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Abstract

Various methods of analysis for the solution of fluid flows with structural interactions have been proposed in the literature, and new
techniques are being developed. In these endeavors, to advance the field, thorough evaluations of the procedures are necessary. To help in
establishing such evaluations, we present in this paper the solutions of some benchmark problems. The results can be used to evaluate
existing and new formulations of incompressible fluid flows with structural interactions.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

During the last years, significant advances have been
made in the development and use of computational meth-
ods for fluid flows with structural interactions. These
advances pertain to the continuous efforts to reach more
effective computational techniques, see for example Refs.
[1–17], to include more phenomena [18–21] and to develop
and assess analysis methods in very difficult problems to
solve [22–46]. As seen, valuable applications of fluid–struc-
ture interaction analyses are vast in various industries and
scientific endeavors. In particular, the automobile and air-
plane industries need to pursue such analyses. Also, studies
in the biomedical sciences often require the modeling of
fluid–structure interaction effects. And surely, as the analy-
ses procedures become more effective and more general, the
field of applications will further grow because nature does
not distinguish between solids and fluids, and engineers
and scientists will need to ‘simply simulate nature’ as it
manifests itself in our various environments.
0045-7949/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Since there is a need for effective fluid structure interac-
tion analysis procedures, various approaches have been
proposed.

In current simulations, arbitrary Lagrangian–Eulerian
(ALE) formulations are now widely used. The ALE contin-
uum mechanics formulation is straight-forward; however,
there are a number of important computational issues.
For the fluid response, a Lagrangian–Eulerian formulation
with moving control volumes is used while for the struc-
tural response a pure Lagrangian formulation is employed.
These descriptions need be coupled in a consistent and
accurate manner for the interface conditions. Of course,
the usual difficulties to reach accurate solutions in pure
fluid flow analyses and in pure structural analyses are also
present in ALE formulations of coupled response. How-
ever, a major additional and ‘practical’ difficulty is that
in the ALE formulation to describe the fluid flow, the mesh
needs to preserve acceptable element geometries through-
out the incremental analysis.

The difficulty to preserve in the ALE formulation
acceptable element geometries in the fluid mesh, when the
structure undergoes large deformations, has been
addressed in various research endeavors, see for example
Refs. [47,48] and the references therein. In some
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approaches, the fluid mesh nodal coordinates are updated
using the nodal displacements obtained by solving struc-
tural equations corresponding to springs or solid elements
that connect the fluid nodes. These approaches have signif-
icant limitations, similar to the simple use of solving the
Laplace equation with appropriate boundary conditions.
However, if the approach of solving the Laplace equation
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Fig. 1. 2D and 3D FSI patch tests: (a) solid and fluid meshes, and boundary co
stress-zz band plots.
is used for lines, surfaces and then volumes, a practical
algorithm can be developed [4]. While this approach is
quite powerful, the modeling effort needed can be large
and there are of course limitations regarding the incremen-
tal steps that can be used in an analysis.
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fluid flow in the incremental analysis may be generated.
This approach offers in principle much generality for anal-
ysis, but requires efficient and accurate procedures to estab-
lish a new mesh for the current fluid domain and the just
calculated fluid response. The new fluid mesh needs to be
established based on error measures and the fluid response
needs to be mapped accurately onto the new mesh. This
mapping introduces errors that need to be controlled.
The approach is quite attractive for steady-state solutions
but in transient analyses the errors introduced by frequent
mappings can pollute the response prediction. Therefore
this adaptive re-meshing procedure is best used in conjunc-
tion with an effective ALE formulation. Then the re-mesh-
ing need only be invoked when the other algorithms of the
ALE formulation do not succeed in updating the nodal
coordinates to obtain an effective fluid mesh.

Since there are these difficulties in reaching effective fluid
flow meshes when the fluid flow domains are changing sig-
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nificantly, a number of other formulations have been pro-
posed. The basic idea in ‘immersed solid formulations’ is
to span the complete domain by a (stationary) Eulerian
mesh through which the fluid flows and the structure
moves, see for example Refs. [14,15] and the references
therein. In a simple approach, the structure is simply repre-
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acting onto the fluid. These solutions can not give an accu-
rate stress response of the structure but only an overall
understanding of the fluid flow with the structure embed-
ded in the fluid.

In many FSI analyses we are primarily interested in the
structural response, and in particular in the structural stres-
ses that are a result of the fluid interacting with the struc-
ture. For such problems, immersed solid formulations are
currently developed to represent the actual solid continuum
moving through the fluid, see Refs. [14,15,49,50]. A diffi-
culty then encountered is the accurate solution of the trac-
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Fig. 3. Porous FSI patch test: (a) model and meshes used and (b) pressure band plot and velocity vectors; y-velocity along the z-coordinate at the outlet.

1 In this paper, we shall use the abbreviation ‘FSI’ for fluid–structure
interactions in which the fluid is governed by the Navier–Stokes equations
of isothermal incompressible flows.
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tions on the fluid structure boundary and the velocity field
near the boundary. Also, fluid flows contained in structural
boundaries with large movements can be difficult to solve.
Of course, various combinations of ALE formulations and
immersed solid formulations can be proposed.

Hence, there are various approaches for fluid structure
interaction solutions, which all display some limitations.
Since, as mentioned above already, possible applications
of fluid structure interaction analyses in various industries
and scientific research are wide-spread, and must be
expected to increase, significant further advances in the
development of fluid structure interaction procedures need
be foreseen. These new and possibly improved techniques,
however, need to be benchmarked in problem solutions
and measured against techniques that are already available.

The main objective in this paper is to present some
benchmark solutions that shall help to verify new formula-
tions for fluid structure interaction (FSI) analyses1 assum-
ing incompressible fluid flow and small or large structural
deformations. The benchmark solutions have been
obtained using ADINA [3,51,52]. The problems have been
selected to not have complex and computationally intensive
discretizations but to rather consider ‘basic problems’ that
should be easily solved by an FSI scheme. Since ADINA is
widely available, the benchmark solutions can also directly
be resolved with the code, if desired, in order to obtain
more details regarding the solutions.

In the next sections of the paper we first briefly pres-
ent the formulations used in ADINA and then we pres-
ent the various benchmark problems and solutions.
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Fig. 3 (continued)

2 We imply throughout the paper to use the appropriate Hilbert spaces
or affine manifolds; for details see for example [53,54].
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We endeavor to present the problems such that the solu-
tions can directly be reproduced using various FSI
implementations.

2. Governing equations of fluid flows with structural

interactions

In this section, we briefly present the mathematical
model of the fluid flow structure interaction problems
and the finite element discretizations that we consider.

2.1. Fluid flow equations

We consider an open bounded fluid domain X 2 R3 with
boundary C ¼ CD [ CN [ Ci where CD and CN are the
Dirichlet and Neumann boundaries of the fluid, and Ci is
the fluid–structure interface boundary. The Navier–Stokes
equations of an incompressible, isothermal fluid flow can
be written in non-conservative form as

q
ov

ot
þ qðv � rÞv�r � s ¼ fB x 2 X;

r � v ¼ 0 x 2 X
ð1Þ
subject to the boundary conditions

v ¼ vD; x 2 CD;

s � n ¼ t; x 2 CN;

v ¼ _ui
S; x 2 Ci;

ð2Þ

where

sðv; pÞ ¼ �pIþ l½rvþ ðrvÞT� ð3Þ

is the stress tensor, l is the viscosity, v are the velocities, p is
the pressure, fB are body forces per unit volume, vD are the
prescribed velocities on CD, _ui

S are the velocities of the
fluid–structure interface Ci, t are the prescribed tractions
on CN, n is the unit outward normal vector to the boundary
surface of the fluid, and q is the fluid density.

The variational formulation of the Navier–Stokes equa-
tions reads [53]

Find ðv; pÞ 2 V � P such that2

aððv; pÞ; ðw; qÞÞ ¼ lðwÞ 8ðw; qÞ 2 V 0 � P ; ð4Þ
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where

aððv; pÞ; ðw; qÞÞ ¼
Z

X
s � rwdXþ

Z
X

qr � vdX;

lðwÞ ¼
Z

X
fB � wdXþ

Z
CN

t � wdC�
Z

X
q

ov

ot
� wdX

�
Z

X
qðv � rÞv � wdX:

ð5Þ

with l(w) also a function of v.
Of course, the coupling between the fluid and the struc-

ture must satisfy the conditions of compatibility and trac-
tion equilibrium at the fluid–structure interface. In our
solutions, the displacements of the structure are imposed
onto the fluid–structure interface of the fluid domain, i.e.,

uðtÞ ¼ ui
SðtÞ; x 2 Ci ð6Þ

and hence the fluid domain is a function of the structural
displacements, X ¼ XðuSÞ.
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Fig. 4. Porous FSI patch test. Solid model pore pressure and stresses
These are the basic governing equations of the fluid
flows we consider, and can be used to derive the equations
for related flow conditions, such as flow through porous
media and slightly compressible flow.
2.2. Solid equations

We consider an open bounded domain XS 2 R3 of a
solid with boundary CS ¼ CS

D [ CS
N [ Ci where CS

D and CS
N

are the Dirichlet and Neumann boundaries of the solid,
and Ci is the fluid–structure interface boundary. The solid
response is described using a Lagrangian formulation
where the solid can of course include structural behavior
as described by beams, plates, or shells. The solid or struc-
ture can be subjected to large deformations and rotations.

Considering a general 3D-nonlinear response, the gov-
erning equilibrium equations are
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along the y axis. The stresses are plotted at the integration points.
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r � sS þ fB
S ¼ qS

o2uS

ot2
; x 2 XS; ð7Þ

with the boundary conditions

uS ¼ uD
S ; x 2 CS

D;

sS � nS ¼ tS; x 2 CS
N;

sS � nS ¼ �s � nþ ti
S; x 2 Ci;

ð8Þ

where sS is the Cauchy stress tensor, fB
S are body forces per

unit volume, uS are the unknown displacements, qS is the
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solid density, tS are tractions applied on CS
N, ti

S are exter-
nally applied tractions to the interface boundary Ci, and
nS is the unit outward normal vector to the boundary sur-
face of the structure. The stresses are of course evaluated
using the relevant constitutive relations. We note that in
Eq. (8) the traction equilibrium between the fluid and the
structure is imposed on Ci.

The variational formulation of this problem can be writ-
ten as [53]

Find uS 2 V S such that

aSðuS; vSÞ ¼ lSðvSÞ 8vS 2 V 0;S ; ð9Þ
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where

aSðuS; vSÞ ¼
Z

XS

sS � eS dXS;

lSðvSÞ ¼
Z

XS

fB
S � vS dXS þ

Z
CS

N

tS � vS dCþ
Z

Ci

ðti
S � s � nÞ � vS dC

�
Z

XS

qS€uS � vS dXS

ð10Þ
and eS is the strain tensor corresponding to vS.

The above variational equation directly gives the dis-
placement-based finite element formulations, but for many
analyses mixed finite element formulations are more effec-
tive. Mixed formulations can be derived by extending the
variational formulation in Eq. (9), see for example Refs.
[53,54].
2.3. Coupling between fluid flow and solids

The coupling between the fluid and the structure is
based on an arbitrary-Lagrangian–Eulerian formulation
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direct comparison of the z-velocity for the axisymmetric and 3D models; (c) no
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for the fluid that is coupled to the Lagrangian formulation
of the structure [3]. Using the variational formulations
for the fluid flow problem and the structural problem, the
nonlinear coupled problem can be written in compact form
as

Find fv; p; uSg 2V ¼ V � P � V S such that

aððv; pÞ; ðw; qÞÞ þ aSðuS; vSÞ ¼ lðwÞ þ lSðvSÞ
8fw; q; vSg 2V0;

V0 ¼ V 0 � P � V 0;S

ð11Þ

This nonlinear variational problem describes a fully
coupled fluid flow structure interaction problem. The fluid
domain, on which a((Æ, Æ), (Æ, Æ)) is defined, depends on the
structural displacements uS.

2.4. Solution of governing FSI continuum equations

The governing equations of the FSI response, given in
Eq. (11), are discretized and solved in ADINA using for
solids and structures the element formulations published
in Ref. [53] and for the fluid flow the element formulations
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Table 1
Mass conservation test

t Re Flow rate [kg/s]

z = 0 m z = 0.5 m z = 1 m

0.4 31.2 2.45199 2.45198 2.45198
1.0 121.1 9.51151 9.51151 9.51151
1.6 361.7 28.4088 28.4088 28.4088

Flow rates at three different sections along the axis.
The Reynolds number is based on the average velocity at the inlet, z = 0 m
and the channel inner diameter, D = 0.1 m.
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presented in Refs. [3,55]. The flow-condition-based inter-
polation (FCBI) approach used for solution of incompress-
ible flows has also been studied further in Refs. [56–58]. As
discussed in Refs. [55–58], the objective in the FCBI formu-
lations is to have good stability and sufficient accuracy for
FSI solutions.

As mentioned already above, specific attention needs to
be given to the coupling between the solid and structural
domains and the fluid domains. With the method used in
ADINA arbitrary meshes can be employed for the different
regions, which is important in engineering practice.
Namely, the solution of the fluid response may require cer-
tain mesh densities that in general must be quite different
from the mesh densities used to solve for the structural
response. The specific coupling employed is described in
Ref. [3].

For the purpose of presenting benchmark solutions, the
specific iterative scheme used to solve the finite element
equations is of course not of importance. However, we
should mention that whichever fully coupled solution
scheme is used in ADINA, the full coupling is considered
by solving the fully coupled algebraic equations obtained
from Eq. (11). Since these equations are highly nonlinear,
in general, a Newton–Raphson ‘outer iteration’ is
employed. The matrix equations established in each New-
ton–Raphson step are then solved either directly by a
sparse solver (for small systems of equations) or by an
‘inner iteration’ using a multi-grid solver (for larger sys-
tems of equations). At convergence of the Newton–Raph-
son iterations, the finite element equations established
from Eq. (11) have been solved to the accuracy specified
by the convergence tolerances used, and only the efficiency
fluid meshsolid mesh
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is affected by the choice of the solution scheme. In the
benchmark solutions given below, all convergence toler-
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3. Benchmark solutions

In this section we present some benchmark solutions
that should be valuable in the evaluations of procedures
for FSI analyses. In all transient solutions we use the time
integration scheme of Ref. [59].

3.1. FSI patch tests

The patch test is an important means to assess whether
an incompatible mesh of elements can represent constant
stress conditions [53]. We use the test in FSI analysis
schemes to see whether fluid and solid/structural domains,
meshed independently and using incompatible meshes, will
transmit constant stress conditions.

Fig. 1 shows the 2D patch test and the solution results.
Fig. 1 also shows the same patch test but performed in 3D.
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We should note the curved boundary between the fluid and
the solid. The fluid geometrically linear elements overlap
the solid geometrically quadratic elements, and of course,
the two meshes are totally incompatible at the fluid–solid
interface. The patch test is passed in both cases.

Fig. 2 shows another patch test using 4-node and 3-node
isoparametric beam elements on the surface of a 2D
fluid, discretized by quadrilateral elements. The pressure
applied to the beam elements must be exactly transmitted
to the fluid, as seen in this test. The same test should of
course also be passed in 3D, that is, when shell elements
subjected to pressure are resting on the surface of a 3D
fluid domain.

Of course, additional patch tests, e.g. using 2-node beam
elements, for a numerical assessment can be designed, but
the theory underlying the FSI formulation will already tell
whether any (relevant) patch test is passed.
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3.2. Porous FSI patch test

Fig. 3 shows the problem solved. Three different stacked
porous media are subjected to the same pressure gradient.
Hence, with the different permeabilities, the flow velocities
in the media need be different. The test is passed if the flow
velocities and pressure variations are the analytical values
even though distorted elements are used in the meshes.
Since velocity discontinuities at the media interfaces are
not modeled, small errors in the calculated velocities are
acceptable.3

Fig. 3 shows the pressure band plot and velocity vectors
in the fluid domain, and the y-velocity along a vertical line
at the outlet. As expected, the velocity varies from one
material to the other according to Darcy’s law.

Another purpose of this test is to check the accurate
transfer of the fluid pressure to the structural model. The
stresses in the solid and the pore pressure (given as a neg-
ative quantity) are plotted in Fig. 4. These results show that
the patch test is passed.
3.3. ALE low Re flow test

In low Re flows, a discretization should represent the
incompressible conditions accurately and hence solve
accurately for the pressure and flow velocities. This obser-
3 Of course, velocity discontinuities could be introduced by simply
assigning at the interfaces two nodes where now one node is used and then
allowing independent tangential ‘slip’ velocities (but constraining the
normal velocities to be continuous). This approach requires in practice
more modeling effort.
vation is applicable to the ‘element Re numbers’ and
although, overall, a high Re flow may be solved, in certain
regions (in flow stagnations) the element Re numbers may
be small. The difficulty of solving for the pressure and
velocities accurately in finite difference and finite volume
methods was recognized long time ago and staggered mesh
points for pressure and velocity assumptions were intro-
duced [60].

The mathematical condition for optimal solutions is that
the discretization used must satisfy the inf–sup condition
(or the problem must be reformulated to by-pass this con-
dition). The condition is satisfied by the continuum prob-
lem in Eq. (11), but is only satisfied by a discretization
provided appropriate velocity and pressure interpolations
are used [53,61,62]. Analytical investigations have identi-
fied elements that satisfy the inf–sup condition, assuming
largely uniform meshes; and a numerical inf–sup test has
been proposed for discretization schemes not amenable to
analytical proofs, considering for example new elements
and distorted element meshes [53,63,64].

We present here a problem solution with a moving mesh
to test the accuracy in the prediction of pressure and flow
velocities as the element size is decreasing.

Fig. 5 shows the problem we consider: a moving wall
pushes fluid into a channel with a sudden contraction.
The initially distorted element meshes in the axisymmetric
and 3D solutions are rather coarse. The finer meshes of dis-
torted elements in the analyses are obtained by simply
increasing the number of elements in the axial and radial
directions first by a factor of 4 and then by an additional
factor of 2. The third mesh is therefore very fine. In each
case, specifically, the pressure predictions are of interest,
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that is, whether any oscillations occur. Fig. 5 shows how
the 3D coarse mesh is compressed in the analysis. Fig. 6
shows the smooth pressure predictions along the z-axis cal-
culated in this test. The effect of refining the mesh and com-
parisons between the axisymmetric and 3D test results are
also given. The maximum Reynolds number based on the
contracted channel diameter is 50.

3.4. Mass conservation test

In CFD solutions, it is of particular importance to sat-
isfy the conservation of mass and momentum conditions
‘locally’, that is, for local patches of elements, and hence
for any section through the flow field. In FSI solutions, this
conservation property should also hold for the flow when
the boundaries of the fluid mesh move.
Fig. 7 shows the problem we use to test the mass conser-
vation property. The flexible cylindrical channel wall is rep-
resented using one layer of 3D 27-node solid elements and
the fluid is represented by 3D 8-node elements. Fig. 8
shows the deformation of the channel wall at t = 1.6 (see
Fig. 7) and also the principal stretch. The mass flow rates
calculated at three sections of the channel are listed in
Table 1. It is seen that mass conservation is satisfied and
hence the test is passed.

3.5. Strong coupling test

The problem considered here is taken from Ref. [65] and
is described in Fig. 9. In this transient FSI problem, the
coupling between the fluid and the structure is strong,
which makes the solution a valuable test. While in Ref.
[65] linear conditions are assumed for the solid, we use here
for the solid a compressible Mooney–Rivlin material model
and assume large deformations [53,66]. However, the prob-
lem is still ‘‘rather constructed’’ with the data given.

We present our results using three different meshes: a
coarse mesh with three equal 8-node fluid elements and
one 8-node 3D solid element; an intermediate mesh, shown
in Fig. 9, with 10 equal 8-node fluid elements and one 8-node
3D solid element; and a fine mesh with one hundred equal 8-
node fluid elements and four equal 8-node solid elements.

Fig. 10 shows the calculated solutions for all meshes,
using Dt ¼ 0:02 s. Good convergence of the solutions is
seen.

3.6. Shell in steady-state cross-flow test

The problem considered here is described in Fig. 11.
Similar problems were solved already in Refs. [3,67].
The purpose of this problem solution is to verify the
FSI capability when a shell structure undergoes large
deformations.

A flexible, initially vertical plate is subjected to flow and
undergoes large deformations, which makes the plate struc-
ture act like a shell. The shell is always discretized using a
mesh of 6 · 12 equal MITC4 shell elements, while 8-node
3D FCBI elements are used to discretize the fluid domain.
Fig. 12 gives the tip displacement of the shell (at the mid-
point of the free edge) as a function of the flow Reynolds
number when increasingly finer meshes are used. Good
convergence of the predicted response is seen.

3.7. Large deformation membrane on fluid test

Fig. 13 shows the problem considered. The purpose of
this problem solution is to test the FSI scheme in a large
displacement problem when a free-form mesh of triangular
elements is used and the mesh nodes are automatically
moved.

We solve for the transient response with Dt ¼ 0:001 s
until t = 0.25. The membrane undergoes large displace-
ments and large strains. Two meshes, a coarse and a fine
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fluid mesh (with also coarse and fine structural meshes) are
used. The time evolutions of the nodal positions in the fluid
meshes automatically calculated throughout the incremen-
tal response are shown in Fig. 13.
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3.8. Transient rotation of channel with fluid flow test

The large deformation FSI problem we consider is
shown in Fig. 15. A water-filled steel channel rotates
through the full 360�. For the complete time span, a rota-
tion of 10 rad/s is prescribed at the left end. The objective
in this problem solution is to test the FSI scheme for large
rotations of the fluid mesh.

The fluid mesh consists of 4-node elements and the struc-
ture is represented by 3-node isoparametric beam elements.

Fig. 16 shows the calculated tip velocity and acceleration
of the channel using Dt ¼ 0:01 s. The figure also shows the
magnitude of the fluid velocity at the center of the channel.
It may be noted that this problem is an extension of the
pendulum problem considered in Ref. [59], but since the rota-
tion is prescribed, various time integration schemes can be
used for solution. We use the problem here to only test
whether the rotation of the fluid mesh is achieved correctly.

4. Concluding remarks

The objective in this paper was to present some bench-
mark problems and their solutions for fluid flow structure
interaction analyses. We endeavored to present the prob-
lems and the solutions in such a way that they can be
directly used for basic testing of FSI solution schemes.
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The problems considered are ‘basic’ problems and do
not involve large finite element models. We gave emphasis
to those features of FSI solution schemes that couple struc-
tural finite element models and fluid flow models. Some of
the problems are quite rich in response (in particular, when
changed in certain respects) and could benefit from further
studies.

We considered in this paper only isothermal incompress-
ible fluid flows, but of course benchmark problems and
their solutions will also be valuable for FSI involving sig-
nificant thermal effects and for compressible flows with
structural interactions. These are topics for further valu-
able publications.
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