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Abstract 

 
In this presentation we survey the advances that we have recently accomplished for 
the effective analysis of solids and structures, specifically for wave propagations and 
transient solutions, the analysis of shells, improved stress calculations, the use of 
interpolation covers, and the solution of the full Maxwell’s equations. The structures 
may be subjected to complex fluid flows and electromagnetic effects.  We briefly 
give the theoretical developments for the formulations, a few illustrative solutions, 
and conclude by mentioning some further exciting research challenges. 
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1. Introduction 
 
The analysis of solids and structures in multiphysics conditions has been given 
increasing attention during the recent years [1]. A large number of problems 
considered only a decade ago as very difficult to solve can now be analyzed with 
relatively little computational effort. However, there are many problem areas where 
significant advances are still needed for effective simulations.  The objective in this 
paper is to briefly present some advances that we have recently accomplished. Due 
to space limitations, we mention only our books and papers and refer the reader to 
the many additional references given therein.  
 
When considering research achievements in the field, it is important to realize the 
philosophy that a research group adheres to in its research on computational 
methods. Our philosophy – as pursued for about 40 years now – is to focus on the 
development of methods that are general, reliable and efficient, and advance the 
current state of the art as practiced in industry and the sciences [1, 2].  We have not  
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pursued research that is claimed to open up new avenues when it is clear that such 
research will not lead to an advancement of the current state of the art. New avenues 
are only of interest if we see the potential for such an advancement. In all cases, our 
final aim – but of course not always reached – is that the methods we propose will 
ultimately be of use for a large community of engineers and scientists.  
 
Indeed, the ultimate test as to whether a proposed computational scheme is of value 
is clearly given by whether it is used, once published, widely in industry and 
scientific investigations. This extensive use is driven forward by the keen interest in 
engineering and the sciences to solve ever more complex and difficult physical 
problems through finite element simulations.   
 
Included in our research are the conception of novel methods, their mathematical 
analysis and their testing to establish the generality, reliability and efficiency.  
 
A finite element method is general if it is applicable to many varied problems in a 
certain category of problems; for example, a general shell element can be used for 
all shell problems described by a general mathematical model like the ‘basic shell 
model’ identified in references [3, 4]. 
 
A finite element method is reliable and efficient if identified as such; for example, a 
finite element discretization is reliable and efficient if the ellipticity and inf-sup 
conditions are satisfied without the use of any artificial factors, and the scheme 
shows optimal convergence at a low computational cost [1, 2, 4, 5].  
 
To show whether a method is reliable and efficient requires mathematical analysis as 
far as such is possible and well-designed numerical tests [1, 2, 4].  Both, the 
mathematical analyses and the benchmark tests, can frequently not ‘prove’ that a 
method is always efficient – considering for example general nonlinear analysis – 
but these efforts can give significant insight into numerical schemes.  
 
The objective in this presentation is to briefly summarize our research efforts to 
advance the state of computational simulations with the above research aims in 
mind.  In the next sections, we present our recent developments regarding the 
analysis of wave propagation problems, the analysis of shells, the prediction of more 
accurate stresses, the use of interpolation covers to increase the convergence of finite 
element discretizations, and the simulation of electromagnetic effects and their 
coupling to structures and fluid flows. Since each of these developments covers a 
large field, we can give in this paper only a brief summary of our developments and 
need to refer the reader to our papers written on these topics.  
 

2. Some Recent Developments  
 
In the following sections, we focus briefly on the basic ideas and some results and 
refer to our papers for details on the research. When we give here solid mechanics 
solutions, the procedures are also applicable in multiphysics analyses. 
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2.1 The solution of wave propagation problems 
 
Although much research effort has been expended on the solution of wave 
propagation problems using finite element methods, the accurate simulation of 
transient wave propagations and the accurate solution of harmonic problems at high 
frequencies have remained a significant challenge. Such problems are abundantly 
encountered, for example, in solid and structural mechanics, seismic engineering, 
and in electromagnetics. The essential difficulty is that to capture the high frequency 
response seen in wave propagations, extremely fine meshes of conventional finite 
elements are needed.  However, even with such very fine meshes in transient 
solutions, spurious oscillations are calculated near the wave fronts, and numerical 
dispersion and dissipation of waves due to the spatial and temporal discretizations 
are observed. Hence, spectral methods, spectral element methods, and spectral finite 
element methods have been proposed but these are not as general and effective as 
needed in engineering practice. 
 
We have developed a finite element method ‘enriched for wave propagation 
analyses’ [6]. This method shows considerable promise in that the standard low-
order Lagrangian finite element interpolations are simply enriched with harmonic 
functions, governed, as usual, by nodal degrees of freedom. An important point is 
that the usual fundamental theory of finite element methods is applicable.  
 
For two-dimensional solutions, the basic displacement interpolations for a typical 
solution variable u(r,s) are  
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where the  , ,x yk k
U


 with superscripts are the nodal degrees of freedom,   is the 

local element node, with h  the conventional finite element interpolation function, 

and the S, C, and + and – are used in the superscripts to correspond to the harmonic 
expressions. These interpolation functions can be written using exponentials on the 
complex plane, but in the analysis of solids using only real arithmetic can be much 
more effective.  Of course, the interpolations for one- and three-dimensional 
analyses directly follow from equation (1). Here, the two fundamental wavelengths 

x  and y , and the wave cut-off numbers n  and m  with 1 xk n  , 1 yk m  , 

and typically , 3,n m   need to be chosen by the analyst as part of the model data. 
 
As example solutions, we consider the field of transient analyses and the field of 
harmonic problems, each with an illustrative solution.   
 
2.1.1  A transient solution:  1D impact of an elastic bar  
 
This special 1D problem, shown in Figure 2.1-1, can be solved accurately using 
explicit time integration with 2-node linear elements and a lumped mass matrix [2], 
and also using the Bathe implicit time integration [7, 8] (with a consistent mass 
matrix and CFL number = 1.0). However, just to test the enriched finite element 
formulation, we solved the problem using uniform meshes of 2-node linear 
elements, consistent mass matrices, and the trapezoidal rule with the very small time 
step 82.5 10t s    (resulting into significant oscillations in the response).    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

(b) (c) 
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Figure 2.1-1. Solution of impact of a bar, at time 0.00005s; (a) elastic bar 
considered; (b) with 100 traditional linear elements; (c) with 700 traditional linear 
elements; (d) with 50 linear enriched elements; (e) with cutoff number 5   
 
 
Figure 2.1-1 shows the well-known spurious oscillations in the velocity and hence 
stress predictions. In this case, using the enriched finite elements we can control the 
large spurious high-frequency oscillations and make them acceptably small. But 
more studies are needed to identify in how far this solution behavior is applicable in 
2D and 3D analyses and how effective the procedure is in practice. 
 
2.1.2 A time harmonic solution: 2D acoustic pressure wave 
 
 Here we consider the solution of the Helmholtz problem (see Figure 2.1-2)  
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where ( , )P x y  is the unknown harmonic pressure, k c , r  is the distance from 

the origin in the Cartesian coordinates, and  n  is the unit normal on fS . 

 
For the numerical test solution, we prescribed  ,g x y  given by the analytical 

solution and used 22.06k  . Figure 2.1-2 shows the analytical solution and the 
mesh for our finite element solution. We should note the rather coarse mesh used.  
 

(d) (e) 
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Included in the mesh is a ‘perfectly matched layer’ to model the infinity of the 
physical domain.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1-2. Solution of pressure wave; (a) the analytical pressure, A is the pole at 
(x0,y0)=(0.5,0); (b) mesh of 9-node elements 
 
Figure 2.1-3 gives contour plots of the pressure numerical solutions using the cutoff 
numbers from 0 to 2 and the convergence in the L2 norm (although a better norm 
might be used).  We note that the result obtained using the cutoff numbers 
(n,m)=(2,2) is in good agreement with the analytical solution. 
 
While, as earlier mentioned, we employ mostly only real arithmetic, actually, in this 
example solution we used complex arithmetic for the perfectly matched layer in the 
discretized domain. 
 
2.2 The analysis of shells  
 
Significant research efforts over some decades have been spent on the analysis of 
shells, but there are still many outstanding challenges in the field of shell analysis 
[4].  In the following, we focus on two important items, namely the proper 
benchmark testing of shell elements and the analysis of large strain conditions in 
shells. 
 
2.2.1 The testing of shell elements 
 
Commonly, shell elements have been tested in linear analysis by solving plate and 
some well-known shell problems, like the pinched cylinder, Scordelis-Lo, and 

(a) (b) 
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hemispherical shell problems, but not including a shell of negative Gaussian 
curvature.  In these solutions, some displacements at certain points are measured. It 
should, however, be recognized that such solutions do not constitute a thorough 
assessment of the capabilities of a shell solution scheme. Instead, it is important to 
measure the scheme on the following criteria: 
 
– As basic requirements, the shell element used should not be based on artificial 
factors, not contain any spurious modes and be geometrically isotropic.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1-3. Numerical solutions: (a) (n,m)=(0,0), (b) (n,m)=(1,1), (c) (n,m)=(2,2) 
and (d) relative error in L2 norm not including the perfectly matched layer 

(a) 

(c) 

(b) 

(d) 
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– The element should be tested in the solution of the hyperboloid shell problems 
shown in Figure 2.2-1, or similar problems of shells with negative Gaussian 
curvature, and in these solutions proper norms should be used.  
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Figure 2.2-1. Three shell test problems; 1.0L  , 111.0 10 ,E    1/ 3   
 
 
The shell surfaces in Figure 2.2-1 are given by 222 1 YZX   and the loading is 
the pressure ( ) cos(2 )p   . Only the shaded regions in the figure are modeled.  
 
As discussed in references [4, 9], the use of an appropriate norm in the error measure 
is very important. Using the s-norm defined in these references, we present the test 
results obtained using the MITC4 shell element in Figure 2.2-2. This element 
satisfies of course the basic requirements mentioned above and, as seen in Figure 
2.2-2, performs very well in the analysis of the shell problems. For details on the 
testing of plate and shell elements we refer to references [4, 9-11].  
 
2.2.2  The large strain analysis of shells  
 
The large strain analysis of shells is pursued in many applications of science and 
engineering. Examples occur in biomechanical situations and in the crush and crash 
analyses of structures. 
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Figure 2.2-2. Convergence curves for the MITC4 shell element used in the three 
problems of Figure 2.2-1, for decreasing shell thickness, using the s-norm; (a) free-
free shell; (b) fixed-fixed shell; (c) fixed-free shell; see reference [9] 
 
We have developed 3-node and 4-node 3D-shell elements that build upon the 
classical MITC shell elements but that include important three-dimensional effects 
[12]. The elements can be used to model very large deformations with large plastic 
strains using the Updated Lagrangian Hencky total strain formulation [2, 13]. An 
important point is that the 3D-shell elements can be employed in explicit and 
implicit dynamic solutions and in static analyses, since no reduced integration with 
hourglass control is used and there are no artificial stabilization factors in the 
formulation. The 3D-shell elements can be employed like the conventional MITC 
shell elements with 5 or 6 degrees of freedom at each node, but, when invoked by 
additional nodal degrees of freedom at the shell mid-surface, the elements represent 
through-the-thickness straining (2 extra degrees of freedom) and warping of the 
transverse fibers (2 or 3 extra degrees of freedom). Thus, while all degrees of 
freedom are defined at the shell mid-surface nodes in accordance with a shell theory, 
from a displacement interpolation point of view, the elements can be thought of as 
higher-order 3D solid elements, with assumptions, when the additional degrees of 
freedom are invoked.  
 
In the formulations, MITC interpolations are used to prevent shear locking, and in 
incompressible analysis the u/p formulation is employed [2, 14].  A particular aspect 
addressed in reference [12] is to give benchmark solutions for large strain analyses. 
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Figure 2.2-3 shows an application in a large strain solution that represents a good 
benchmark test [12].  Here the large strains in the structure result into a significant 
downward shifting of the mid-surface nodes during the response.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2-3. Large strain analysis of thick cantilever; incompressible Mooney-
Rivlin material; the MITC4 3D-shell element is used 
 
 
Figure 2.2-4 shows some analysis results using the MITC4 3D-shell element in a 
slow crush analysis and Figure 2.2-5 shows crash solution results, all obtained using 
the Bathe implicit time integration scheme, for details see reference [15]. 
 
 

  
 

(a) 



 11 

 
 

(b) 
 

 
 

(c) 
 
Figure 2.2-4. Quasi-static crushing of a square-section tube, length of tube is 310 
mm; (a) experimental and computed results in final configuration; (b) force -
displacement curves; (c) mean crushing force - displacement curves 
 
Here, the important point is that the same elements are employed to solve static and 
dynamic problems. Of course, since full numerical integration is used, solutions with 
explicit time integration are computationally quite expensive compared to when 
using elements based on reduced integration and hourglass control.  
 
 
2.3   A procedure for stress improvements 
 
It is well known that the low-order displacement-based finite elements (3-node 
triangular and 4-node quadrilateral elements in 2D solutions, and 4-node tetrahedral 
and 8-node brick elements in 3D solutions) are not effective in predicting stresses 
accurately. Very fine meshes are needed in practice. On the other hand, the elements 
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are quite robust, and the bandwidth of the resulting finite element equations is 
relatively small. Hence, if the order of stress convergence could be increased, the 
elements would be quite attractive in various analyses. 
 
 
 

 
 
 
Figure 2.2-5. Force-displacement curves in fast crashing of a square section tube,  
tip velocity is 54 km/hr, initial length of tube is 310 mm  
 
We have developed a novel and promising ‘stress improvement scheme’ for these 
elements. The procedure is simple and inexpensive to use, and we have found that in 
1D and 2D solutions, based on some analysis but mostly numerical experiments, the 
stresses converge at a quadratic rate, or close thereto, which is optimal since the 
displacements converge at that rate. The derivation of the basic equations used is 
given in reference [16]. These equations are the usual virtual work statement for the 
displacement-based finite element solution 
 
 

(3) 
 
 
and the two projection equations 
 
 

(4) 
 
 
 

(5) 
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where kP  denotes the kth order polynomial,  m  represents the enhanced stresses to 

be calculated in 2P ,  m
h  the directly-calculated stresses, and  m  an element in ν , 

the subspace of 2P  in which all stress functions satisfy the equilibrium equations 
   0mdiv  , and PN  is the number of elements in the stress domain considered. 

For the additional notation we refer to references [2, 16]. 
 
The first projection equation, Equation (4), expresses in essence that, integrated over 
the stress calculation domain, the enhanced stresses projected onto the space of the 
self-equilibrating stresses shall be equal to the directly-calculated stresses projected 
onto that space. Hence, this equation somewhat extracts from the directly-calculated 
stresses that part which is of good quality. The second projection equation, Equation 
(5), then sets to zero the difference in the divergence of the enhanced stresses and 
the exact stresses in the projection onto the space 1P . Assuming a quadratic variation 
in stresses, the scheme results into a set of algebraic equations in the unknown stress 
coefficients for which the coefficient matrix is well conditioned and the equations 
are inexpensive to solve. 
 
This new stress enhancement procedure is compared with other previously published 
attractive schemes in reference [16]. The important attributes are that the new 
method is effective and can be used in linear static and dynamic analyses, and, since 
geometrically distorted elements present no difficulty, in nonlinear solutions.  
 
Figure 2.3-1 shows the results obtained in the dynamic analysis of a cantilevered 
plate with holes. Since it is important to predict the accelerations accurately (which 
enter as body forces in Equation (5)), we use the Bathe time integration scheme, see 
references  [8, 16]. The excellent convergence rate for the stresses is seen. 
 
Figure 2.3-2 shows the results calculated in the static analysis of a large strain 
problem. Here too excellent results have been obtained. Finally, we should note that 
the scheme may be used to establish solution error measures, and while here applied 
to solid mechanics problems is clearly also applicable in multiphysics analyses. 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) 
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Figure 2.3-1. Dynamic analysis of cantilevered plate; the stresses are sought at time 
= 0.01902; (a) problem solved; (b) convergence rates 
 
 
The computational expense to obtain improved stresses is given by the numerical 
effort involved in solving for 18 unknown stress coefficients in 2D solutions (and 60 
unknown stress coefficients in 3D solutions), for each element m  in the areas where 
stresses are to be improved. Of course, in practice, the stresses may only be 
improved in certain areas.  
 
We have found this expense to be small in 2D solutions, as compared to establishing 
the global stiffness matrix and solving the equations of equilibrium of the total finite 
element assemblage.  Indeed, in a typical linear static analysis with 510  degrees of 
freedom, the expense to calculate the improved stresses for all elements in the 
assemblage is probably about 1 %  of the total solution cost. Considering 3D 
solutions, the expense is probably also low but actual testing should be performed.  
 
 

(b) 
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Figure 2.3-2. Stress improvement in analysis of a large strain problem; (a) problem 
solved; (b) von Mises band plots; (c) von Mises stress along section A-A 
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2.4 The enrichment of finite element solutions using interpolation 

covers 
 
The scheme given in section 2.3, of course, only improves, inexpensively, the 
stresses. For the low-order finite elements, we have also developed a scheme to 
improve all solution variables by ‘enriching the finite element discretization with 
interpolation covers’ [17]. These covers are applied over element patches in certain 
areas where higher accuracy in the solution variables is sought, like higher accuracy 
in the displacements and stresses. The procedure is closely related to previously 
published schemes, see reference [17]. 
 
Consider the patch of 2D 3-node elements shown in Figure 2.4-1. The essence of the 
enrichment scheme is to interpolate the degree of freedom at node i over the patch of 
elements, which gives for the element 
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Here the ( ),j jx y -coordinates are measured from node j, see Figure 2.4-2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4-1. Description of interpolation cover; (a) usual nodal displacement 
function; (b) elements affected by the cover; (c) an element 
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Figure 2.4-2. Coordinate systems for a triangular 3-node element 
 
 
In the use of the method, we only apply the covers on interior mesh nodes and not 
on the boundaries where boundary conditions are applied as usual.  
 
Figures 2.4-3 and 2.4-4 show some results obtained using this method [17]. While 
these solutions are for problems in solid mechanics, of course, the method is equally 
applicable in fluid flows, heat transfer and general multiphysics solutions.  
 
However, since the nodal variables for the cover interpolations couple into the usual 
degrees of freedom, all of these must be solved for together. Hence the effectiveness 
of the scheme needs to still be evaluated for general 2D and 3D solutions where also 
higher-order elements might be used instead of the cover interpolations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4-3.  Analysis of 1D bar; uniform meshes are used 

L 

fB 
A(x) = A1 + x (A2 – A1)

R  x, u

A1 = 0.01       
A2 = 1          
L = 1               

E = 2×107        
fB = 2×104       
R = 15,860 
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1299 (‐1%)

4‐node elements  4‐node elements with linear covers 

Coarse Mesh 

Medium Mesh 

Fine Mesh 

592 (‐55%)  1183 (‐10%)

859 (‐34%) 

1008 (‐23%)  1313 (+0.2%)

 
 
 
 
 
 
 
 
 
                                                        (a)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
Figure 2.4-4.   3D analysis of machine tool jig; (a) problem solved; (b) the solutions 
on the left correspond to the use of the traditional 4-node tetrahedral finite elements, 
the solutions on the right were obtained using linear interpolation covers; the errors 
are given in parentheses  
 
 

p=10

5  520

2.5

2.5

4

2

E = 72×109   
υ = 0.3 



 19 

2.5 The coupling of structures to fluid flows and electromagnetic 
effects 

 
While the separate solution of fluid-structure interactions and electromagnetic 
problems has been pursued for decades, the solution of problems in which general 
structures interact fully coupled with fluid flows and electromagnetic effects has 
hardly been tackled and presents special difficulties.  The coupled effects can be 
particularly important, for example, in problems of biomedical engineering, metal 
processing, and plasma physics, see reference [18].    
 
A large number of publications are available on the numerical solution of electro-
magnetic field problems. In the most general cases, the full Maxwell’s equations are 
solved. Considering the earlier proposed schemes, frequently spurious modes have 
been calculated and hence the solution schemes were not reliable. Thereafter, novel 
formulations were established, and in particular, edge-based elements. These 
elements are more reliable but have various shortcomings, including specifically that 
they do not couple directly with structural and fluid flow discretizations.   
 
We developed in our research a novel finite element scheme for the solution of the 
general Maxwell’s equations specifically to calculate electromagnetic effects 
coupled with fluid flows, solids and structures. In our solution procedure, we use 
either the primitive variables of electric and magnetic fields (E and H) or the scalar 
electric and vector magnetic potentials (  and A) for static and harmonic solutions 
of problems governed by the full Maxwell’s equations, including high frequency 
conditions. The finite elements used are similar to those we proposed for the 
solution of the Navier-Stokes equations, and the full coupling between the different 
physical phenomena is achieved as in fluid-structure interaction analyses [19, 20].   

The basic equations we solve are, considering Faraday’s law and Ampere’s law with 
the Maxwell term, in the E-H form  
 

                          *
0 / ep in       I E I K 0   

and 
 

                                    mq in     I H I J 0   
 
where e  and m  denote the domains of electric and magnetic fields, respectively, 

K ,  J  and 0r  are the electric field, current and charge source terms, *e is the 

effective permittivity (for static and harmonic solutions),  I  is the identity tensor, 
and we introduced  
 

*
0 /p

q

   
 

E

H


  
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Of course, these equations specialize to specific cases, by omitting certain terms, and 
the equations must be used with appropriate boundary and interface conditions.    
 
However, for certain problems, a potential formulation can be more effective, in 
which the electric and magnetic potentials are used   
 

 ;
t

 
    


A

E B A  

 
with Ag A   and Ag  a gauge condition.   
 
The electromagnetic effects couple into the fluid flows and structures due to Lorentz 
forces and due to Joule heating. The Lorentz body forces are  
 

 
em em em
b b  f T T  

 
with  the Maxwell components emT  and em

bT  including  electric and magnetic 

effects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5-1.   Buckling of beam due to Lorentz forces 
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The heat generated by electromagnetic variables is calculated according to Joule’s 
law as 

1em
bq   J J  

 
in which  is the conductivity and J is the current solved for.   For details on the 
finite element formulations, see reference [18]. 
 
To consider a simple example, for comparison with an analytical solution, Figure 
2.5-1 shows results for a beam that buckles due to electromagnetic force effects. 
Here the magnetic field intensity H  is almost constant while the electric field 
intensity E  is increased to obtain the increasing Lorentz force.  
 
The solution of an additional problem is given in Figure 2.5-2, which shows the 
results of the mixing in a fluid flow driven by electromagnetic forces. Here the 
generated current and the magnetic field result into Lorentz forces that cause chaotic 
mixing in the fluid.  
 

 
(a) 

 

 
(b) 
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(c) 
 
Figure 2.5-2. Electromagnetic chaotic mixing in channel; (a) the channel with the 
electrodes; (b) A and   potentials; (c) velocity vector plot near inlet  
 

3. Concluding Remarks  
 
In this paper we presented some of the research we have pursued during the recent 
years. We focused on reliable and effective procedures to advance the multiphysics 
analysis of solids and structures.  
 
There are many exciting research and development tasks still to be tackled in the 
field of computational simulations – in particular when the actual practice of 
simulations in engineering and the sciences is focused upon. Here the reliability of 
procedures is very important.   
 
Considering the research presented in this paper, the enrichment procedure for wave 
propagation analyses shows much promise, but needs further studies focusing on its 
effectiveness, its use in shell analyses, and its use in explicit time integration. More 
research on shell analyses in general is needed but also specifically to obtain more 
effective triangular shell elements. The procedure for stress improvements could be 
applied to shell analyses as well, and the method of cover interpolations should be 
researched for nonlinear analysis and shell solutions. The analysis of 
electromagnetic effects coupled to solids and fluids is a very large field with many 
exciting research tasks that should include nonlinear effects and wave propagations.   
 
In addition to the research areas mentioned above, we are working on the 
development of faster solvers, simulations in biological engineering, e.g. protein 
dynamics [21], and energy technologies [22].  
 
The field of multiphysics is very large and we must expect that the hierarchical 
process of analysis, see references [2, 23], which is in particular applicable to 
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multiphysics simulations, will be tackled to an increasing extent – in engineering, 
because new designs require a deeper understanding of performances, and in the 
sciences, because a deeper understanding of nature through simulations will create 
important advances – for example, and in particular, in the field of medical sciences.   
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