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Challenges and advances in the analysis of structures

Klaus-Jiirgen Bathe
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ABSTRACT: The objective in this presentation is to briefly present major challenges in the analysis of structures
and some recent developments in finite element procedures that we have pursued. The general challenges are to
solve problems more reliably, accurately and efficiently, and to solve problems that so far cannot be analyzed.
We present our recent developments for — the finite element analysis of shells, the solution of wave propagation
problems, the time integration in long-time large deformation analyses, the analysis of large deformations of
beam structures, and the simulation of fluid flow-structure interactions including various physical phenomena.

This paper is an updated version of Bathe (2009a).

1 INTRODUCTION

The analysis of structures is largely performed using
finite element procedures. These are now widely used
in engineering and the sciences and we can expect a
continued growth in the use of these methods (Bathe
(ed.) 2009, Zienkiewicz & Taylor 2005, Bathe 1996a,
Bathe 2009b).

Considering the analysis and design of civil and
mechanical engineering structures, we can categorize
the analyses into two broad groups. In the first group,
it is quite possible to perform physical tests and thus
compare the analysis results with laboratory test data.
The analysis of motor cars falls into that group. In the
second group, physical tests can only be performed to a
very limited extent. The analysis of long-span bridges
under earthquake loadings falls into that group. For
this second group of analyses it is most important to
use reliable finite element methods in order to have the
highest possible confidence in the computed results.
In addition, of course, the finite element procedures
should be efficient. While in the first group, confi-
dence in the safety of a design can be reached by
evaluating the analysis results against physical test
data, of course, both these requirements — reliability
and efficiency — are very important in all analyses,
even when physical test data can be obtained — if only
to reduce the number of tests to be performed (Bathe
1996b, Elabbasi et al. 2004).

When assessing the current use of finite element
methods for the analyses of structures, we naturally
find that there is also a great interest in solving struc-
tural problems that heretofore could not be tackled.
Hence, clearly, novel finite element procedures need
to be researched, established, and eventually offered
widely in computer programs.

The objective in this paper is to briefly discuss major
challenges in the development of methods for the anal-
ysis of structures, and briefly focus on our recent

developments to advance the state of the art. In our
research we have continuously focused on the effi-
ciency and reliability of the methods. Of course, any
simulation starts with the selection of a mathemati-
cal model, and this model must be chosen judiciously
(Bathe 1996a). However, once an appropriate math-
ematical model has been selected, for the questions
asked, the finite element solution of that model needs
to be obtained reliably, effectively, and ideally to a
controlled accuracy.

In the following sections we first summarize, in a
short section, the challenges, and then briefly present
our recent developments in the finite element analysis
of'shells, wave propagation problems, highly nonlinear
dynamic long-time duration events, beam structures,
and general practical fluid-structure interactions, that
can include electro-magnetic effects. This paper is an
updated version of Bathe (2009a).

2 CHALLENGES

The challenges in the development of structural anal-
ysis procedures can be broadly categorized into those
that advance the reliability and efficiency of finite ele-
ment methods, and those that can be used to solve new
classes of problems. But, of course, even when devel-
oping methods to solve new classes of problems the
issues of reliability and efficiency are always impor-
tant. The challenges that we consider were given in the
Preface of Bathe (ed.) (2005).

Considering the analysis of “new” problems — or
rather problems that could not be tackled before —
these are abundant in the areas of fracture, wave prop-
agation, composite structures, large strain responses
of novel materials in solids and shells, large defor-
mation and long time duration nonlinear dynamic
responses, and fluid-structure interactions including



electro-magnetic effects. These problems are found
in mechanical, civil, aeronautical, earthquake and
biological engineering. Frequently, multi-physics and
multi-scale effects need to be represented, and stochas-
tic descriptions of geometries, loads, and material data
may also be important.

If a design optimization of a structure is to be per-
formed, the difficulties can significantly increase in
establishing a model that adequately represents the
response and that can be solved in a reasonable amount
of computing time.

For the analysis of these “new” problems, many
so-called novel methods can be proposed, and sim-
ple illustrative problems can be solved. However, the
difficulties are that these methods should be reliable,
efficient and generally applicable — such that they can
be implemented in general computer programs use-
able by analysts that are not familiar in detail with
the computational procedures. As long as the analyst
has a good fundamental knowledge of mechanics, and
the basic assumptions of the methods are described,
these methods should be useable to obtain reliable
solutions.

The step from having a method that can be used
by the single researcher to solve a problem to hav-
ing a method that can quite generally be used to solve
problems in a certain category in a reliable and effi-
cient manner is very large — but most important to be
achieved if the analysis capabilities are to be advanced
in general. To have accomplished that step requires that
the method has the required attributes of reliability,
efficiency and generality which must be “proven” by
as much mathematical analysis as possible, and severe
numerical testing with discriminating test problems
that are designed specifically to focus on the reliability
and efficiency of the method.

A major and quite natural aim in finite element
research has been the establishment of ‘a posteriori’
error measures, which would tell an analyst to what
accuracy a chosen mathematical model was solved
with the given finite element discretization. While this
would clearly be a most desirable feature to have in an
analysis, it is a significant question how for general
nonlinear analysis, such measures, if to be reliable,
inexpensive to use and generally applicable, can be
developed. Indeed, considering just general practical
linear analyses, such measures, after many years of
research, seem to still not be available (Gritsch &
Bathe 2005). The basic difficulty is, of course, that
the “exact solution® of the mathematical model is
unknown (with multiple solutions possible in nonlin-
ear analysis) and yet a comparison of the numerical
finite element solution with that unknown exact solu-
tion shall be established. Furthermore, considering
error measures in practical analyses, the ‘actual’ error
between the real physical response of the structure
and the exact solution of the mathematical model is
of much interest. While hierarchical modeling is here
an important concept, the methods are not easy to
apply in advanced nonlinear analyses (Bathe 1996a,
Bucalem & Bathe, in prep.).

3 OUR DEVELOPMENTS

Once a mathematical model has been chosen, it is
important that well-founded, reliable and of course
efficient numerical methods be used for solution. By
reliability of a finite element procedure we mean that
in the solution of a well-posed mathematical model,
the procedure will always, for a reasonable finite ele-
ment mesh, give a reasonable solution—and if the mesh
is reasonably fine, an accurate solution of the chosen
mathematical model is obtained (Bathe 1996a).

By reliability of a finite element procedure we also
mean that if some analysis conditions are changed, and
seemingly only slightly, in the mathematical model,
then for a given finite element mesh, time step inte-
gration, and so on, the accuracy of the finite element
solution does not drastically decrease, unless there are
distinct physical reasons. These conditions on analysis
methods are very difficult to achieve and require theo-
retical depth in the understanding of the methods, and
thorough and extensive testing based on theoretical
insights. These conditions also rule out the use of meth-
ods that require the setting and problem-dependent
adjusting of numerical parameters to achieve stability
of a procedure.

3.1 Shell elements

The fundamental requirements in the development of
shell elements are that the discretization should sat-
isfy the consistency condition, the ellipticity condition,
and ideally the inf-sup condition (Bathe 2009b, Bathe
2001, Chapelle & Bathe 2003, Hiller & Bathe 2003)

sup M >c supM vne€E, (1)
e b ||v-'1|||' el ||v||| .
where V' is the complete (continuous) displacement
space, V), is the finite element displacement space, E),
is the finite element strain space, b(.,.) is the appli-
cable bilinear form, and c is a constant independent
of the shell thickness ¢ and the element size h. To
show analytically that the inf-sup condition is satisfied
for an element formulation is very difficult because it
involves the complete space V' for any shell geometry.

If an element satisfies these conditions, the dis-
cretization is very reliable for all shell analyses, that
is, in the analyses of membrane-dominated shells,
bending-dominated shells, and mixed behavior shells
(Chapelle & Bathe 2003). Displacement-based shell
elements do not perform well in bending-dominated
cases and mixed elements need to be used.

In the development of mixed shell elements, mathe-
matical convergence proofs could so far only be given
for certain elements and rather simple shell geometries
and boundary conditions, see e.g. Havu & Pitkdranta
(2003). However, mathematical analysis has been pow-
erful in guiding how elements should be tested in
order to reveal whether the above conditions are sat-
isfied (Chapelle & Bathe 2003, Hiller & Bathe 2003,
Chapelle & Bathe 1998, Chapelle & Bathe, in press).



While reasonably effective quadrilateral shell ele-
ments are available, also incorporating 3D effects
(Kim & Bathe 2008), it is a particularly difficult task to
develop a general triangular 6-node shell element that
is spatially isotropic, has the same degrees of freedom
at every node, does not contain any instability, and
converges well in membrane- and bending-dominated
problems. The testing of the element should involve
specific problems chosen to reveal the element prop-
erties, and in particular shell problems based on a
hyperbolic shell surface, and appropriate norms to
measure the solution errors (Chapelle & Bathe 2003,
Hiller & Bathe 2003, Chapelle & Bathe 1998).

We recently proposed the MITC6 shell element and
show the convergence results of the element using
the s-norm for hyperboloid shell problems in Fig-
ure 1 (Kim & Bathe 2009). This element satisfies all
the features sought and converges also almost opti-
mally in the clamped-clamped hyperboloid problem
(the membrane-dominated problem) but only reason-
ably well in the free-free hyperboloid problem (the
bending-dominated problem). In the solution of sim-
pler problems the element performs almost optimally.
It is one of the remaining challenges of finite element
research to develop a still more effective general trian-
gular 6node shell element. In this search, the ‘enhanced
assumed strain’ method could be used (Simo & Rifai
1990) — a method quite different from the MITC
approach (Bathe 1996a, Kim & Bathe 2009) — but
then no instabilities should arise in nonlinear analy-
sis. Such instabilities have been observed in enhanced
assumed strain formulations although the formula-
tions are stable in linear solutions, see for example
Wriggers & Reese (1996) and Pantuso & Bathe (1997).
The MITC shell elements are also effective in plate
solutions (Lee & Bathe 2010).

While therefore advances regarding the linear anal-
ysis of shells need still be accomplished, the large
strain analysis of shells is considerably more complex,
in particular when anisotropic elastoplastic response
is to be simulated (Kim et al. 2009, Montans & Bathe
2005). Here too, well-chosen and discriminating test
problems should be solved in order to identify the reli-
ability of an element. We use the 3D-Shell MITC4
element in large strain solutions (Bathe et al., in prep).

Considering complex beam structures, these can of
course be modeled using shell elements, but such solu-
tions can be very expensive to obtain and it is more
practical to employ reliable and efficient beam ele-
ments. These, however, need to include, in general, the
important beam 3D effects for different cross-sections
in large deformations with torsion-bending coupling
(Mahdavi & Bathe, in prep.).

3.2 Wave propagation problems

Although, in principle, the finite element method can
directly be applied to the solution of wave propaga-
tion problems, and indeed has been used abundantly
for such analyses, a specific required accuracy in the
response may be difficult to reach, and the solutions
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(a) The hyperboloid shell problems considered (side view)

(c) 8x8 element mesh used for the clamped shell {including the
boundary layer), modeling 1/8™ of the shell

Figure 1. Analysis of the hyperboloid shell problems,
t=thickness of shell, L = characteristic length, here L =1;
varying pressure loading is applied (Kim & Bathe 2009).

can computationally be very expensive. Accurate
solutions can be particularly difficult to obtain in
multi-scale analyses, in which

We have worked on the development of a method
that, in essence, combines the attractive features of
classical finite element discretization and spectral
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(d) 8x8 mesh used for free-free shell, modeling 1/8" of the

shell
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(e)Convergence results using the s-norm: clamped-clamped
shell
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(f)Convergence results using the s-norm: free-free shell; the
slopes of the bold lines correspond to optimal convergence

Figure 1. continued

techniques (Kohno et al. 2010). The key step is that the
classical finite element shape functions are enriched
with wave patterns. To illustrate the method, let us con-
sider 1D solutions. If a classical linear shape function
is used, we assume

S () =201+ éﬁ)exp[:‘w (= +%§ﬂ @

where i, xe, Ax and £ are the imaginary unit, the
x-coordinate at the center of the element, the length of
the element and the coordinate variable in the calcu-
lation space (—1 <& < 1). The physical space is then
related to the calculation space by x =xe+(Ax/2)&.
The subscript « denotes the local node number, and
the coordinates of xo correspond to £1,2 = —1, 1. The
wave numbers 27vj are determined by vj =jv, where v
is the fundamental frequency and ; is an integer in the
range —(NF-1)/2 <j < (NF -1)/2 with the cutoff wave
number (or number of harmonics) NE. The values of v
and NF need to be chosen for the analysis and further
research is needed to develop an algorithm that auto-
matically chooses appropriate values, and of course
also element sizes.

Interpolations using classical finite element func-
tions combined with analytical solutions have of
course been used for a long time, see for example
Astley (1983) and Bathe & Almeida (1980). How-
ever, in Equation (2) no specific analytical solution
is employed. Instead, the waves embedded within
the classical finite element functions are to capture
the unknown wave propagations. This possibility is
important when solving, for example, wave equations
governing the response of plasmas, in which waves of
different and sometimes widely varying properties and
mode conversions are observed.

Figure 2 shows an application of the solution pro-
cedure and illustrates the effectiveness of the method,
see Kohno et al. (2010), also for further solutions.

3.3 Time integration in nonlinear analyses

Considering transient structural response, a widely
used scheme of time integration is the Newmark
method trapezoidal rule. However, as well known, if
large deformations over long-time durations need be
solved, the trapezoidal scheme can become unstable
and the generalized alpha method is then frequently
used (Bathe 1996a, Chung & Hulbert 1993). With this
method stability and accuracy parameters have to be
set and depending on the values used, the calculated
response can be inaccurate, resulting into experi-
mentation with the parameters. The time integration
scheme given in Bathe (2007), which in essence
extends a method published much earlier for first-
order systems (Bank et al. 1985), can in such cases
be considerably more effective.

Consider that the solution at time # has been estab-
lished and that the solution at time # + At shall be
obtained. The governing equations for a structural
model to be solved are then

M 1+.-‘\.IU +C .l+.-\rU - 1+.-‘\.IR_ r+.-\.rF (3)

where M is the mass matrix, C is the damping matrix,
R is the vector of externally applied loads, F is the vec-
tor of nodal forces equivalent to the element stresses,
and U denotes nodal displacements (including rota-
tions). The superscript ¢ + A¢ denotes of course time
and an overdot a time derivative. In the time integra-
tion scheme given in Bathe (2007) we consider each
time step At to consist of two equal sub-steps, each



30
25
20t

15T

-10

0.0 0.2 0.4 " 0.6 0.8 1.0

(a) Response over complete domain

0.0 0.1 0.2 0.3 0.4 0.5
X

(b) Detail to show short and long wave responses

0.15

0.0 t

0.05

0.00

u-error

-0.05

-0.10 F

-+ Hermitian FEM (0.1 x error)
—— Hermitian wave-packet

-0.15

0.0 0.2 0.4 % 0.6 0.8 1.0

{c) Comparison using Hermitian classical functions only and
with wave packets

Figure 2. Solution of Wasow equation using wave-packet
procedure of Kohno et al. (2010).

solved implicitly. The first sub-step is solved using
the trapezoidal rule and the second sub-step is solved
using the three-point Euler backward method with the
governing equations

n.-LrU :cl.rU+Czr+.sr.-‘2U+C;-.-MU (4)
e+ArU =CIIU+C3r+Ar-'2U+C3I—MU (5)

where ¢; = 1/At, c; = —4/At, c3 = 3/At.
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Figure 3. Solution of rotating plate problem.

This scheme is a fully implicit second-order accu-
rate method and requires per time step about twice the
computational effort as the trapezoidal rule. However,
no parameters have to be set, the accuracy per time step
is significantly increased, and in particular the method
remains stable when the trapezoidal rule fails to give
the solution, see Figure 3 for an example. We use this
scheme as an option in nonlinear dynamics of solids
and structures, and also in fluid-structure interaction
solutions. In this case the first-order fluid flow equa-
tions and the second-order structural equations are
integrated consistently using the same scheme, either
staggered or monolithically (Bathe & Zhang 2004).
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(a) Problem considered

(b) Final CFD mesh reached after 6 mesh adaptations (547,741
elements)

(c) Mesh of shell elements modeling blades, in final
configuration (deformations are shown to scale)

Figure 4. Fluid-structure interaction problem of flow
around blades (Bathe & Zhang 2009).

Since we use the same finite element discretizations
in explicit and implicit dynamic solutions of solids
and structures, automatic switching from explicit to
implicit integration, and vice versa, is directly pos-
sible. This automatic time integration can be very
effective when fast and slow transients intermingle,
when a dynamic response is followed by an almost
static response (like in metal forming problems), and
if convergence difficulties are encountered in the
implicit time stepping.

VELOCITY
TIME 4.000

5.047

(d) Velocities on plane 0.5 em downstream from the blades,
using final mesh

Figure 4. continued

3.4 Fluid-structure interactions (FSI)

Considering Navier-Stokes fluids, the FSI solution
requires effective discretizations to model the fluid
including high Péclet and Reynolds number condi-
tions, effective finite element methods for the struc-
ture, and the proper coupling of the discretizations
(Rugonyi & Bathe 2001).

We have concentrated our development efforts on
establishing, for incompressible fluids, finite ele-
ment discretization schemes that are stable, even
when coarse meshes are used for very high (element)
Péclet and Reynolds numbers and show good accuracy
(Bathe & Zhang 2002, Bathe & Zhang 2004, Bathe &
Zhang 2009). The basic approach is to use velocity-
pressure interpolations to satisfy the inf-sup condition
for incompressibility, flow-condition-based interpola-
tions (FCBI) in the convective terms of the fluid, and
to use element plane stress control volumes (like in
the finite volume method) to assure local mass and
momentum conservation.

The resulting FCBI elements do not require a tuning
of upwind parameters, satisfy the above properties,
and also, the interpolations can be used to establish
consistent Jacobian matrices for the iterations in the
incremental solutions.

We use these elements for incompressible, slightly
compressible, and low speed compressible fluids.
These flows and highly compressible fluid flows can all
be coupled in an arbitrary Lagrangian-Eulerian formu-
lation with general structural models (Bathe & Zhang
2004, Bathe & Ledezma 2007, Degroote et al. 2009).
However, as well known, for very large structural
deformations the fluid mesh can become much dis-
torted unless an algorithm of remeshing is employed.
We have developed an algorithm for mesh repair and
adaptation based on element sizes and flow solution
variables, like the gradient of pressure, for CFD (highly
compressible and incompressible fluids) and general
FSI (Bathe & Zhang 2009). As an example, Figure 4
shows the solution obtained of a fluid-structure inter-
action problem. We see that with the element grading



in the mesh, a very fine mesh was established near the
blades to capture the secondary flow.

4 CONCLUDING REMARKS

The objective in this paper was to briefly present
major challenges in the analysis of structures and some
of our recent developments to advance the state of
the art. As emphasized above, our research focus is
on the development of more efficient and reliable
finite element methods, and on novel techniques for
the solution of new classes of problems, like those
described in Deilmann & Bathe (2009) and Sedeh
et al. (2009). Additional areas of our research not
explicitly mentioned in this paper are the modeling of
electro-magnetic effects based on the full Maxwell‘s
equations, specifically in fluid-structure interactions,
multi-scale solutions in bio-mechanics, the speed-up
of implicit and explicit solutions through SMP and
DMP processing (Bathe et al., in prep., Bathe in prep.),
meshless methods (Hong & Bathe 2005) and the
more reliable and accurate solution of complex contact
problems (Elabbasi & Bathe 2001), including thermo-
mechanical effects. Many demonstrative solutions are
given at http://www.adina.com/newsgrp.shtml.
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