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Abstract

We present an inf-sup test for general mixed shell ®nite element discretizations. The test is useful in the thorough

evaluation of a shell ®nite element discretization scheme. We apply the test to the MITC shell elements and ®nd
that these elements pass the test. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Shell elements; Mixed formulations; MITC elements; Inf-sup condition

1. Introduction

It is well-recognized that certain problems in solid
and structural mechanics and in ¯uid mechanics are

most e�ectively solved using mixed ®nite element for-
mulations. For incompressible analysis of solids
(¯uids), the displacement (velocity)/pressure-based for-

mulations (u/p elements) are optimal, and for the
analysis of plates, the Reissner±Mindlin theory based
elements using a mixed interpolation of tensorial com-

ponents (the MITC plate elements) are very e�ective
[1].
These solid, ¯uid and plate elements have a strong

mathematical foundation [1,2], and experiences with
these element discretizations in engineering practice
have always been good. The clear advantages of these
elements are their reliability (they always give analysis

answers that can be relied upon) and computational
e�ciency.
The key to success of these elements lies in that in

each case they satisfy two crucial mathematical con-

ditions (without the use of any numerical factors like

employed in stabilized methods), namely the ellipticity

and the relevant inf-sup conditions. The fact that these

conditions are satis®ed ensures that the ®nite element

discretizations are stable and, moreover, optimal.

While it is relatively easy to check whether the ellipti-

city condition is met, it can be di�cult to identify

whether the inf-sup condition is satis®ed by a speci®c

®nite element discretization.

Considering the displacement (velocity)/pressure-

based ®nite element formulations, the analytical proof

regarding the satisfaction of the inf-sup condition is

available for a number of elements [1,2], and when

such proof is not available, a numerical inf-sup test

can be easily performed [1,3]. While a numerical test

cannot be as encompassing as an analytical proof, our

experience is that when the numerical test is passed, in

fact, the inf-sup condition is satis®ed. The numerical

inf-sup test is like the patch test (used for non-con-

forming displacement-based discretizations, see e.g. [1])

usually performed numerically instead of analytically.

If the inf-sup condition is satis®ed, the element is opti-

mal which means that the convergence rate is the maxi-

mum for the interpolations used and is independent of

the value of the bulk modulus [1].
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Considering plate-bending discretizations, a numeri-

cal inf-sup test has also been proposed [4]. The test
was used to evaluate the MITC plate bending elements
[4,5]. Since these elements pass the test, we can con-

sider them to provide optimal discretizations, that is,
the convergence rate is the maximum possible for the

interpolations used and is independent of the plate
thickness.

The objective of this paper is to propose an inf-sup
test for general shell elements and apply the test to

some discretization schemes, in particular, to the
MITC shell elements [6,7]. The test is a very useful
tool in the search for improved shell elements.

In the following sections of the paper we ®rst review
the general mixed ®nite element formulation that we

consider for shell analysis, and the inf-sup condition
that distinguishes an optimal discretization scheme. We

then derive the inf-sup test and apply the test to displa-
cement-based discretizations and the MITC shell el-
ements. While the displacement-based shell elements,

of course, fail the test, the MITC shell elements pass
it. The inf-sup test for general shell discretizations can

of course also be used to evaluate plate bending el-
ements, and we give some results for this case as well.

Finally, in the last section of the paper we summarize
our conclusions regarding this contribution.

2. Mixed formulation and the inf-sup condition

We are interested in analyzing the behavior of gen-

eral three-dimensional shell elements as they are used
in engineering practice [1]. These elements are not
based on a speci®c shell theory but are formulated
using three-dimensional continuum theory with kin-

ematic and stress assumptions. The ``underlying math-
ematical model'' of the ®nite element discretization
was identi®ed in Ref. [8], where it was also shown that

the limit problem, as the thickness t of the shell
approaches zero, is identical to the limit problem
obtained using the Naghdi shell theory. Since our

objective is to consider the behavior of the general
shell elements as t40, we can base much of our theor-
etical discussions on using the Naghdi shell theory,
while the inf-sup condition employed in our testing is

based on using the three-dimensional general shell el-
ements.

Fig. 1. De®nitions pertaining to the shell midsurface.
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2.1. Naghdi shell model

We assume that the shell midsurface S is de®ned by

a single chart ff, which is a one-to-one smooth map-
ping from O into R3, where O denotes an open domain
of R2 with a boundary @O called ``reference domain''

and thus S � fff�O� (see Fig. 1). We now brie¯y review
the classical de®nitions and notation of di�erential
geometry that we need for our analysis. We use the

Einstein convention on the summation of repeated in-
dices, their values ranging in {1, 2}. Let the covariant
base of the tangent plane T be de®ned by

aa �def: @fff�x1, x2 �
@xa

�1�

with the contravariant base given by

aa � ab � dba , �2�

where d denotes the Kronecker symbol. The unit nor-
mal vector is

a3 �def: a1 � a2

ka1 � a2k : �3�

The ®rst fundamental form of the surface is given by

aab �def:
aa � ab, �4�

or alternatively in contravariant form by

aab �def:
aa � ab: �5�

The second fundamental form is de®ned by

bab �def:
a3 � aa, b: �6�

The following symbol appears in surface measures:

a �def: ka1 � a2k2 � a11a22 ÿ a212, �7�

and indeed the area of a di�erential element dS on the

midsurface is calculated as

dS � ���
a
p

dx1 dx2: �8�

Referring to Fig. 2, the shell domain can then be

described as:

Fig. 2. General shell geometry.
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S �

8>><>>:
�
P 2 R3

	
, rOP � fff�x1, x2 � � x3a3,

x3 2
�
ÿ 1

2
t�x1, x2 �;

1

2
t�x1, x2 �

�
,

�9�

where t is the shell thickness.
Let the displacement vector of a material particle on

the midsurface of the shell be v, and the rotations of
the mid-surface sections be Z1 and Z2 �Za causing posi-
tive displacements into the aa-direction for particles

with x3 > 0).
The variational formulation of the Naghdi shell

model is [9,10]:

Find U � �u, bbb� 2 U �V�B such that

t3A�U, V� � tD�U, V� � G�V� 8V � �v, ZZZ� 2 U, �10�

where

V �
n

v 2
�
H 1�O�

�3\BCu

o
, kvk2V � kvik2H 1 ;

B �
n
ZZZ 2

�
H 1�O�

�2\BCb

o
, kZZZk2B � kZak2H 1 ;

kVk2U � kvk2V � kZZZk2B; �11�

BCu and BCb are the boundary conditions on displa-
cements and rotations, respectively;

A�U, V� � 1

12

�
O
E ablmwab�U� wlm�V� dS �12�

is the bending energy term with bending strains wlm
calculated as

wlm�V� �
1

2

h
Zljm � Zmjl ÿ bal

ÿ
vajm ÿ bamv3

�ÿ bam
ÿ
vajl

ÿ balv3
�i �13�

where the vertical bar before a subscript denotes co-

variant di�erentiation, and

E ablm � E

2�1� n�
�
aalabm � aamabl � 2n

�1ÿ n�a
abalm

�
�14�

is the fourth-order tensor of the constitutive law with
E and n being the Young's modulus and Poisson's

ratio, respectively.
The second bilinear form D�U, V� can be represented

as a sum of the membrane part Dm�u, v�:

Dm�u, v� �
�
O
E ablm gab�u �glm�v� dS �15�

where

glm�v� �
1

2
�vljm � vmjl � ÿ blmv3, �16�

and the shear term Ds�U, V�:

Ds�U, V� �
�
O
G ab ra�U �rb�V� dS �17�

with the shear modulus

G ab � E aab

2�1� n� �18�

and shear strains

rb�V� � v3,b � blbvl � Zb: �19�

Finally, G�V� is the potential of the external load p

applied over the midsurface S

G�v� �
�
O

p � v dS: �20�

As summarized by Chapelle and Bathe [10], the beha-

vior of a shell structure highly depends on the sub-
space U0 � U, where

U0 �
�
V 2 UjD�V, V� � 0

	
: �21�

This subspace corresponds to pure bending defor-
mations only, that is all shear and membrane strains
vanish. We are particularly interested in the case when

the thickness t of the shell becomes very small and
therefore want to consider the limit problem t40:
If U0 6� f0g, we have the case of a pure-bending-unin-

hibited shell structure, which corresponds to bending-
dominated behavior when t is small.
In order to keep the shell model equations well-

de®ned, we assume for the analysis of the limit pro-
blem that

G�V� � t3Fb�V�, �22�

where Fb�V� is a linear form independent of the thick-
ness parameter t. Hence, for any ®nite t Eq. (10) can
be restated as

Find Ut 2 U, such that

A�Ut, V� � 1

t2
D�Ut, V� � Fb�V� 8V 2 U: �23�

Assuming that the space U0 is non-trivial, the follow-
ing convergence result can be established (see [10]):
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lim
t4 0

1

t2
D�Ut, Ut � � 0, �24�

and the solution Ut converges to the solution Ub
0 2 U0

of the following limit problem:

A
�

Ub
0, V

�
� Fb�V� 8V 2 U0: �25�

If, however, U0 � f0g, we have the case of a pure-bend-
ing-inhibited shell structure, which corresponds to
membrane-dominated behavior when t is small. To

consider the limit problem, the proper scaling for the
load term is then

G�V� � tFm�V�, �26�

and we can rewrite Eq. (10) as

Find Ut 2 U, such that

t2A�Ut, V� �D�Ut, V� � Fm�V� 8V 2 U: �27�

As in the previous case, we can establish (see [10] and
references therein) that

lim
t4 0

t2A�Ut, Ut � � 0, �28�

and Ut converges to the solution Um
0 2W of the fol-

lowing limit (membrane) problem

D
ÿ
Um

0 , V
� � Fm�V� 8V 2W, �29�

where W is the space of all displacements V for which
D�V, V� is ®nite.
This convergence property holds true provided, of

course, that the loading term satis®es a regularity

requirement

jFm�V�j2RcD�V, V� 8V 2W �30�

with c being a ®nite positive constant [10].
The ®nite element solution of the shell problem can

now be sought by choosing a discrete space Uh � U,
and considering a conforming approximation of the
variational problem in Eq. (10):

Find Uh 2 Uh, such that

t3A
ÿ
Uh, V

�
� tD

ÿ
Uh, V

�
� G�V� 8V 2 Uh: �31�

To analyze the performance of the ®nite element dis-

cretization, we consider the two limiting states corre-
sponding to the membrane-dominated (inhibited) and
bending-dominated (non-inhibited) cases. In the inhib-

ited case, the pure displacement-based conforming
®nite element discretization works well in that the dis-
cretization remains uniformly convergent, independent

of the shell thickness t, see [10]. However, considering
the non-inhibited case, the behavior referred to as

``locking'' occurs as t40: Namely, in this case the
variational problem considered is:

Find Uh
t 2 Uh, such that

A
�

Uh
t , V

�
� 1

t2
D
�

Uh
t , V

�
� Fb�V� 8V 2 Uh, �32�

and the convergence is highly in¯uenced by how rich
Uh is in U0: In the worst case Uh \U0 � f0g leading to
total loss of convergence

lim
t4 0

Uh
t � 0 6� lim

t4 0
Ut � Ub

0: �33�

In practice, extremely ®ne meshes are needed for an
accurate solution when t is small, and the displace-
ment-based ®nite element procedure becomes unpracti-
cal. The remedy is to use an appropriate mixed

formulation. The aim with this approach is to interp-
olate displacements and strains (or stresses) in such a
manner as to have no locking of the discretization in

the bending-dominated case for any value of thickness
t, and to have, as well, a uniformly good behavior for
the membrane-dominated case. Ideally, the rate of con-

vergence would be optimal, independent of whether a
bending-dominated or membrane-dominated problem
is considered and independent of the shell thickness.
The key to reaching this optimal behavior is to use

in the mixed formulation ``well-balanced'' interpola-
tions and to satisfy the inf-sup condition for the bend-
ing-dominated situation.

2.2. Mixed formulation

The general mixed formulation that we wish to con-
sider is given by:

Find Uh �
ÿ
uh, bbbh

�
2 Uh �

ÿ
Vh, Bh

�
and

Eh �
n
ehij
o
2 Eh, such that8><>:

t3 ~A
ÿ
Eh, eee�V�

�
� t ~D

ÿ
Eh, eee�V�

�
� G�V�

~A
ÿ
Eh ÿ eee�Uh �, CCC

�
� 0

~D
ÿ
Eh ÿ eee�Uh �, CCC

�
� 0 8V 2 Uh, CCC � �cij

	 2 Eh,

�34�
where

Eh �
n
CCC � �cij

	
, cij 2 Eh

ij

o
, �35�

and eee��� is the linear strain operator. Here Eh is the
subspace of assumed strains and includes assumed
bending, membrane and shear strains, and the bilinear
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forms used are de®ned so that

~A
ÿ
eee�U�, eee�V�

�
� A�U, V�

~D
ÿ
eee�U�, eee�V�

�
� D�U, V�: �36�

Included in the formulation of Eq. (34) are, in particu-

lar, the MITC shell elements [6,7]. The displacement
and strain interpolations of the elements are summar-
ized in Appendix A. The formulation can be derived

from the Hellinger±Reissner variational principle and
therefore also from the Hu±Washizu variational prin-
ciple [1]. We note that using the MITC formulation,

the element matrices are evaluated by tying the strain
interpolations to the displacement interpolations at the
tying points given in Appendix A. This tying procedure
ensures the integration process implied in Eq. (34), see

[11].
The performance of the MITC shell elements was

studied in [11], where we have identi®ed that the el-

ements perform well in membrane- and bending-domi-
nated problems. The elements satisfy the ellipticity
condition (which can be easily checked, see below),

and the results given in Ref. [11] suggest that the inf-
sup condition holds true as well. However, an explicit
study of this condition was not given, and this is

accomplished below.

2.3. Stability and optimality of mixed formulation,
abstract results

We consider the bending-dominated case and rewrite
the MITC shell formulation in the general classical

form:

Find Uh 2 Uh and ÄE
h 2 ~E h

such that8>><>>:
~A
ÿ
eeeAS�Uh �, eeeAS�V�

�
� B

�
ÄE
h
, V

�
� Fb�V� 8V 2 Uh

B
ÿ
CCC, Uh

�
ÿ t2C

�
ÄE
h
, CCC

�
� 0 8CCC 2 ~E h

,

�37�
where eeeAS is de®ned by the tying of the bending strains
in Eq. (34), ÄE

h
is obtained from Eh by retaining only

the membrane and shear components of the strains
divided by t2, ~E h

corresponds to that space, and

B

�
ÄE
h
, V

�
� ~D

�
ÄE
h
, eee�V�

�

C

�
ÄE
h
, CCC

�
� ~D

�
ÄE
h
, CCC

�
: �38�

A mixed formulation of this type should satisfy the fol-

lowing two classical conditions in order to have an
optimal procedure [1,2,12]:

(i) Ellipticity of ~A��, �� on the null-space of B��, ��:

9 a constant a > 0 such that:

~A
ÿ
eeeAS�V�, eeeAS�V�

�
rakVkU 8V 2 Uh

0, �39�

where

Uh
0 �

n
V 2 UjB�CCC, V� � 0 8CCC 2 ~E h

o
�40�

is the null space of B��, ��:
This condition is a basic solvability condition of the

formulation. It is relatively easy to check whether a
given formulation satis®es this condition: every el-
ement in the discretization should contain the six
physical rigid body modes and no spurious zero

energy modes. Finite element discretizations that
violate this condition should not be used in engin-
eering practice because the formulations are unreli-

able and may yield misleading results [1].

(ii) The inf-sup condition:

9 a constant b > 0 independent of the shell thick-
ness t, such that

sup
V2Uh

B�CCC, V�
kVkU

rb sup
V2U

B�CCC, V�
kVkU

8CCC 2 ~E h
: �41�

This inf-sup condition follows from the Banach the-
orems [2,13]. Note that since the supremum on the
right-hand side of Eq. (41) is an abstract semi-norm
on the strain ®eld CCC, Eq. (41) corresponds to the

very general form of the inf-sup condition. In some
speci®c formulations this semi-norm can be written
in a more explicit form, such as in analysis of

incompressible media or plate bending, see [2±4].
In addition, in order to obtain an optimal error

bound, the consistency error due to the use of
~A�eeeAS�Uh�,eeeAS�V�� instead of A�Uh, V� should be
properly controlled. To mathematically prove that
consistency holds is, however, a more standard pro-

cedure and we do not discuss this issue further in
this paper.

When the two conditions given by Eqs. (39) and (41)

hold (and provided the consistency error is properly
controlled), the following optimal error bound can be
established [2]:

kUÿ UhkU � k ÄEÿ ÄE
hkERc inf

V2Uh,CCC2 ~E
h

ÿ
kUÿ VkU

� k ÄEÿCCCkE
�

�42�

with the constant c independent of the shell thickness
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t, and k � kE denoting the semi-norm on the right-hand
side of Eq. (41). The convergence properties of the

®nite element spaces ensure that the optimal rate of
convergence is obtained for su�ciently smooth sol-
utions, i.e.,

kUÿ UhkU � k ÄEÿ ÄE
hkE0chk, �43�

where k is the polynomial order of the chosen ®nite el-
ement interpolation.
While for a given formulation, it is easy to check (ana-

lytically or numerically) whether the ellipticity condition

is satis®ed, it is di�cult to identify whether the inf-sup
condition is satis®ed, because the geometry and bound-
ary conditions are crucial ingredients and any possible

problems with any sequence of meshes should be con-
sidered. This can only be achieved analytically. Arnold
and Brezzi constructed an element family for which ana-

lytically the ellipticity and inf-sup conditions are satis-
®ed (under very restrictive geometry assumptions) [13].
However, the proposed elements require that a
numerical constant be chosen and do not perform well

in membrane-dominated problems [14]. Another
approach to use is to formulate mixed element discreti-
zations that by-pass the inf-sup condition [15]. However,

these formulations also require numerical constants,
are not applicable to membrane-dominated situations
and have therefore only limited practical value.

When an analytical treatment of the inf-sup con-
dition is out of reach, a numerical test is of value, as
discussed in [1,3].

2.4. Mixed formulation for continuum-based shell
elements

Having considered the classical mixed formulation
based on the Naghdi shell theory, we now address the

general continuum-based shell elements [1].
Let us denote the internal work corresponding to

the three-dimensional (3D) strain ®elds E and CCC calcu-

lated using the linear elasticity principles as A3D�E, CCC�:
The continuum-based shell ®nite element model can
then be written as

Find Uh 2 Uh and Eh 2 Eh

such that

(
A3D

ÿ
Eh, eee�V�

�
� G�V� 8V 2 Uh

A3D
ÿ
Eh ÿ eee�Uh �, CCC

�
� 0 8CCC 2 Eh:

�44�

The formulation de®ned in Eq. (44) involves a two-

dimensional variational shell model that is not expli-
citly formulated (see [8]). Therefore, a complete math-
ematical analysis of this formulation, in particular the

asymptotic behavior of the solution and possible lock-
ing di�culties, is very di�cult to achieve.
However, considering bending-dominated shell pro-

blems we know that the critical part of the formulation
is the term that corresponds to the membrane and

shear energy, see Section 2.3. It can be seen that this
term can be simply calculated by considering the 3D
energy density and integrating it over the midsurface

of the shell times the thickness (and not through the
thickness). We call B�CCC, V� the internal work thus
obtained for a displacement ®eld V and a strain ®eld

CCC: Also, we obtain C�CCC, YYY� as the membrane and
shear work corresponding to two strain ®elds CCC and
YYY: Hence,

B�CCC, V� � C
ÿ
CCC, eee�V�

�
, �45�

and now the inf-sup condition of Eq. (41) can be

directly applied.

3. The inf-sup test

In order to construct a numerical inf-sup test, one
possibility is to substitute the semi-norm on the right-
hand side of Eq. (41) with

kCCCkEh=2n
� sup

V2Uh=2n

B�CCC, V�
kVkU

, �46�

where Uh=2n is the ®nite element space obtained by

subdividing the mesh corresponding to Uh into 2n� 2n
sub-elements for each element with n su�ciently large.
This is, in fact, the approach for plate bending formu-

lations followed in Ref. [4]. However, the computer
implementation of this procedure is complex and ex-
pensive. To circumvent this di�culty, we follow a
di�erent strategy, using simply the L 2-norm instead of

the semi-norm appearing in Eq. (41) or Eq. (46).

3.1. The inf-sup condition in the L 2-norm

De®ne

Im Bh �
�
YYY 2 Eh, such that 9W 2 UhjB�CCC, W�

� C�CCC, YYY�, 8CCC 2 Eh
	
:

�47�

The test that we propose is based on the following
result:

Proposition 1. Assume that

sup
V2Uh

B�CCC, V�
kVkU

rb 0kCCCkL2 , 8CCC 2 Im Bh, �48�

then
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sup
V2Uh

B�CCC, V�
kVkU

r ~b sup
V2U

B�CCC, V�
kVkU

, 8CCC 2 Im Bh, �49�

where b 0 and ~b are strictly positive constants.

The proof of this proposition is immediate, recalling
that B�CCC, V� must be bounded, namely

B�CCC, V�RckCCCkL2kVkU, 8�CCC, V� 2 L2 �U, �50�

hence

sup
V2U

B�CCC, V�
kVkU

RckCCCkL2 : �51�

Note that it is Im Bh that appears in Eq. (49) instead
of Eh in the inf-sup condition (41). Hence, in general,
the two conditions are not equivalent, although they
are closely related as shown in the following prop-

osition.

Proposition 2. Consider the assumption

(A) For any CCC in Eh such that

B�CCC, V� � 0, 8V 2 Uh, �52�

it also holds that

B�CCC, V� � 0, 8V 2 U: �53�

Then Eq. (41) holds if and only if (A) and Eq. (49)
both hold.

The proof of this proposition is given in Appendix B.

Saying that (A) does not hold means that there exists
at least one assumed strain ®eld CCC which satis®es Eq.
(52), but not Eq. (53). Such a ®eld may be called a
``spurious shear/membrane mode'', as it is indeed simi-

lar to a ``spurious pressure mode'' in incompressible
analysis, see [1,3]. Therefore, we can see that Eq. (41)
is a stronger condition than Eq. (49) in that it also

ensures that there are no spurious shear/membrane
modes. However, as noted in [1,3], the existence of
such spurious modes does not a�ect the results unless

these modes are activated by prescribed displacement
boundary conditions. Hence, condition (49) is su�cient
for most purposes1.
Of course, ideally, a mixed formulation does not

exhibit spurious shear/membrane modes, and for the

elements and test problems we have considered in our
study spurious modes were not encountered (and

hence in each case Im Bh � Eh, see Section 4). How-
ever, in general, mixed element discretizations may
include spurious shear/membrane modes and for this

reason we include their occurrence in our theoretical
developments.
The objective of the test that we now propose is to

identify whether or not Eq. (48) holds. Indeed, if Eq.
(48) holds, then Eq. (49) holds too, hence convergence
is guaranteed independently of the thickness par-

ameter, provided the other condition (namely ellipti-
city) is also satis®ed. Note that, if a ®nite element
scheme fails the test, no conclusion can be drawn since
Eqs. (48) and (49) are not equivalent. Yet, we consider

this procedure as valuable since it indicates, at a
reasonable computational cost, that some ®nite el-
ements (which pass the test) are good for bending-

dominated thin shell problems.

3.2. Calculation of the inf-sup value

Our test relies on the numerical evaluation of the
coe�cient b 0 appearing in Eq. (48), i.e. we need to be

able to calculate the quantity

inf
CCC2Im B h

sup
V2Uh

B�CCC, V�
kVkUkCCCkL2

: �54�

In fact, in the denominator of this quantity we will use������������������
C�CCC, CCC�p

instead of the usual L 2-norm, which is, of
course, equivalent.
For a displacement V, we de®ne eeeAS�V�, the assumed

strain associated with V, as the unique assumed strain

®eld such that

C
ÿ
eee�V�, CCC

�
� C

ÿ
eeeAS�V�, CCC

�
, 8CCC 2 Eh: �55�

This means that eeeAS�V� is the L 2-projection of eee�V�
onto the space Eh:
We now introduce the modi®ed sti�ness matrix cor-

responding to the shear and membrane deformation

energy, ÄK, de®ned by

ÃU
T ÄK ÃV � C

ÿ
eeeAS�U�, eeeAS�V�

�
, �56�

where ÃU and ÃV are the nodal displacement vectors cor-
responding to displacement ®elds U and V, respect-
ively. We also de®ne the norm matrix, S, by

ÃV
T
S ÃV � kVk2U: �57�

The evaluation of the inf-sup quantity is based on the

following result, proved in Refs. [1,3].

Proposition 3. De®ne lmin as the smallest non-zero

1 It should be pointed out that the discussed ``spurious

pressure modes'' and ``spurious shear/membrane modes'' are

not like the spurious modes due to reduced integration, which

can be detrimental [1]. Hence, we do not use reduced inte-

gration.
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eigenvalue of the problem

ÄK ÃV � lS ÃV: �58�
Then we have

inf
CCC2Im B h

sup
V2Uh

B�CCC, V�
kVkU

������������������
C�CCC, CCC�p �

��������
lmin

p
: �59�

3.3. E�ective implementation of the inf-sup test

Based on the above considerations, we propose a

simple and e�ective computer implementation of the
inf-sup test for general shell elements.

1. In order to perform the inf-sup analysis of a par-

ticular ®nite element, a suitable set of well-chosen
bending-dominated problems should be selected.
The convergence studies given in Ref. [11] indicate
that the free cylinder and the hyperbolic paraboloid

shell problems can be used as good tests. In ad-
dition, a sequence of K ®nite element meshes should
be chosen, with decreasing characteristic element

size hk�k � 1, . . . , K �, and preferably with the el-
ement sides not aligned on the asymptotic lines of
the mid-surface (see Ref. [10]).

2. For every mesh k in the chosen sequence, establish
the sti�ness matrix ÄK

k
and norm matrix Sk and cal-

culate the smallest non-zero eigenvalue lkmin of the
generalized eigenvalue problem

ÄK
k ÃV � lkSk ÃV: �60�

3. Plot log�lkmin� versus log�hk�: If the curve clearly ¯at-
tens out as hk decreases, meaning that the lmin

values stabilize at some positive level, then we con-

sider that Condition (48) is satis®ed.
4. If the right behavior is observed for all test pro-

blems, we conclude that the element passes the inf-

sup test.

4. Numerical results

In this section we report the results of the numerical
inf-sup test considering a number of bending-domi-
nated problems using displacement-based and mixed

interpolated general shell elements. The displacement-
based elements are the nine-node (QUAD9) and six-
teen-node (QUAD16) quadrilateral and six-node tri-

angular (TRI6) elements. All element matrices are
evaluated using full numerical integration [1]. The ma-
terial constants used are: Young's modulus E � 1:0
and Poisson ratio n � 0:3: As expected, the eigenvalue
problem of Eq. (60) has many zero eigenvalues, the

Fig. 3. Partly clamped hyperbolic paraboloid. A 16� 8 mesh of four-node elements is shown.
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number of which can be calculated [1]. We have found
that in all tests reported below, no spurious zero eigen-

values were encountered. Note that while the values of
the ®rst nonzero eigenvalue reported in the ®gures
below are very small due to the selected Young's mod-

ulus, the computed eigenvalues declared as zero were
smaller by about 4±5 orders of magnitude.

4.1. Analysis of hyperbolic paraboloid

We apply the inf-sup test methodology developed
above and consider the partly clamped hyperbolic
paraboloid problem shown in Fig. 3. We choose

sequences of uniform meshes of quadrilateral and tri-
angular elements.
Fig. 4 reports the convergence of the smallest eigen-

value lmin versus the mesh density indicator 1/N, where
N is the number of subdivisions along the X-axis.
We clearly see that the displacement-based elements

fail the inf-sup test Ð their smallest eigenvalues stea-
dily converge to zero as the meshes are re®ned. On the

other hand, the mixed-interpolated MITC elements

pass the test Ð their smallest nonzero eigenvalues

stabilize at the level of 010ÿ7:

4.2. Analysis of free cylindrical shell

We consider the free cylindrical shell shown in Fig. 5

using uniform meshes of triangular and quadrilateral

elements.

Fig. 6 displays the convergence of the smallest non-

zero eigenvalue versus the mesh density indicator 1/N.

Like for the hyperbolic paraboloid problem, the lmin

values of the MITC elements stabilize as N is

increased. The convergence curves for the displace-

ment-based elements indicate that their respective

smallest nonzero eigenvalues rapidly decrease to zero.

Therefore, we conclude that the MITC elements

pass the inf-sup test for the free cylinder problem. The

displacement-based elements, of course, fail the test.

Fig. 4. Inf-sup test. Convergence of the smallest nonzero eigenvalue using uniform meshes of shell elements for the partly clamped

hyperbolic paraboloid problem.
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4.3. Plate bending analysis

Of course, if a general shell element passes the inf-

sup test in plate bending, it is expected to satisfy the

plate bending inf-sup condition of Ref. [4]. In this sec-

tion we address the applicability of our numerical inf-

sup test procedure for the analysis of general shell el-

ements when the plate bending problem is considered.

For our test we consider a fully clamped square

plate problem and employ uniform meshes of quadri-

lateral and triangular elements.

A numerical inf-sup study of displacement-based

and mixed-interpolated MITC plate elements has been

carried out in [4] and [5]. For comparison with the

results presented in those papers, we consider an ad-

ditional element, the four-node displacement-based

general shell element QUAD4.

Fig. 7 displays the convergence of the smallest non-

zero eigenvalue.

The lmin convergence curves of the higher-order

quadrilateral displacement-based elements, QUAD9

and QUAD16, stabilize in the neighborhood of 10ÿ2

and hence the elements pass the inf-sup test. The
QUAD4 element, however, fails the test as its smallest

eigenvalue rapidly converges to zero when the mesh is
re®ned. All the MITC elements pass the test.
Next we consider a sequence of distorted meshes as

shown in Fig. 8. Fig. 9 summarizes the results of the
inf-sup test. The only drastic change in the elements'
behavior compared with the uniform meshes is that

the nine-node displacement-based element QUAD9
fails the test. This evidence is consistent with the
results of the inf-sup test for plate bending reported in

[4] and [5], which show that the nine-node displace-
ment-based quadrilateral element passes the inf-sup
test for plate bending when uniform meshes with non-
distorted elements are considered and fails when mesh

distortions are introduced.

5. Concluding remarks

We have developed a simple and e�ective numerical
inf-sup test methodology to identify if a particular

Fig. 5. Cylindrical shell.
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®nite element discretization satis®es the inf-sup con-

dition in the analysis of bending-dominated shells.

We have speci®ed details of computer implemen-

tation of the proposed procedure and applied it to dis-

placement-based and MITC shell elements.

Based on the study, we can conclude:

. The MITC elements (including the four-node el-

ement) have passed all the tests and hence we can

expect that they satisfy the inf-sup condition in the

analysis of bending-dominated shells.

. The hyperbolic paraboloid shell is a ``tough'' test

problem for the detection of the elements' locking

behavior and is most suitable as the benchmark pro-

blem in the numerical inf-sup test, see also Ref. [11].

. The proposed numerical inf-sup test procedure

proved e�ective in identifying whether or not general

shell elements satisfy the inf-sup condition when

used in plate bending analysis.

However, limitations of the proposed test procedure

should be kept in mind:

. An element which satis®es the inf-sup condition is

not guaranteed to perform well in membrane-domi-

nated problems. Separate convergence studies have

to be carried out to establish whether or not the el-

ement is optimal in membrane-dominated situations.

For example, the mixed-stabilized elements proposed

by Arnold and Brezzi [13] were analytically (under

simplifying assumptions) shown to satisfy the inf-

sup condition, and yet are known to su�er from

poor convergence in membrane-dominated cases

[14].

. The evaluation of the discrete inf-sup condition is

geometry- and mesh-dependent, with the most im-

portant implication being that an element shown to

pass the inf-sup test for one geometry and sequence

of meshes is not guaranteed to pass for a di�erent

geometry and/or di�erent sequence of meshes. The

sensitivity of numerical results to the problem geo-

metry is, in general, unavoidable, but has been only

a side issue in analyses of incompressible media and

plate bending [1,4]. In the design of shells, however,

Fig. 6. Inf-sup test. Convergence of the smallest nonzero eigenvalue using uniform meshes of shell elements for the free cylindrical

shell problem.
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the choice of geometry and boundary conditions is
the key factor which solely determines the behavior

of the shell [10]. Additional sensitivity of the ®nite
element solution to the mesh orientation further
limits the generality of numerical studies.

While these limitations are profound, the test proposed
in this paper is still very valuable. If this test is passed
(on the problems considered in this paper), it is likely

that the inf-sup condition is satis®ed.
We suggest that current and newly proposed shell

and plate ®nite elements be evaluated using this test.

Appendix A. Summary of MITC shell element

interpolations

Let K̂ denote the area of a reference element. Using
the notation already de®ned, the spaces used for the
elements are then as follows:

A.1. The MITC4 element

The following functional spaces are used for the

four-node element:

Vh �
�

v 2
�
H 1�O�

�3
, vjK̂ 2

h
Q1

ÿ
K̂
�i3�

,

Bh �
�
ZZZ 2

�
H 1�O�

�2
, ZZZjK̂ 2

h
Q1

ÿ
K̂
�i2�

,

~Eh

13 �
n
c 2 L2�O�, cjK̂ 2 span

n
1, x̂2

oo
,

~Eh

23 �
n
c 2 L2�O�, cjK̂ 2 span

n
1, x̂1

oo
:

The tying procedure for the element is shown in
Fig. A1(A).

Fig. 7. Inf-sup test. Convergence of the smallest nonzero eigenvalue using uniform meshes of shell elements for the plate bending

problem.
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A.2. The MITC9 element

The following functional spaces are used to con-
struct the nine-node element:

Vh �
�

v 2
�
H 1�O�

�3
, vjK̂ 2

h
Q2

ÿ
K̂
�i3�

,

Bh �
�
ZZZ 2

�
H 1�O�

�2
, ZZZjK̂ 2

h
Q2

ÿ
K̂
�i2�

,

~Eh

11 � ~Eh

13 �
n
c 2 L2�O�,

cjK̂ 2 span

n
1, x̂1, x̂2, x̂1x̂2, x̂

2

2, x̂1x̂
2

2

oo
,

~Eh

22 � ~Eh

23 �
n
c 2 L2�O�,

cjK̂ 2 span

n
1, x̂1, x̂2, x̂1x̂2, x̂

2

1, x̂
2

1x̂2

oo
:

~Eh

12 �
n
c 2 L2�O�, cjK̂ 2 Q1

ÿ
K̂
�o
:

The tying procedure for the element is given in Fig.

A1(B).

A.3. The MITC16 element

The 16-node cubic element is constructed using

Vh �
�

v 2
�
H 1�O�

�3
, vjK̂ 2

h
Q3

ÿ
K̂
�i3�

,

Bh �
�
ZZZ 2

�
H 1�O�

�2
, ZZZjK̂ 2

h
Q3

ÿ
K̂
�i2�

,

Fig. 8. A sequence of distorted meshes for the plate bending problem. Triangular elements are obtained by subdividing each quad-

rilateral element as shown in Panel (A).
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~Eh

11 � ~Eh

13 �
n
c 2 L2�O�,

cjK̂ 2 span

n
1, x̂1, x̂2, x̂

2

1, x̂1x̂2, x̂
2

2, x̂
2

1x̂2,

x̂1x̂
2

2, x̂
3

2, x̂
2

1x̂
2

2, x̂1x̂
3

2, x̂
2

1x̂
3

2

oo
,

~Eh

22 � ~Eh

23 �
n
c 2 L2�O�,

cjK̂ 2 span

n
1, x̂1, x̂2, x̂

2

1, x̂1x̂2, x̂
2

2, x̂
3

1, x̂
2

1x̂2,

x̂1x̂
2

2, x̂
3

1x̂2, x̂
2

1x̂
2

2, x̂
3

1x̂
2

2

oo
:

~Eh

12 �
n
c 2 L2�O�, cjK̂ 2 Q2

ÿ
K̂
�o
:

The tying procedure for the strain tensor components
is presented in Fig. A1(C).

A.4. The MITC6 element

The six-node triangular element is constructed using

Vh �
�

v 2
�
H 1�O�

�3
, vjK̂ 2

h
P2

ÿ
K̂
�i3�

,

Bh �
�
ZZZ 2

�
H 1�O�

�2
, ZZZjK̂ 2

h
P2

ÿ
K̂
�i2�

,

~Eh

11 � ~Eh

12 � ~Eh

22 �
n
c 2 L2�O�, cjK̂ 2 P1�O�

o
,

~Eh

13 �
n
c 2 L2�O�, cjK̂ 2 span

n
1, x̂1, x̂1x̂2, x̂2, x̂

2

2

oo
,

~Eh

23 �
n
c 2 L2�O�, cjK̂ 2 span

n
1, x̂1, x̂1x̂2, x̂2, x̂

2

1

oo
:

This choice of interpolation spaces for the transverse
shear components proved to be optimal for the mixed-

Fig. 9. Inf-sup test. Convergence of the smallest nonzero eigenvalue using distorted meshes of shell elements for the plate bending

problem.
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interpolated seven-node plate bending element MITC7

[1]. The tying procedure for the strain tensor com-
ponents is depicted in Fig. A2.

Appendix B. Proof of Proposition 2

1. Assume that Eq. (41) holds.

Then, of course, Eq. (49) holds too. Next, to
prove (A) take CCC 2 Eh such that

B�CCC, V� � 0, 8V 2 Uh

From Eq. (41), we get

sup
V2U

B�CCC, V�
kVkU

� 0,

hence

B�CCC, V� � 0, 8V 2 U,

so that (A) holds too.

2. Assume that Eq. (49) and (A) hold.
To prove that Eq. (41) holds, consider any CCC 2

Eh: It can be uniquely decomposed into

CCC � CCC0 �CCC1,

where CCC0 2 Im Bh and CCC1 is in the subspace of Eh

L 2-orthogonal to Im Bh, i.e.

C�CCC1, YYY� � 0, 8YYY 2 Im Bh:

According to the de®nition of Im Bh given in Eq.
(47), this is equivalent to

B�CCC1, W� � 0, 8W 2 Uh,

hence, from (A), also equivalent to

B�CCC1, W� � 0, 8W 2 U:

Fig. A1. Tying points for the MITC shell elements. (A) MITC4 element; (B) MITC9 element; (C) MITC16 element.
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Using this and Eq. (49), we get

sup
V2Uh

B�CCC, V�
kVkU

� sup
V2Uh

B�CCC0, V�
kVkU

rc sup
V2U

B�CCC0, V�
kVkU

� c sup
V2U

B�CCC, V�
kVkU

:

Therefore, Eq. (41) holds.
This completes the proof of Proposition 2.
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