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Advances in Direct Time Integration Schemes for Dynamic Analysis

by Robert Kroyer, Kenth Nilsson, Klaus-Jirgen Bathe

The accurate solution of dynamic response in finite element
analyses has been the subject of extensive research for the
last few decades. In general, implicit schemes are used when
the transient response can be obtained with a relatively small
number of large time steps, typically of order 10® s, and
explicit schemes are used when many time steps of small size
need be used, typically of order 10 s. The most widely-used
schemes in implicit solutions are the Newmark trapezoidal
rule and alpha generalized method, and in explicit solutions
the central difference method [1]. However, these schemes
have some undesirable characteristics, and recently more
effective methods have been proposed, which we want to
expose briefly in this short article.

Implicit Time Integration: Bathe Method

The trapezoidal rule is unconditionally stable in linear analy-
ses, and has the characteristics of no amplitude decay and

a reasonable amount of period elongation. Hence, on first
sight, the solution errors seem to have excellent qualities.
However, in fact, the quality of no amplitude decay can cause
major solution problems, because frequencies may be sam-
pled that should be suppressed (for example, because they
are an artifact of finite element modeling). In linear analysis
this phenomenon can be easily and directly seen (an example
is given below), and in nonlinear analysis, the phenomenon
can also render the iterative solution difficult to converge.
We illustrate the solution behaviors below.
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Figure 1: Model problem of three degrees of freedom spring
system k=107, k,=1, m,;=0, m,=1, m,=1, w =1.2

Figure 1 gives a simple two spring model solved [2,3]. While
very simple, the model contains the essence of many practi-
cal finite element models. The stiff spring represents stiff
components in a structural model, which may be largely due
to modeling constraints with stiff elements, while the soft
spring represents the rest of the model. The aim is to only
solve for the response in the soft part of the structure, like

in a mode superposition solution. The trapezoidal rule gives
very large errors in this linear analysis, see Figures 2 and 3.
The response prediction can be improved by introducing
damping, numerical or physical, but then the question will
always be how much damping to introduce when not know-
ing the desired response. The same holds when using the
generalized alpha method.

A new scheme is the Bathe method, which combines the use
of the trapezoidal rule and Euler backward method [1-3]. In
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the Bathe method, no parameter is (usually) set and the ac-
curacy of solution is simply dependent on the size of the time
step used. As the time step becomes smaller the accuracy
increases. Figures 2 and 3 show that the method gives the
desired response, just like obtained in a mode superposition
solution including only the lowest mode response with the
static correction. Further results are given in ref. [3] where

it is also shown that the error in the reaction using the New-
mark method is very large.
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Figure 2: Acceleration of node 2 for various methods
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Figure 3: Acceleration of node 2 for various methods (the
overshoot in the first time step of the Bathe method could be
eliminated by using in the Newmark method 6 = 3/4, a = 1.0 for
the first step only).

There is also a parameter in the Bathe method on the size of
the sub-step (but this parameter, changing the accuracy, is
by far mostly used in its default value, see refs. 1-3). Hence
the advantage of the Bathe method is that no parameter
values need to be chosen.

While the Bathe method is about twice as expensive per time
step (since two sub-steps are used), the higher accuracy in



general allows to use less steps in linear response solutions.
In nonlinear analysis the Bathe method is overall frequently
more effective because it converges much better in the
nonlinear iterations of the time steps, larger time steps can
be employed, and the method remains stable when the
Newmark and alpha generalized methods become unstable
(unless sufficient damping is introduced).

The above observations are demonstrated in the solutions
given in Figures 4 to 10.
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Figure 4: Schematic of the shell-fluid problem considered; results
shown in Figures 5 - 8

Figure 4 shows the model considered, which consists of an
elastic shell fully clamped at its base and a fluid surround-

ing it contained by an exterior rigid wall. Shell elements and
subsonic potential based fluid elements are used to represent
the media. The shell structure consists of two parts with
frictional contact conditions between them. The model is
subjected to a sudden fluid flux representing a pipe break.
The resulting shock waves cause the internal parts of the
model that are in contact to rapidly change status. For the im-
plicit dynamic analysis of such problems usually the Newmark
time integration is used. However, when contact conditions
are included between internal parts, the contact surfaces re-
peatedly stick and slip, which results in rapid pressure pulses
in the fluid. As a consequence, high frequency vibrations are
observed. These high frequency oscillations are spurious in
the Newmark method solution and grow with time. After a
while, the solution becomes obviously very erroneous and
may even diverge. The results using the Newmark method
without damping are shown in Figure 5. Note the highly
oscillatory response of the flange, the non-smooth contact
status between the internal parts and the parasitic pressure
distribution.

To overcome this problem, different techniques can be used,
such as adding physical damping to the model (e.g. Rayleigh
damping). In this case the damping will only be applied to

the structure and the question is how much damping to
introduce when physically it is negligible. Alternatively, the
Newmark method can be used to introduce numerical damp-
ing. This reduces the numerical oscillations, but also reduces
the physical response which should be solved for, and the
guestion is how much numerical damping to introduce in
order to obtain acceptable results.
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Figures 6 and 7 show that while the presence of physical
damping or numerical damping improves the results using
the Newmark method, to suppress all oscillations, the damp-
ing must be increased to high levels, which is not desirable.
However, when using the Bathe method, no numerical
parameter had to be adjusted and no artificial physical damp-
ing was introduced in the model, see Figure 8. The results
achieved in this analysis led to the subsequent use of the
Bathe method in the analyses of large finite element models.
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Another example solution pertains to the rotation of a heavy
antenna structure, with focus on high accuracy of the anten-
na positioning and orientation. In this application, we see very
large displacements over long time ranges in the transient
analysis, and numerical stability can be difficult to achieve.
Figure 9 shows the model of the antenna, which is rotated
with various angular velocities using the classical trapezoidal
rule and the Bathe method for time integration.
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Figure 9: Antenna model in various rotational positions using
Bathe Method

When using the Bathe method, the solution is obtained very
accurately for many revolutions, whereas the Newmark

time integration procedure fails before finishing the second
revolution, see Figure 10 for the antenna rotation instability
occurring in the solution. The numerical instability is also well
seen when studying the axial forces in the antenna stabiliz-
ers, see Figure 10, and occurs quite suddenly. No physical
damping, e.g. Rayleigh damping, is used in the model. This
antenna rotation problem may be seen as an extension of the
problem of a rotating stiff pendulum{2].
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Figure 10: Predicted transient response of antenna using New-
mark and Bathe Method



Although the above analyses focus on relatively simple prob-
lems, the mentioned solution phenomena are rather general
and occur in many large-scale practical analyses of structures
and fluid-structure interactions. In particular, considering con-
tact problems, a spurious response of oscillatory nature can
cause the nonlinear iterations not to converge.

While the above discussion refers to implicit integration,

of course, explicit time integration is also widely used in
practice. Using explicit integration, mostly wave propagation
problems are considered, but structural vibration and even
static problems are also solved.

Similar to the above observations regarding the trapezoidal
rule, the predicted response obtained using the central
difference method can show spurious oscillations in the high
frequency modes [4]. These are frequencies and modes that
cannot be represented by the chosen mesh. Ideally, any
response in these modes would be automatically suppressed
— but without loss of accuracy in the frequencies and modes
that can be represented by the mesh.

Explicit Time Integration: Noh-Bathe Method

A new explicit time integration scheme, referred to as the
Noh-Bathe method was developed with the same aim as for
the implicit Bathe scheme [4]. The method automatically sup-
presses spurious high frequency response, without using any
non-physical parameters, while accurately integrating those
modes that can be spatially resolved. The computational cost
of using the procedure is only slightly larger than the cost
with the central difference method, when using the same
mesh, but frequently coarser meshes can be used with the
Noh-Bathe scheme.

Figures 11 and 12 show the analysis of the crushing of a tube.
Figure 11 shows the deformations at three different times,
and Figure 12 shows the acceleration-time solution curves of
the impactor. We see that spurious oscillations are present in
the central difference method solution, while the Noh-Bathe
method solution does not show such oscillations.
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Figure 11: Tube-crush problem: Noh-Bathe method predicted
deformations at t =0.000, 0.010, and 0.015 s
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Figure 12: Impactor acceleration-time response for the tube

Further solutions of problems, algorithmic details and obser-
vations are given in the additional references [5-8].
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