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Abstract. The objective in this presentation is to briefly survey some recent developments in 
finite element procedures that we have pursued to solve dynamic problems more accurately 
and more efficiently, and to solve new classes of problems.  We present some developments 
regarding the finite element analysis of shells, the solution of wave propagation problems 
with mode conversions, the time integration in long-time large deformation analyses, the 
solution of normal modes of proteins with the subspace iteration method in nonlinear 
conformations, and fluid flow-structure interactions. 
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1 INTRODUCTION 

Finite element procedures are now widely used in engineering and the sciences and we can 
expect a continued growth in the use of these methods. The simulations of dynamic events are 
of much interest [1-4]. 

Considering the analysis and design of civil and mechanical engineering structures, 
frequently, physical tests can only be performed to a limited extent. Hence, the results of 
simulations of such structures cannot be compared with test data.  It is then very important to 
use reliable finite element methods in order to have the highest possible confidence in the 
computed results. 

The objective in this paper is to briefly survey our recent developments of finite element 
procedures for nonlinear dynamic analysis. In our research we have continuously focused on 
the reliability of methods. Of course, any simulation starts with the selection of a 
mathematical model, and this model must be chosen judiciously. However, once an 
appropriate mathematical model has been selected, for the questions asked, the finite element 
solution of that model needs to be obtained reliably, effectively, and ideally to a controlled 
accuracy. 

In the following sections we briefly present our recent developments regarding the finite 
element analysis of shells, wave propagation problems, highly nonlinear dynamic long- 
duration events, normal modes of proteins, and fluid-structure interactions. 

2 ON RELIABILITY OF FINITE ELEMENT METHODS 

Once a mathematical model has been chosen, it is important that well-founded, reliable and 
of course efficient numerical methods be used for solution. By reliability of a finite element 
procedure we mean that in the solution of a well-posed mathematical model, the procedure 
will always, for a reasonable finite element mesh, give a reasonable solution � and if the 
mesh is reasonably fine, an accurate solution of the chosen mathematical model is obtained 
[3].  

    By reliability of a finite element procedure we also mean that if some analysis 
conditions are changed, and seemingly only slightly, in the mathematical model, then for a 
given finite element mesh, time integration scheme, and so on, the accuracy of the finite 
element solution does not drastically decrease, unless there are distinct physical reasons. 
These conditions on analysis methods are very difficult to achieve and require theoretical 
depth in the understanding of the methods, and thorough and extensive testing based on 
theoretical insights. These conditions also rule out the use of methods that require the setting 
and problem-solution-dependent adjusting of numerical parameters to achieve stability of a 
procedure. 

3 SHELL ELEMENTS 

The fundamental requirements in the development of shell elements are that the 
discretization  should satisfy the consistency condition, the ellipticity condition, and ideally 
the inf-sup condition [4-7]  
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where V is the complete (continuous) displacement space, Vh  is the finite element 
displacement space, hE  is the finite element strain space, b(.,.) is the applicable bilinear form, 
and c is a constant independent of the shell thickness t and the element size h. To show 
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analytically that the inf-sup condition is satisfied for an element formulation is very difficult 
because it involves the complete space V for any shell geometry.  

If an element satisfies these conditions, the discretization is very reliable for all shell 
analyses, that is, in the analyses of membrane-dominated shells, bending-dominated shells, 
and mixed behavior shells [6]. Displacement-based shell elements do not perform well in 
bending-dominated cases and mixed elements need to be used.  

In the development of mixed shell elements, mathematical convergence proofs could so far 
only be given for certain elements and rather simple shell geometries and boundary conditions. 
However, mathematical analysis has been powerful in guiding how elements should be tested 
in order to reveal whether the above conditions are satisfied [6-8].  

While reasonably effective quadrilateral shell elements are available, also incorporating 3D 
effects [9], it is a particularly difficult task to develop a general triangular 6-node shell 
element that is spatially isotropic, has the same degrees of freedom at every node, does not 
contain any instability, and converges well in membrane- and bending-dominated problems. 
The testing of the element should involve specific problems chosen to reveal the element 
properties, and in particular, shell problems based on a hyperboloid shell surface, and 
appropriate norms to measure the solution errors [6-8].  

We recently proposed the MITC6 shell element and show the convergence results of the 
element using the s-norm for hyperboloid shell problems in Figure 1 [10].  This element 
satisfies all the features sought and converges also almost optimally in the clamped-clamped 
hyperboloid problem (the membrane-dominated problem) but only reasonably well in the 
free-free hyperboloid problem (the bending-dominated problem). In the solution of simpler 
problems the element performs almost optimally. It is one of the remaining challenges of 
finite element research to develop a still more effective general triangular 6-node shell 
element. In this search, the �enhanced assumed strain� method could be used [11] � a method 
quite different from the MITC approach [3, 10] � but then no instabilities should arise in 
nonlinear analysis. Such instabilities have been observed in enhanced assumed strain 
formulations although the formulations are stable in linear solutions, see for example ref. [12]. 

 
(a)  The hyperboloid shell problems considered 

Figure 1 Analysis of the hyperboloid shell problems, t = thickness of shell, L=characteristic length, here L=1; 
pressure loading is applied  [10] 
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(b) 8x8 element mesh used for the clamped 

shell  (including the boundary layer), 
modeling 1/8th of the shell 

 (c) 8x8 mesh used for free-free shell, 
modeling 1/8th of the shell 
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 (d) Convergence results using the s-norm; left: clamped-clamped shell; right: free-free shell; the slopes of the 

bold lines correspond to optimal convergence 

Figure 1 (continued) 

 

4 WAVE PROPAGATION PROBLEMS  

Although in principle the finite element method can directly be applied to the solution of 
wave propagation problems, and indeed has been used abundantly for such analyses, a 
specific required accuracy in the response may be difficult to reach, and the solutions can  
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computationally  be very expensive. Accurate solutions can be particularly difficult to obtain 
in multi-scale analyses, in which very short waves interact with long waves.  

We have worked on the development of a method that, in essence, combines the attractive 
features of classical finite element discretization and spectral techniques [13]. The key step is 
that the classical finite element shape functions are enriched with wave patterns. In 1D 
solutions, if a classical linear shape function is used, we assume 

 ( ) ( ) ( ),
1 1 exp 2
2 2j ej

xg i xαα ξ ξ ξ πν ξ⎡ ∆ ⎤⎛ ⎞= + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (2) 

where i, xe, ∆x and ξ are the imaginary unit, the x-coordinate at the center of the element, the 
length of the element and the coordinate variable in the calculation space (-1 ≤ ξ ≤ 1).  The 
physical space is then related to the calculation space by x = xe+ (∆x/2)ξ .  The subscript α 
denotes the local node number, and the coordinates of xα correspond to ξ1, 2 = -1, 1. The wave 
numbers 2πνj are determined by νj = jν, where ν is the fundamental frequency and j is an 
integer in the range  �(NF-1)/2  ≤  j  ≤  (NF -1)/2  with the cutoff wave number (or number of 
harmonics) NF. The values of ν and NF need to be chosen for the analysis and further research 
is needed to develop an algorithm that automatically chooses appropriate values.  

Interpolations using classical finite element functions combined with analytical solutions 
have of course been used for a long time, see for example ref. [14]. However, in Equation (2) 
no analytical solution is employed. Instead, the waves embedded within the classical finite 
element functions are to capture the unknown wave propagations. This possibility is 
important when solving, for example, wave equations governing the response of plasmas, in 
which waves of different properties and mode conversions are observed. 

Figure 2 shows an application of the solution procedure and illustrates the effectiveness of 
the method, see reference [13], also for further solutions.  

 
     (a)  Response over complete domain   (b)  Detail to show short and long wave responses 

Figure 2   Solution of Wasow equation using wave-packet procedure of Ref. [13] 
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(c) Comparison using Hermitian classical functions only and with wave packets 

Figure 2   (continued) 

 

5 TIME INTEGRATION IN NONLINEAR ANALYSES  

Considering transient structural response, a widely used scheme of time integration is the 
Newmark method trapezoidal rule. However, as well known, if large deformations over long-
time durations need be solved, the trapezoidal scheme can become unstable and the 
generalized alpha method is then frequently used [3, 15].  Using this method stability 
parameters have to be set and depending on the values used, the calculated response can be 
inaccurate, resulting into experimentation with the parameters. The time integration scheme 
given in Ref. [16], which in essence extends a method published much earlier for first-order 
systems [17], can in such cases be more effective. 

Consider that the solution at time t has been established and that the solution at time t + ∆t 
shall be obtained. The governing equations for a structural model to be solved are then 

 t t t t t t t t+∆ +∆ +∆ +∆+ = −M U C U R F!! !  (3) 

where M is the mass matrix, C is the damping matrix, R is the vector of externally applied 
loads, F is the vector of nodal forces equivalent to the element stresses, and U denotes nodal 
displacements (including rotations). The superscript t + ∆t  denotes of course time and an 
overdot a time derivative. In the time integration scheme of Ref. [16] we consider each time 
step ∆t to consist of two equal sub-steps, each solved implicitly.  The first sub-step is solved 
using the trapezoidal rule and the second sub-step is solved using the three-point Euler 
backward method with the governing equations 

 / 2
1 2 3
t t t t tt t c c c+∆ +∆+∆ = + +U U U U!  (4) 

 / 2
1 2 3
t t t t tt t c c c+∆ +∆+∆ = + +U U U U!! ! ! !  (5) 
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where  c1 = 1/∆t, c2 = -4/∆t, c3 = 3/∆t. 
This scheme is a fully implicit second-order accurate method and requires per time step 

about twice the computational effort as the trapezoidal rule. However, no parameters have to 
be set, the accuracy per time step is significantly increased, and in particular the method 
remains stable when the trapezoidal rule fails to give the solution, see Figure 3 for an example. 
We use this scheme as an option in nonlinear dynamics of solids and structures, and also in 
fluid-structure interaction solutions. In this case the first-order fluid flow equations and the 
second-order structural equations are integrated consistently using the same scheme, either 
monolithically or iteratively [18]. 

Since we use the same finite element discretizations in explicit and implicit dynamic 
solutions of solids and structures, automatic switching from explicit to implicit integration, 
and vice versa, is directly possible. This automatic time integration can be very effective 
when fast and slow transients intermingle, when a dynamic response is followed by an almost 
static response (like in metal forming problems), and if convergence difficulties are 
encountered in the implicit time stepping. 
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plane stress

ρ = 8000kg/m3

ν = 0.30

p = f(time)N/m2

0.05 m

0.05 m

y

z

A

0 5.0 10.0
time(s)

f(time)

1.0

 
(a)  The problem considered 

       
(b) Angular momentum using trapezoidal 

rule ∆t = 0.02 s. 
 (c) Angular momentum using scheme of Ref. [16] 

∆t = 0.4 s 

Figure 3  Solution of rotating plate problem  
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6 NORMAL MODES OF PROTEINS 
The solution of the frequencies and normal modes of proteins has attracted much attention 

because the normal mode analysis plays an important role in relating the conformational 
dynamics of proteins to their biological function. A typical protein is schematically shown in 
Figure 4. In these normal mode calculations, various eigensolvers are used. The subspace 
iteration technique, originally developed for structural analysis [3, 19], can be very effective, 
because (i) an algorithm to establish an optimal number of iteration vectors can be used, and 
(ii) the method lends itself to the solution of the normal modes in neighboring 
macromolecular conformations, of which typically 100 or more are considered to simulate the 
nonlinear behavior [20]. 

 

 
Figure 4 Schematic representation of sub-domains of molecular structure of Pertussis toxin [20] 

 
The effect of using the algorithm we developed to calculate the optimal number of iteration 

vectors is shown in Figure 5 [20]. It is seen that the solution effort with the algorithm 
increases linearly with the number of modes calculated, in contrast to the rapid increase in 
solution time when the original choice of number of iteration vectors is used. This linear 
increase in solution time is typical in protein analysis using the subspace iteration method 
with the algorithm to choose the number of iteration vectors, and results in a significant 
decrease in computational effort. 
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Figure 5 Normalized solution times of lowest eigenvalues of Pertussis toxin [20] 

 
The subspace iteration method lends itself in particular to the solution of the normal modes 

for neighboring configurations of a protein because the just calculated normal mode vectors 
can be used as starting iteration vectors for the next solution. This use speeds up the iterations 
and can be very effective, since typically many neighboring configurations are considered 
[20].  Other techniques do not display this advantageous property, because each eigensolution  
is performed as if no neighboring solution has been obtained.   

Considering the overall performance of the subspace iteration method [21], the procedure 
also lends itself particularly well for SMP and DMP parallel processing because all iteration 
vectors are solved for simultaneously, that is, not sequentially as by theory required in other 
techniques.  

7 FLUID-STRUCTURE INTERACTIONS (FSI) 

Considering Navier-Stokes fluids, the FSI solution requires effective discretizations to 
model the fluid including high Péclet and Reynolds number conditions, effective finite 
element methods for the structure, and the proper coupling of the discretizations. 

We have concentrated our development efforts on establishing, for incompressible fluids, 
finite element discretization schemes that are stable, even when coarse meshes are used for 
very high (element) Péclet and Reynolds numbers and show good accuracy [18, 22, 23]. The 
basic approach is to use velocity-pressure interpolations to satisfy the inf-sup condition for 
incompressibility, flow-condition-based interpolations (FCBI) in the convective terms of the 
fluid, and to use element control volumes (like in the finite volume method) to assure local 
mass and momentum conservation. 

The resulting FCBI elements do not require a tuning of upwind parameters, satisfy the 
above properties, and also, the interpolations can be used to establish consistent Jacobian 
matrices for the iterations in the incremental solutions. 

We use these elements for incompressible, slightly compressible, and low speed 
compressible fluids. These flows and highly compressible fluid flows can all be coupled in an 
arbitrary Lagrangian-Eulerian formulation with general structural models [18, 24]. However, 
as well known, for very large structural deformations the fluid mesh can become much 
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distorted unless an algorithm of remeshing is employed. We have developed an algorithm for 
mesh repair and adaptation based on element size, element distortions and solution criteria for 
general CFD (highly compressible and incompressible fluids) and general FSI [25]. As an 
example, Figure 6 shows the solution obtained of a fluid-structure interaction problem. We 
see that, with the mesh adaptation and grading, a very fine mesh was established near the 
blades to capture the secondary flow. 

 
z

fluid
ρ = 1 g/cm3

µ = 0.03 g/cm.s

no-slip wall

R = 1 cm

R = 0.3 cm

1.0 cm

0.2 cm

 τxx = 3.0 Pa

       = 30 dyn/cm2

solid
E = 108 Pa
 ν = 0.3
shell thickness = 0.018 mm

3.0 cm

τxx = 0

x y

 
(a)  Problem considered  

 
(b)  Initial CFD mesh  (34,041 elements) 

Figure 6   Fluid-structure interaction problem of flow around blades [25] 
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(c)  Final CFD mesh reached after 6 mesh adaptations (547,741 elements) 

 

 
(d) View of final CFD mesh with cuts through domain 

Figure 6   (continued) 
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(e) Velocities on plane 0.5 cm downstream from the blades, using final mesh 

Figure 6   (continued) 

 

8 CONCLUDING REMARKS 
The objective in this paper was to present some of our recent finite element developments 

regarding the nonlinear dynamic analysis of structures. The focus in our research is on the 
development of reliable finite element methods for such simulations.  Physical test data are 
usually scarce, and nonlinearity implies that measured data from even apparently similar 
laboratory or field tests may not be useful for comparisons. Hence, it is important to have as 
high a confidence as possible in the computed results. Such confidence is only possible if 
reliable finite element methods, with �reliability� as defined in the paper, are used. 

The complete analysis of a nonlinear dynamic problem requires the choice of a 
mathematical model, the spatial finite element discretization of the model, and the time 
discretization and integration. In each of the finite element solution steps, we should endeavor 
to use methods that do not employ adjustable stability parameters, that are theoretically well-
founded, and known to perform reliably and effectively. 

Such methods are very difficult to develop and significant further research is still needed to 
achieve more reliability and efficiency of analysis techniques for the many varied and 
increasingly more complex nonlinear dynamic problems encountered in engineering and the 
sciences. 
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