ‘‘shear and membrane

locking’’, which is the main obstacle in the finite element

analysis of shell structures.

The ‘‘mixed interpolation of tensorial components’’

(MITC) approach has been used as a very successful

locking removal technique for quadrilateral plate/shell

finite elements. The technique was originally proposed

for 4-node and 8-node shell elements (the MITC4 and

MITC8 elements) by Dvorkin and Bathe [6,7] and was

later extended to 9 and 16-node elements (the MITC9

and MITC16 elements) by Bucalem and Bathe, see Ref.

[8]. The technique was also used for triangular plate and

shell elements [9–12] and in particular regarding shell

analyses shows further potential.

The main topic in shell finite element analyses is fo-

cused on answering the question ‘‘Is a given shell finite

element uniformly optimal for general shell structures?’’.

The recent studies [11–14] showed how to evaluate the

optimality of shell finite elements and the studies re-

ported that the mixed shell finite elements using the

MITC technique are close to optimal in discretizations

using quadrilateral shell finite elements.

When modeling general engineering structures, some

triangular elements are invariably used. Indeed, trian-

gular elements are most efficient to discretize arbitrary

shell geometries. However, for quadrilateral shell finite

element discretizations more research effort has been
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undertaken and more progress has also been achieved.

Consequently, in shell finite element analyses, quadri-

lateral elements are usually used due to their better

performance than observed using triangular elements.

Indeed, there does not exist yet a ‘‘uniformly optimal’’

triangular shell element, and not even an element close

to optimal. The motivation of this research comes from

the fact that the development of optimal triangular shell

elements is still a great challenge [10,12,15–19].

It is extremely difficult to obtain a shell finite element

method that is uniformly optimal and a mixed formu-

lation must be used. In the formulation we should aim to

satisfy [1,2]:

• Ellipticity. This condition ensures that the finite ele-

ment discretization is solvable and physically means

that there is no spurious zero energy mode. Without

supports, a single shell finite element should have––

for any geometry––exactly six zero energy modes cor-

responding to the physical rigid body modes. This

condition can be easily verified by counting the num-

ber of zero eigenvalues (and studying the correspond-

ing eigenvectors) of the stiffness matrix of single

unsupported shell finite elements.

• Consistency. Since the finite element discretization is

based on a mathematical model, the finite element

solutions must converge to the solution of the math-

ematical model as the element size h goes to zero. In

other words, the bilinear forms used in the finite ele-

ment discretization, which may be a function of the

element size h, must approach the exact bilinear

forms of the mathematical model as h approaches

zero.

• Inf–sup condition. Ideally, a mixed finite element dis-

cretization should satisfy the inf–sup condition

[2,11,13]. For shell finite elements, satisfying this con-

dition implies uniform optimal convergence in bend-

ing-dominated shell problems. Then, the shell finite

element is free from shear and membrane locking

with solution accuracy being independent of the shell

thickness parameter. However, it is generally not pos-

sible to analytically prove whether a shell finite ele-

ment satisfies this condition and numerical tests

have been employed.

For triangular shell elements, one more requirement

exists; namely, ‘‘spatial isotropy’’. The requirement of

‘‘spatial isotropy’’ means that the element stiffness

matrices of triangular elements should not depend on

the sequence of node numbering, i.e. the element ori-

entation. Specifically, when a spatially isotropic trian-

gular element has sides of equal length, the internal

element quantities should vary in the same manner for

each corner nodal displacement/rotation and each mid-

side nodal displacement/rotation, respectively. If the

behavior of an element depends on its orientation, spe-
cial attention must be given to the direction of each

element in the model.

In fact, this condition is a major obstacle in the

construction of locking-free triangular shell elements.

Usually, some ‘‘averaging’’ or ‘‘cyclic’’ treatments are

employed to construct isotropic triangular elements

[18,19]. A simple systematic way, which is mechanically

clear, to construct isotropic triangular shell elements is

desirable.

If a triangular shell element satisfies all the above

conditions, it is an optimal and ideal triangular shell

finite element. Such an element is very difficult to

reach and we can ‘‘soften’’ the requirements somewhat

for practical purposes. We summarize the practical

requirements on triangular shell finite elements as fol-

lows:

• spatially isotropic behavior;

• no spurious zero energy mode (ellipticity condition);

• no shear locking in plate bending problems;

• reliable, ideally optimal results for membrane domi-

nated shell problems;

• reliable, ideally optimal results for bending domi-

nated shell problems ‘‘in the practical range of t=L’’;
• easy extension of the formulation to nonlinear anal-

yses (simple formulation).

Hence only a practical range t=L is considered in bend-

ing dominated shell problems (but, of course, we shall

not abolish the aim to ultimately reach a triangular

element that is optimal for all analyses and for all values

of t=L).
The objective of this paper is to develop MITC iso-

tropic triangular shell finite elements which can be

practically used for general shell structures.

In the following sections of the paper, we first review

the MITC formulation of continuum mechanics based

shell finite elements. We then propose a simple meth-

odology to design isotropic triangular shell elements

using the MITC technique, and demonstrate this meth-

odology with some examples. A large number of ele-

ments can be constructed using our methodology. We

introduce some selected MITC triangular shell finite

elements and give the numerical test results of these

elements.
2. MITC formulation of continuum mechanics based shell

finite elements

The continuum mechanics displacement-based shell

finite elements have been proposed as general curved

shell finite elements [20]. While these elements offer sig-

nificant advantages in the modeling of arbitrary complex

shell geometries, they exhibit severe locking in bending

dominated cases [1,2].
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The basic idea of the MITC technique is to interpo-

late displacements and strains separately and ‘‘connect’’

these interpolations at ‘‘tying points’’. The displacement

and strain interpolations are chosen so as to satisfy the

ellipticity and consistency conditions, and as closely as

possible the inf–sup condition.

The geometry of the q-node continuum mechanics

displacement-based shell element is described by [1,2]

~xðr; s; tÞ ¼
Xq

i¼1

hiðr; sÞ~xi þ
t
2

Xq

i¼1

aihiðr; sÞ~V i
n; ð1Þ

where hi is the 2D shape function of the standard iso-

parametric procedure corresponding to node i, ~xi is the
position vector at node i in the global Cartesian coor-

dinate system, and ai and ~V i
n denote the shell thickness

and the director vector at node i, respectively. Note that

in this geometric description the vector ~V i
n is not nec-

essarily normal to the shell midsurface.

The displacement of the element is given by

~uðr; s; tÞ ¼
Xq

i¼1

hiðr; sÞ~ui þ
t
2

Xq

i¼1

aihiðr; sÞð�~V i
2ai þ ~V i

1biÞ;

ð2Þ

in which~ui is the nodal displacement vector in the global

Cartesian coordinate system, ~V i
1 and

~V i
2 are unit vectors

orthogonal to ~V i
n and to each other, and ai and bi are the

rotations of the director vector ~V i
n about ~V i

1 and ~V i
2 at

node i.
The covariant strain components are directly calcu-

lated by

eij ¼
1

2
ð~gi �~u;j þ~gj �~u;iÞ; ð3Þ

where

~gi ¼
@~x
@ri

; ~u;i ¼
@~u
@ri

with r1 ¼ r; r2 ¼ s; r3 ¼ t:

ð4Þ

Now we define a set of so-called tying points k ¼
1; . . . ; nij on the shell midsurface with coordinates (rkij,
skij), and define the assumed covariant strain components

~eij as

~eijðr; s; tÞ ¼
Xnij
k¼1

hkijðr; sÞeijjðrkij;skij ;tÞ; ð5Þ

where nij is the number of tying points for the covariant

strain component ~eij and hkij are the assumed interpola-

tion functions satisfying

hkijðrlij; slijÞ ¼ dkl; l ¼ 1; . . . ; nij: ð6Þ

Note that this tying procedure is carried out on the

elemental level for each individual element. Expressing
the displacement-based covariant strain components in

terms of the nodal displacements and rotations

eij ¼ BijU; ð7Þ

where B is the strain–displacement matrix and U is the

nodal displacement/rotation vector, we obtain

~eij ¼
Xnij
k¼1

hkijðr; sÞBijjðrkij;skij ;tÞ

" #
U ¼ eBijU: ð8Þ

Then using the proper stress–strain matrix, the element

stiffness matrix is constructed in the same manner as for

the displacement-based element.
3. Strain interpolation technique for isotropic triangular

shell elements

Two important points of the successful MITC tech-

nique are to use appropriate assumed strain interpola-

tions in Eq. (5) and to carefully choose the tying points.

In recent research [21], it was observed that a seemingly

small change in the tying positions can result in signifi-

cant differences in the predictive capability of the

MITC9 shell element.

While the interpolation of the covariant strain com-

ponents is quite easily achieved for quadrilateral ele-

ments, the interpolation is more difficult for triangular

elements due to their shape and coordinate system. In

this section we provide a systematic way to interpolate

the strain components to reach isotropic MITC trian-

gular shell elements.

3.1. Strain interpolation methods

Let us consider a three node isoparametric beam

element. As shown in Fig. 1(a), the displacement-based

element has a quadratic variation of transverse shear

strain. In order to remove shear locking, we need to

linearly interpolate the transverse shear strain in the

beam element [1,2]. The linear transverse shear strain

field can be determined by the two transverse shear

strains sampled at two different tying points (r ¼ r1 and
r ¼ r2 ¼ �r1). Three kind of approaches shown in Fig.

1(b)–(d) can be employed to determine the interpolation.

Method-i

Since we know that the resulting polynomial for ~ert is
linear, we assume

~ert ¼ aþ br: ð9Þ

Using the two conditions

~ertðr1Þ ¼ eð1Þrt ;

~ertðr2Þ ¼ eð2Þrt ;
ð10Þ
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Fig. 1. Derivation of the interpolation functions from given tying points.
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the unique pair of the coefficients, a and b, can be

determined, see Fig. 1(b).

Method-ii

In this method, shown in Fig. 1(c), we use the shape

functions of the standard isoparametric procedure

~ert ¼
X2

i¼1

hieðiÞrt ¼ h1eð1Þrt þ h2eð2Þrt ; ð11Þ

where h1 and h2 are the linear functions satisfying

hiðrjÞ ¼ dij: ð12Þ
Therefore, if we assume

h1 ¼ a1 þ b1r; h2 ¼ a2 þ b2r ð13Þ

with four conditions

h1ðr1Þ ¼ 1; h1ðr2Þ ¼ 0;

h2ðr1Þ ¼ 0; h2ðr2Þ ¼ 1;
ð14Þ

we can obtain the four coefficients (a1, b1, a2, b2).

New method

We here propose a simple new method, described in

Fig. 1(d). Since the order of the transverse shear strain of

the displacement-based three node isoparametric beam

element is quadratic, we start from

~ert ¼ aþ br þ cr2: ð15Þ

The following three conditions (imposing a linear vari-

ation) given at the nodes can be applied to evaluate a, b
and c:
~ertð�1Þ ¼ ~mrt � ~lrt;

~ertð0Þ ¼ ~mrt;

~ertð1Þ ¼ ~mrt þ ~lrt;

ð16Þ

where ~mrt is the mean value of the two tying strains and
~lrt is the difference between the value at the center (r ¼ 0)

and the edge (r ¼ 1), that is,

~mrt ¼
1

2
ðeð1Þrt þ eð2Þrt Þ; ~lrt ¼

eð2Þrt � eð1Þrt

r2 � r1
: ð17Þ

Solving Eq. (16), we obtain

~ert ¼ ~mrt þ ~lrtr: ð18Þ

Here, the coefficient of the second-order term, c, auto-
matically vanishes. Note that while we tie the strains at

r ¼ r1 and r ¼ r2, Eq. (16) considers the strains at non-

tying positions.

The three methods give exactly the same interpo-

lation for this example. To use ‘‘method-i’’ and ‘‘meth-

od-ii’’, the interpolations start from linear polynomials,

while, in the new method, the interpolation starts from

the quadratic polynomial and the coefficient of the

quadratic term automatically vanishes by imposition of

the linear variation. Due to this property, the method

can be used even when the exact space of functions for a

2D or 3D element is not known (see sections below).

Note that, for the example considered here, two un-

known coefficients and two linear equations are con-

sidered by ‘‘method-i’’, four unknown coefficients and

four linear equations are considered by ‘‘method-ii’’ and

three unknown coefficients and three linear equations

are considered by the proposed method.

The proposed method is powerful, specifically when

we construct the transverse shear strain fields for iso-

tropic MITC triangular shell elements.
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3.2. Interpolation of transverse shear strain field

We have two independent covariant transverse shear

strains from which the complete transverse shear strain

field of the element can be determined.

To construct isotropic transverse shear strain fields

for MITC quadrilateral shell elements, we can separately

interpolate the two transverse shear strains (ert and est)
corresponding to the two directions r and s. Namely, in

the natural coordinate system, each edge of a quadri-

lateral element is parallel to the corresponding opposite

edge. Then, the elements automatically have isotropic

transverse shear strain fields and behave isotropically.

However, to obtain isotropic transverse shear strain

fields for an MITC triangular element, we need to have

that the strain variations corresponding to the three edge

directions of the element are identical. The main

obstacle then comes from the fact that, although there

are only two independent transverse shear strains ert and
est, the additional transverse shear strain eqt corre-

sponding to the hypotenuse of the right-angled triangle,

see Fig. 2, in the natural coordinate system must be

considered.

Fig. 2 shows how to find the transverse shear strain

eqt from ert and est at the point considered in the trian-

gular element. The shear strain eqt is given by the tensor

transformation

eqt ¼
1ffiffiffi
2

p ðest � ertÞ: ð19Þ

The first step is to choose the polynomial space of the

assumed transverse shear strains, ~ert and ~est. The as-

sumed transverse shear strain ~eqt is immediately given

from Eq. (19). The following equations express this step:

~ert ¼ a1 þ b1r þ c1s . . . ;

~est ¼ a2 þ b2r þ c2s . . . ;

~eqt ¼
1ffiffiffi
2

p ð~est � ~ertÞ ¼
1ffiffiffi
2

p fða2 þ b2r þ c2s . . .Þ

� ða1 þ b1r þ c1s . . .Þg;

ð20Þ

where the a1; b1; . . . and a2; b2; . . . denote the unknown

coefficients of the strain interpolation polynomials.
Fig. 2. Calculation of the transverse shear strain eqt.
The second step is to choose the strain tying posi-

tions. These positions should be located isotropically in

the element. The displacement-based strains at these

positions are tied to the assumed strain variations. This

tying is achieved by evaluating the assumed strains at

judiciously chosen points (ri, si), i ¼ 1; 2; . . . from the

displacement-based strains, see Fig. 3,

~ertðri; siÞ ¼ . . . ;

~estðri; siÞ ¼ . . . ;

~eqtðri; siÞ ¼ . . .

ð21Þ

Note that as in Eq. (16) these points do not need to be

the tying points.

The last step is to solve the resulting linear equations

for the unknown coefficients in the assumed strain

variations. The number of linearly independent equa-

tions should be equal to the number of unknowns.

This simple systematic procedure ensures the con-

struction of isotropic transverse shear strain fields for

MITC triangular shell elements. Here we discussed the

construction of the isotropic transverse shear strain field

by the new method proposed in the previous section.

Note that ‘‘method-i’’ and ‘‘method-ii’’ are not generally

applicable.

Of course, we should note that the assumed strain

variations should be of lower order than the strains

obtained by the assumed displacements.

To exemplify the procedure, consider a 3-node tri-

angular shell element with constant transverse shear

strain along its edges, see Fig. 4. The tying points are

chosen at the center of the edges.

Step 1. The interpolation starts from

~ert ¼ a1 þ b1r þ c1s;
~est ¼ a2 þ b2r þ c2s;

~eqt ¼
1ffiffiffi
2

p ð~est � ~ertÞ

¼ 1ffiffiffi
2

p fða2 þ b2r þ c2sÞ � ða1 þ b1r þ c1sÞg:

ð22Þ



Fig. 4. Transverse shear strain tying positions for the 3-node triangular shell element with the constant transverse shear strain along its

edges.
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Step 2. The conditions are

~ertð0; 0Þ ¼ eð1Þrt ; ~ertð1; 0Þ ¼ eð1Þrt ;

~estð0; 0Þ ¼ eð2Þst ; ~estð0; 1Þ ¼ eð2Þst ;

~eqtð1; 0Þ ¼ eð3Þqt ¼ 1ffiffiffi
2

p ðeð3Þst � eð3Þrt Þ;

~eqtð0; 1Þ ¼ eð3Þqt ¼ 1ffiffiffi
2

p ðeð3Þst � eð3Þrt Þ

ð23Þ

and we obtain six linearly independent equations for

the unknown coefficients a1; b1; . . . ; c2.
Step 3. We solve the linear equations and obtain

a1 ¼ eð1Þrt ; b1 ¼ 0; c1 ¼ eð2Þst � eð1Þrt � eð3Þst þ eð3Þrt ;

a2 ¼ eð2Þst ; b2 ¼ �c1; c2 ¼ 0;

ð24Þ

which gives the isotropic transverse shear strain field

~ert ¼ eð1Þrt þ cs;

~est ¼ eð2Þst � cr;
ð25Þ

where c ¼ eð2Þst � eð1Þrt � eð3Þst þ eð3Þrt .

3.3. Interpolation of in-plane strain field

In the formulation of the quadrilateral MITC shell

elements, the covariant in-plane strains are indepen-

dently treated in a straight-forward manner. However,

to reach MITC isotropic triangular elements, additional

considerations arise.

The interpolation of the in-plane strain field starts

from well known basic facts of mechanics. The complete

in-plane strain field is usually given by three strains, that

is, two normal strains (usually, err and ess) and one in-

plane shear strain (ers). However, three independent

normal strains can also give the complete in-plane strain

field.

To construct the isotropic in-plane strain field, we

introduce the normal strain, eqq, in the hypotenuse
direction of the right-angled triangle in the natural

coordinate system

eqq ¼
err þ ess

2
þ err � ess

2
cosð2hÞ þ ers sinð2hÞ ð26Þ

with h ¼ 135� (cosð2hÞ ¼ 0 and sinð2hÞ ¼ �1), see Figs.

2 and 5.

The first step for the construction of the isotropic in-

plane strain field is to independently interpolate the

three in-plane strains err, ess and eqq with the same order

of polynomials

~err ¼ a1 þ b1r þ c1s . . . ;

~ess ¼ a2 þ b2r þ c2s . . . ;

~eqq ¼ a3 þ b3r þ c3s . . . ;

ð27Þ

where a1; b1; . . ., a2; b2; . . ., and a3; b3; . . . denote the un-

known coefficients of the strain polynomials. Of course,

polynomials of lower order than implied by the assumed

displacements should be used.

In the second step, we select isotropic tying posi-

tions in the triangular element and evaluate the as-

sumed strains from the displacement-based strains at
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judiciously chosen points (ri, si) in the element,

i ¼ 1; 2; . . .

~errðri; siÞ ¼ . . . ;

~essðri; siÞ ¼ . . . ;

~eqqðri; siÞ ¼ . . .

ð28Þ

As for the transverse shear strain interpolations, the

ðri; siÞ do not need to be tying positions. The number of

linearly independent equations reached should be equal

to the number of unknown coefficients in Eq. (27).

The last step is to solve the resulting linear equations

for the unknown coefficients in Eq. (27). The strain ~ers,
which is needed for the finite element formulation, is

directly obtained as

~ersðr; sÞ ¼
1

2
f~errðr; sÞ þ ~essðr; sÞg � ~eqqðr; sÞ: ð29Þ

As an example, consider a 6-node triangular shell ele-

ment with linear normal strain variations along its

edges. Fig. 6 shows the tying points corresponding to

each normal strain. Note that this tying is just one of the

possible schemes for triangular shell elements with lin-

early varying normal strains along the edges, that is,

various tying schemes could be used.
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Fig. 6. Strain tying positions for the 6-node triangular shell elemen

r2 ¼ s2 ¼ 1
2
þ 1

2
ffiffi
3

p .
Step 1. We assume the starting polynomials

~err ¼ a1 þ b1r þ c1s;

~ess ¼ a2 þ b2r þ c2s;

~eqq ¼ a3 þ b3r þ c3ð1� r � sÞ;

ð30Þ

where, of course, ~eqq ¼ a3 þ b3r þ c3s can be used

instead of ~eqq ¼ a3 þ b3r þ c3ð1� r � sÞ.
Step 2. The conditions used are

~errð0; 0Þ ¼ ~mð1Þ
rr � ~lð1Þrr ; ~errð1=2; 0Þ ¼ ~mð1Þ

rr ;

~errð1; 0Þ ¼ ~mð1Þ
rr þ ~lð1Þrr ; ~essð0; 0Þ ¼ ~mð2Þ

ss � ~lð2Þss ;

~essð0; 1=2Þ ¼ ~mð2Þ
ss ; ~essð0; 1Þ ¼ ~mð2Þ

ss þ ~lð2Þss ;

~eqqð1; 0Þ ¼ ~mð3Þ
qq � ~lð3Þqq ; ~eqqð1=2; 1=2Þ ¼ ~mð3Þ

qq ;

~eqqð0; 1Þ ¼ ~mð3Þ
qq þ ~lð3Þqq ; ~errðr1; 1=

ffiffiffi
3

p
Þ ¼ eð1Þcrr ;

~essð1=
ffiffiffi
3

p
; s1Þ ¼ eð2Þcss ; ~eqqðr1; s1Þ ¼ eð3Þcqq;

ð31Þ

where

~mðiÞ
jj ¼ 1

2
ðeðiÞ1jj þ eðiÞ2jjÞ; ~lðiÞjj ¼

ffiffiffi
3

p

2
ðeðiÞ2jj � eðiÞ1jjÞ

with j ¼ r; s; q for i ¼ 1; 2; 3 ð32Þ
r

s
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1

r
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1
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)1(
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)3(
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t with linear normal strain along edges; r1 ¼ s1 ¼ 1
2
� 1

2
ffiffi
3

p and
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and

r1 ¼ s1 ¼
1

2
� 1

2
ffiffiffi
3

p ; r2 ¼ s2 ¼
1

2
þ 1

2
ffiffiffi
3

p : ð33Þ

Step 3. The solution of the equations gives

a1 ¼ ~mð1Þ
rr � ~lð1Þrr ; b1 ¼ 2~lð1Þrr ;

a2 ¼ ~mð2Þ
ss � ~lð2Þss ; c2 ¼ 2~lð2Þss ;

a3 ¼ ~mð3Þ
qq þ ~lð3Þqq ; b3 ¼ �2~lð3Þqq ;

c1 ¼
ffiffiffi
3

p
ðeð1Þcrr � a1 � b1r1Þ;

b2 ¼
ffiffiffi
3

p
ðeð2Þcss � a2 � c2s1Þ;

c3 ¼
ffiffiffi
3

p
ðeð3Þcqq � a3 � b3r1Þ:

ð34Þ

As a result, we obtain the isotropic in-plane strain field

and the interpolation function for the in-plane shear

strain ~ers is immediately given by Eq. (29).
4. MITC isotropic triangular shell elements

A successful MITC shell element is based on strain

interpolations that result in good behavior in both

bending and membrane dominated problems. How-

ever, in many cases, if the interpolation of assumed

strains induces good behavior of the element in

bending dominated shell problems, the element is too

flexible (or unstable in the worst case) in membrane

dominated shell problems. On the other hand, the

element might be too stiff or lock in bending domi-

nated problems.

Therefore, the success is in using well balanced

strain interpolations in the formulation. When devel-

oping MITC triangular shell finite elements, the goal

is to eliminate shear and membrane locking in bend-

ing dominated shell problems and to keep the con-

sistency of the element in membrane dominated shell

problems.

The optimal strain interpolations and tying scheme/

points for the MITC technique depend on the dis-

placement interpolations used, that is, the polynomial

space of the element displacement interpolation. In the

previous section, we discussed how to obtain isotropic

strain fields for the MITC technique. Given a displace-

ment interpolation, there exist a number of possible

interpolation schemes for the transverse shear strains

and the in-plane strains. To construct the MITC trian-

gular shell finite elements, each transverse shear strain

interpolation scheme can be combined with various in-

plane strain interpolation schemes. As a result, we can

develop many new shell finite elements, but only few

elements will be effective for practical purposes and, of

course, we are searching the ‘‘optimal’’ element for a

given displacement interpolation.
Here, we focus on the behavior of relatively com-

petitive elements among possible elements, which are

proposed as follows:

MITC3

Since the geometry of the 3-node triangular shell

element is always flat, we only use, like for the MITC4

element, the mixed interpolation for the transverse shear

strains. We assume that the transverse shear strains of

the element are constant along edges. The tying and

interpolation schemes are shown in Fig. 4 and in Eq.

(25), respectively.

MITC6-a

For this 6-node MITC triangular shell element,

linear transverse shear strains along edges are assumed

and therefore two tying points at each edge are cho-

sen. We have one tying point (r ¼ 1=3, s ¼ 1=3) to

express quadratic variations of strains inside the ele-

ment. Fig. 7(a) shows the tying positions for this

scheme, in which

r1 ¼ s1 ¼
1

2
� 1

2
ffiffiffi
3

p ; r2 ¼ s2 ¼
1

2
þ 1

2
ffiffiffi
3

p ;

r3 ¼ s3 ¼
1

3
: ð35Þ

Note that, if we change the values of r1, s1 and r2, s2, the
element will behave differently but a good predictive

capability of the element is obtained with the values in

Eq. (35).

We assume the strains to be given by
~ert ¼ a1 þ b1r þ c1sþ d1rsþ e1r2 þ f1s2;

~est ¼ a2 þ b2r þ c2sþ d2rsþ e2r2 þ f2s2
ð36Þ
and have
a1 ¼ ~mð1Þ
rt � ~lð1Þrt ; b1 ¼ 2~lð1Þrt ; e1 ¼ 0;

a2 ¼ ~mð2Þ
st � ~lð2Þst ; c2 ¼ 2~lð2Þst ; f2 ¼ 0;

c1 ¼ 6ecrt � 3ecst þ 2~mð3Þ
st � 2~mð3Þ

rt � 4a1 � b1 þ a2;

b2 ¼ � 3ecrt þ 6ecst � 2~mð3Þ
st þ 2~mð3Þ

rt þ a1 � 4a2 � c2;

e2 ¼ 3ecrt � 6ecst þ 3~mð3Þ
st � ~lð3Þst � 3~mð3Þ

rt þ ~lð3Þrt

þ b1 þ 3a2 þ c2;

f1 ¼ � 6ecrt þ 3ecst � 3~mð3Þ
st � ~lð3Þst þ 3~mð3Þ

rt

þ ~lð3Þrt þ 3a1 þ b1 þ c2;

d1 ¼ � e2; d2 ¼ �f1;

ð37Þ



r

s

0 1

1

1r 2r

r

s

0 1

1

r

s

0 1

1

1r 2r

r

s

0 1

1

3r

(a)

(b)

1s

2s

3s
1s

2s

)3(
1qte

)3(
2qte

)1(
1rte )1(

2rte

)2(
1ste

)2(
2ste

)3(
1qte

)3(
2qte

)1(
1rte )1(

2rte

)2(
1ste

)2(
2ste

cstcrt ee ,

Fig. 7. Tying points for the transverse shear strain interpolation of the 6-node MITC triangular shell elements: (a) for MITC6-a and

(b) for MITC6-b.
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where

~mðiÞ
jt ¼ 1

2
ðeðiÞ1jt þ eðiÞ2jtÞ; ~lðiÞjt ¼

ffiffiffi
3

p

2
ðeðiÞ2jt � eðiÞ1jtÞ

with j ¼ r; s for i ¼ 1; 2; 3: ð38Þ

It is interesting to note that this scheme is very similar to

the interpolation scheme of the MITC7 plate bending

element in reference [9]. For this element similar tying

points are used and the interpolation functions, which

belong to a ‘‘rotated Raviart-Thomas space’’, are given

as

~ert ¼ a1 þ b1r þ c1sþ sðdr þ esÞ;
~est ¼ a2 þ b2r þ c2s� rðdr þ esÞ:

ð39Þ

We use the in-plane strain interpolation scheme given by

Eqs. (30)–(34).

MITC6-b

Considering the transverse shear strains, this 6-node

MITC triangular shell element has the same edge tying

points as the MITC6-a element. Also ‘‘linear transverse

shear strains along edges’’ are assumed. However, we do

not have any internal tying point and the strain varia-

tions are linear inside the element. Fig. 7(b) shows the

tying positions.

The transverse shear strain interpolations used are

~ert ¼ a1 þ b1r þ c1s;

~est ¼ a2 þ b2r þ c2s;
ð40Þ

where using Eq. (38),
a1 ¼ ~mð1Þ
rt � ~lð1Þrt ; b1 ¼ 2~lð1Þrt ;

a2 ¼ ~mð2Þ
st � ~lð2Þst ; c2 ¼ 2~lð2Þst ;

c1 ¼ ða2 þ c2 � a1Þ � ð~mð3Þ
st þ ~lð3Þst � ~mð3Þ

rt � ~lð3Þrt Þ;

b2 ¼ ða1 þ b1 � a2Þ þ ð~mð3Þ
st � ~lð3Þst � ~mð3Þ

rt þ ~lð3Þrt Þ:

ð41Þ

The same in-plane strain interpolation scheme as for the

MITC6-a element is employed.

Fig. 8 summarizes the strain interpolation schemes

of the selected MITC triangular shell elements. We

may note the geometric relationships between the

tying points used for the triangular MITC3 and MITC6

elements and the MITC4 [6] and MITC9 quadri-

lateral elements [21]. Fig. 9 shows these relation-

ships.
5. Numerical results

In this section, we report upon various numeri-

cal tests of the MITC triangular shell finite elements,

MITC3, MITC6-a and MITC6-b. Selected basic tests

show whether the elements satisfy the minimum require-

ments, see Section 5.1. To investigate in detail the

predictive capability of the proposed elements, we per-

formed convergence studies for various shell problems

[2], see Sections 5.2–5.4.

For convergence studies, we use the s-norm [14]

defined as



Fig. 8. Strain interpolation schemes and tying points of the MITC triangular shell finite elements.
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k~u�~uhk2s ¼
Z

X
D~�TD~rdX; ð42Þ

where ~u denotes the exact solution and ~uh denotes the

solution of the finite element discretization. Here,~� and
~r are the strain vector and the stress vector in the global

Cartesian coordinate system, respectively, defined by

~� ¼ ½�xx; �yy ; �zz; 2�xy ; 2�yz; 2�zx
T;
~r ¼ ½rxx; ryy ; rzz; rxy ; ryz; rzx
T

ð43Þ

and

D~� ¼~��~�h ¼ Bð~xÞU� Bhð~xhÞUh;

D~r ¼~r �~rh ¼ Cð~xÞBð~xÞU� Chð~xhÞBhð~xhÞUh;
ð44Þ

where C denotes the material stress–strain matrix and B

is the strain–displacement operator. The position vectors

~x and ~xh correspond to the continuum domain and the
discretized domain, respectively, and the relationship

between them is

~x ¼ Pð~xhÞ; ð45Þ

where P defines a one-to-one mapping.

In the practical use of this norm, the finite element

solution using a very fine mesh is adopted instead of the

exact solution. Using the reference solution, the s-norm
in Eq. (42) can be approximated by

k~uref �~uhk2s ¼
Z

Xref

D~�TD~rdXref ð46Þ

with

D~� ¼~�ref �~�h ¼ Brefð~xÞUref � Bhð~xhÞUh;

D~r ¼~rref �~rh ¼ Crefð~xÞBrefð~xÞUref

� Chð~xhÞBhð~xhÞUh:

ð47Þ
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Fig. 9. Geometric relationships between tying points used for triangular and quadrilateral MITC shell elements. For the MITC9

element, see Ref. [21]: (a) selection of tying points for the transverse shear strains of the MITC3 element; (b) selection of edge tying

points for the transverse shear strains of the MITC6 element and (c) selection of tying points for the in-plane strains of the MITC6

element.
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To consider the convergence of the discretization

schemes with various thicknesses, we use the relative

error given by

relative error ¼ k~uref �~uhk2s
k~urefk2s

: ð48Þ

5.1. Basic tests

The following basic tests are performed as basic

requirements for the triangular shell elements.

• Isotropic element test. Although the theory shows

that the proposed elements are isotropic, we include

this numerical test to illustrate the isotropy that tri-

angular elements, in general, should satisfy. Consid-

ering any geometrical triangular element, this test

should be passed. The test is performed by analyzing

the three same triangular elements with different no-
dal numbering sequences as shown in Fig. 10. The r-
axis and s-axis always run from nodes 1 to 2 and

nodes 1 to 3, respectively. To pass the test, exactly

the same response should be obtained for all possible

(three-dimensional) tip forces and moments.

• Zero energy mode test. This test is performed by

counting the number of zero eigenvalues of the stiff-

ness matrix of one unsupported shell finite element,

which should be exactly six, and the corresponding

eigenvectors should of course be physical rigid body

modes. We recommend that, when performing this

test, various possible geometries be taken because

an element might pass the test for a certain geometry

but not for other geometries.

• Patch test. The patch test has been widely used to test

elements, despite its limitations for mixed formula-

tions, see Ref. [1]. We use the test here in numerical

form to merely assess the sensitivity of our elements

to geometric distortions. The mesh used for the patch

test is taken from Ref. [1] and shown in Fig. 11. The
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Fig. 11. Mesh used for the patch tests.
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minimum number of degrees of freedom is con-

strained to prevent rigid body motion and the nodal
Table 1

Basic test results of the MITC triangular shell finite elements

Element Isotropic element test Zero energy m

MITC3 Pass Pass

MITC6-a Pass Pass

MITC6-b Pass Pass
point forces which should result in constant stress

conditions are applied. The patch test is passed if in-

deed constant stress fields are calculated.

The results of the basic tests are reported in Table 1.

We notice that all elements proposed here pass all basic

tests.

5.2. Clamped plate problem

We consider the plate bending problem shown in Fig.

12. The square plate of dimension 2L� 2L with uniform

thickness is subjected to a uniform pressure normal to

the flat surface and all edges are fully clamped. Due to

symmetry, only one quarter model is considered (region

ABCD shown in Fig. 12) with the following symmetry

and boundary conditions imposed:

ux ¼ hy ¼ 0 along BC;

uy ¼ hx ¼ 0 along DC; and

u ¼ u ¼ u ¼ h ¼ h ¼ 0 along AB and AD:

ð49Þ
ode test Membrane patch test Bending patch test

Pass Pass

Pass Pass

Pass Pass
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Fig. 13 reports the convergence of the MITC trian-

gular shell elements in the relative error of Eq. (48). We
use the solution using the MITC9 element with a mesh

of 96 · 96 elements as reference. As the plate thickness
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decreases, the MITC3 element locks but still good

accuracy characteristics are seen for t=L up to about

1/1000. The MITC6-a element shows almost optimal

convergence.
5.3. Cylindrical shell problems

We consider a cylindrical shell of uniform thickness t,
length 2L and radius R, see Fig. 14. The shell is loaded

by the pressure distribution pðhÞ normal to the shell

surface,
pðhÞ ¼ p0 cosð2hÞ: ð50Þ

This shell shows two different asymptotic behaviors

depending on the boundary conditions at its ends:

bending dominated behavior when the ends are free and

membrane dominated behavior when the ends are

clamped.

By symmetry, we can limit calculations to the region

ABCD. For the free edge case, the following boundary

conditions are imposed:
R
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Fig. 14. Cylindrical shell problem with a 4· 4 mesh of trian-

gular elements (L ¼ R ¼ 1:0, E ¼ 2:0� 105, m ¼ 1=3 and

p0 ¼ 1:0).
ux ¼ b ¼ 0 along BC;

uy ¼ a ¼ 0 along DC; and

uz ¼ a ¼ 0 along AB:

ð51Þ

For the clamped case, the boundary conditions are

ux ¼ b ¼ 0 along BC;

uy ¼ a ¼ 0 along DC;

uz ¼ a ¼ 0 along AB; and

ux ¼ uy ¼ uz ¼ a ¼ b ¼ 0 along AD:

ð52Þ

A detailed study of this shell problem is presented in

Ref. [12]. The relative error used here is based on the

reference solution obtained with a mesh of 96· 96
MITC9 shell elements.

Fig. 15 displays the convergence curves of the trian-

gular shell elements for the clamped case. We note that

the MITC3, MITC6-a and MITC6-b elements show

good convergence behavior.

Fig. 16 presents the convergence curves for the free

case. The MITC6-a element shows here as well good

convergence.

5.4. Hyperboloid shell problems

The following two test problems use the same

geometry given in Fig. 17 and the same loading. The

midsurface of this shell structure is described by [2]

x2 þ z2 ¼ 1þ y2; y 2 ½�1; 1
: ð53Þ

The loading imposed is the smoothly varying periodic

pressure normal to the surface,

pðhÞ ¼ p0 cosð2hÞ; ð54Þ

which is the same distribution as shown in Fig. 14.

A bending dominated problem is obtained when both

ends are free and a membrane dominated problem is

obtained when the ends are clamped.

Using symmetry, the analyses are performed using

one eighth of the structure, the shaded region ABCD in

Fig. 17(a). Considering the boundary conditions, we

have for the free case

uz ¼ b ¼ 0 along BC;

ux ¼ b ¼ 0 along AD; and

uy ¼ a ¼ 0 along DC

ð55Þ

and, for the clamped case

uz ¼ b ¼ 0 along BC;

ux ¼ b ¼ 0 along AD;

uy ¼ a ¼ 0 along DC; and

ux ¼ uy ¼ uz ¼ a ¼ b ¼ 0 along AB:

ð56Þ
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Fig. 15. Convergence curves for the clamped cylindrical shell problem. The bold line shows the optimal convergence rate, which is 2.0

for linear elements and 4.0 for quadratic elements.
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P.S. Lee, K.J. Bathe / Computers and Structures 82 (2004) 945–962 959



x

y

z
0

1

-1
0 1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

θ

α

β

x

z

y

A
B

CD

(a)

(b)

L2

Fig. 17. (a) Hyperboloid shell problem (E ¼ 2:0� 1011, m ¼ 1=3 and p0 ¼ 1:0) and (b) graded mesh (8· 8, t=L ¼ 1=1000, clamped case).

lo
g(

re
la

tiv
e

er
ro

r )

log(2h)

MITC3

-1.8 -1.2 -0.6
-3.6

-3

-2.4

-1.8

-1.2

-0.6

0

lo
g(

re
la

tiv
e

er
ro

r )

log(h)

MITC6-a

-1.8 -1.2 -0.6
-3.6

-3

-2.4

-1.8

-1.2

-0.6

0
lo

g(
re

la
tiv

e
er

ro
r )

log(h)

MITC6-b

-1.8 -1.2 -0.6
-3.6

-3

-2.4

-1.8

-1.2

-0.6

0

t/L = 1/100
t/L = 1/1000
t/L = 1/10000

Fig. 18. Convergence curves for the clamped hyperboloid shell problem. The bold line shows the optimal convergence rate, which is

2.0 for linear elements and 4.0 for quadratic elements.
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For both cases, we use the reference solution cal-

culated using a mesh of 96 · 96 MITC9 shell elements.

For the clamped case, half the mesh is used in the

boundary layer of width 6
ffiffi
t

p
, see Fig. 17(b). For the
free case, the very thin boundary layer was not specially

meshed.

Fig. 18 shows the convergence curves of the

MITC triangular shell elements in the clamped case.
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The MITC3 and MITC6-a elements show quite good

convergence for this membrane dominated shell

problem.

The convergence curves when the edges of the

structure are free are shown in Fig. 19. This is a difficult

problem to solve when the thickness is small [21], but the

problem is an excellent test case because of the negative

Gaussian curvature of the shell surface. The elements

show all some locking but in fact good accuracy char-

acteristics for the practical range of t=L up to about 1/

1000.
6. Conclusions

In this paper, we proposed a systematic procedure to

construct spatially isotropic MITC triangular shell finite

elements. The method is mechanically clear as well as

simple and effective. We then constructed 3-node and 6-

node MITC shell finite elements. For the selected ele-

ments (the MITC3, MITC6-a and MITC6-b elements),

we performed well-chosen numerical tests and showed

convergence curves. While the elements have been

developed and tested using the continuum-mechanics

based approach with the Reissner–Mindlin kinematics

(with the underlying basic shell model identified by
Chapelle and Bathe [2,22]), the same interpolation ap-

proach is of course also applicable to 3D-shell elements

[23].

The three elements considered are good candidates

for the analysis of general shell structures in engineering

practice in which the range of t=L is usually from 1/10 to

about 1/1000. The elements show good behavior in the

chosen test problems for that range of thickness values.

However, it is still necessary to study these elements

further and to obtain uniformly optimal triangular shell

finite elements that behave equally well in all types of

shell problems.
References

[1] Bathe KJ. Finite element procedures. New York: Prentice

Hall; 1996.

[2] Chapelle D, Bathe KJ. The finite element analysis of

shells––fundamentals. Berlin: Springer-Verlag; 2003.

[3] Chapelle D, Bathe KJ. Fundamental considerations for the

finite element analysis of shell structures. Comput Struct

1998;66:19–36, 711–712.

[4] Lee PS, Bathe KJ. On the asymptotic behavior of shell

structures and the evaluation in finite element solutions.

Comput Struct 2002;80:235–55.



962 P.S. Lee, K.J. Bathe / Computers and Structures 82 (2004) 945–962
[5] Bathe KJ, Chapelle D, Lee PS. A shell problem ‘highly

sensitive’ to thickness changes. Int J Numer Methods Eng

2003;57:1039–52.

[6] Dvorkin EN, Bathe KJ. A continuum mechanics based

four-node shell element for general nonlinear analysis. Eng

Comput 1984;1:77–88.

[7] Bathe KJ, Dvorkin EN. A formulation of general shell

elements––the use of mixed interpolation of tensorial

components. Int J Numer Methods Eng 1986;22:697–

722.

[8] Bucalem ML, Bathe KJ. Higher-order MITC general shell

elements. Int J Numer Methods Eng 1993;36:3729–54.

[9] Bathe KJ, Brezzi F, Cho SW. The MITC7 and MITC9

plate bending elements. Comput Struct 1989;32:797–814.

[10] Bucalem ML, N�obrega SHS. A mixed formulation for

general triangular isoparametric shell elements based on

the degenerated solid approach. Comput Struct 2000;78:

35–44.

[11] Bathe KJ, Iosilevich A, Chapelle D. An inf–sup test

for shell finite elements. Comput Struct 2000;75:439–56.

[12] Bathe KJ, Iosilevich A, Chapelle D. An evaluation of the

MITC shell elements. Comput Struct 2000;75:1–30.

[13] Bathe KJ. The inf–sup condition and its evaluation for

mixed finite element methods. Comput Struct 2001;79:243–

52, 971.

[14] Hiller JF, Bathe KJ. Measuring convergence of mixed

finite element discretizations: an application to shell

structures. Comput Struct 2003;81:639–54.
[15] Bletzinger KU, Bischoff M, Ramm E. A unified approach

for shear-locking-free triangular and rectangular shell finite

elements. Comput Struct 2000;75:321–34.

[16] Argyris JH, Papadrakakis M, Apostolopoulou C, Kout-

sourelakis S. The TRIC shell element: theoretical and

numerical investigation. Comput Methods Appl Mech Eng

2000;182:217–45.

[17] Bernadou M, Eiroa PM, Trouv�e P. On the convergence of

a discrete Kirchhoff triangle method valid for shells of

arbitrary shape. Comput Methods Appl Mech Eng 1994;

118:373–91.

[18] Sze KY, Zhu D. A quadratic assumed natural strain

curved triangular shell element. Comput Methods Appl

Mech Eng 1999;174:57–71.

[19] Kim JH, Kim YH. Three-node macro triangular shell

element based on the assumed natural strains. Comput

Mech 2002;29:441–58.

[20] Ahmad S, Irons BM, Zienkiewicz OC. Analysis of thick

and thin shell structures by curved finite elements. Int J

Numer Methods Eng 1970;2:419–51.

[21] Bathe KJ, Lee PS, Hiller JF. Towards improving the

MITC9 shell element. Comput Struct 2003;81:477–89.

[22] Chapelle D, Bathe KJ. The mathematical shell model

underlying general shell elements. Int J Numer Methods

Eng 2000;48:289–313.

[23] Chapelle D, Ferent A, Bathe KJ. 3D-shell elements and

their underlying mathematical model. Math Models Meth-

ods Appl Sci 2004;14:105–42.


	Development of MITC isotropic triangular shell finite elements
	Introduction
	MITC formulation of continuum mechanics based shell finite elements
	Strain interpolation technique for isotropic triangular shell elements
	Strain interpolation methods
	Interpolation of transverse shear strain field
	Interpolation of in-plane strain field

	MITC isotropic triangular shell elements
	Numerical results
	Basic tests
	Clamped plate problem
	Cylindrical shell problems
	Hyperboloid shell problems

	Conclusions
	References


