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Abstract

Advances in capabilities for the crush analysis of structures are presented. Such analyses are di�cult to perform
and require state-of-the-art analysis procedures: e�cient and reliable shell elements, an e�ective and general contact
algorithm, e�cient procedures to calculate the element stresses in elasto-plasticity, the use of consistent tangent
matrices, e�ective nonlinear incremental solution strategies and the e�cient solution of the algebraic ®nite element

equations. Moreover, the e�ectiveness of the complete analysis process can only be achieved by ensuring that each
of the above solution procedures is in an e�ective manner integrated into a complete solution scheme. This paper
focuses on the advances developed in ADINA and presents various analysis cases solved with the program. # 1999

Elsevier Science Ltd. All rights reserved.

1. Introduction

Nonlinear ®nite element analysis of structures, ¯uids

and ¯uid-structure interactions is conducted to an

increasing extent. While in certain areas nonlinear

analysis can now be performed in almost a routine

manner, in many other areas, the state-of-the-art is

continuously being advanced. One such area in which

recently signi®cant advances have taken place is the

crush analysis of structures.

An important application area of such analysis capa-

bilities is the crush analysis of motor car models.

While frequently the same analysis procedures are

used for a crush analysis as for a crash analysis, it is

important to recognize the fundamental di�erences in

the crash and crush phenomena. Crash analyses simu-

late fast phenomena requiring a transient analysis. For

example, in the crash analysis of a motor car, the

crashing of the car at about 30 mph into a rigid wall is

simulated. The main event takes place during a few

milliseconds. These analyses are generally conducted

using explicit analysis procedures with shell elements

and assumptions speci®cally developed for modeling

the transient solution. On the other hand, crush ana-

lyses simulate slow phenomena that are appropriately

analysed using static analysis procedures or implicit

dynamic techniques. For example, in the crush analysis

of a motor car, the purpose is to establish the ultimate

strength of the car body in a static situation. The ulti-

mate strength a�ects the behavior of the car in various

operating conditions, including when the car overturns

in an accident. The laboratory experiment to identify

the crush behavior is performed by crushing the car

slowly, at about 0.02 mph and for about 10±30 s using

a device to push a thick steel plate onto the car roof

and measuring the load-deformation relation.
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In general, a crush analysis is rather di�cult to
achieve. The reasons for the di�culties lie in that a

slow speed almost static analysis requires particular
robustness and e�ciency of the solution algorithms.
The shell elements must be of high predictive capa-

bility, be robust and computationally e�cient for large
deformation static analysis. The stress conditions must
be evaluated e�ciently including the plasticity and rup-

ture conditions. The contact algorithm must allow
three-dimensional multiple body and self-body contact
on the outer and inner surfaces of the car shell, be

robust and give fast convergence in the iterations for
static equilibrium at the di�erent deformation states.
Consistent tangent matrices must be formed for the
large deformation elasto-plastic and contact con-

ditions, and the nonlinear incremental solution strategy
with the solution of the algebraic ®nite element
equations must be e�ective [1].

Frequently, a crush analysis is performed using an
explicit crash analysis code, because the problem with
the strong nonlinearities cannot be solved with implicit

analysis options. However, such an analysis approach
may not be appropriate as was already discussed in
Ref. [2].

The objective of this paper is to summarize some
thoughts regarding crush analysis and report on some
analysis procedures that can be employed e�ectively
for crush simulations. Since crash analysis codes are

frequently used for crush analysis, outlined in the next
section are the di�culties that can arise in a crush
simulation when a crash analysis code is used. Section

3 then focuses on e�ective analysis procedures for
crush solutions with particular emphasis on the speci®c
requirements for such analyses. This discussion is fol-

lowed in Section 4 by the presentation of some analysis
cases. These analyses represent in many respects the
current state-of-the-art of the nonlinear analysis of
structures. Finally, in Section 5, conclusions regarding

the current state of crush analysis and comments on
further developments in the ®eld are presented.

2. Crush analysis with crash analysis programs

As was pointed out above, the basic physical di�er-
ence between crash and crush conditions is that a
crash event (taking a few milliseconds) requires a

dynamic solution, whereas a crush event (taking
seconds) requires a static (or implicit dynamic)
solution. However, the nonlinearities in a crush event

are very large and the static solution algorithms used
must be particularly powerful. For this reason, fre-
quently, an explicit dynamic solution is performed to

assess the crush behavior of the structure under con-
sideration. The governing equations considered for a
typical time step are then, using the central di�erence

method [1],

Mt ÈU � t Rÿ tF �1�

t ÈU � 1

�Dt�2 �
t�DtUÿ 2tU� tÿDtU� �2�

DtRDtcr � 2

o n

�3�

where tR is the vector of externally applied nodal
loads, tF is the vector of nodal point forces corre-
sponding to the element stresses, M denotes the

lumped mass matrix, and tU, tUÈ are the vectors of
nodal point displacements and accelerations. The
superscripts (tÿDt, t, t+Dt ) denote the times con-

sidered. With the conditions known at times tÿDt and
t, Eqs. (1) and (2) can directly be solved for the displa-
cements at time t+Dt, and since M is a diagonal

matrix, the solution is very e�ective for each time step.
Special equations are used involving the initial con-
ditions to start the integration process. In Eqs. (1) and
(2), velocity-dependent damping forces are neglected

and a constant time step size is assumed. These restric-
tions can of course easily be removed [1].
Eq. (3) expresses the fact that for a stable inte-

gration, the time step Dt must be smaller than the criti-
cal time step Dtcr given by the largest frequency in the
mesh, on.

As seen in Eqs. (1) and (2), in the explicit time inte-
gration solution, a sti�ness matrix is not formed, iter-
ations for equilibrium at the time steps considered are

not carried out, and instead a simple time-marching-
forward solution is produced. This analysis approach
is attractive because di�culties with respect to conver-
gence in equilibrium iterations do not arise.

This explicit analysis approach can be used, but
requires many time-marching steps, because the explicit
solution scheme is only conditionally stable: that is,

the time step used must be smaller than the critical
step size Dtcr. Usually, in shell analyses, the critical
time step size is of the order of a microsecond.

Therefore, millions of time steps must be carried out
to obtain a physically correct solution. The compu-
tational time for such a solution is very high, and ways
to reduce the required number of time steps have been

sought. In one approach, the speed of the event is
increased, resulting in a smaller number of time steps
required for solution. In another, somewhat equivalent

approach, the density of the material is arti®cially
increased, resulting in a larger critical time step size,
and hence also into a smaller number of required sol-

ution steps. Some success with these approaches has
been reported in metal-forming analysis, largely
because the structures analysed are highly constrained
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by displacement boundary conditions. However, in a
crush analysis, the crushing device is typically applied

to a structure largely free from displacement con-
straints, and then these approaches result in arti®cial
inertia forces that can have a signi®cant e�ect on the

structural response and the crushing force. Of course,
the magnitudes of the arti®cial inertia forces can be
measured, which will give an indication of the error in

the solution. However, for this error to be acceptably
small, in essence the actual physical conditions must be
used. For an example analysis in which these solution

di�erences have been studied in detail, see Ref. [2].
Of course, if the explicit solution is carried out at

the physical conditions of the problem (that is, with-
out, for example, arti®cially increasing the speed of

crushing or the material density), it is also necessary to
use solution algorithms that are stable and accurate
during the time integration [1]. Since the conditions

then correspond to a static analysis, the shell elements,
contact algorithms and other procedures used in the
explicit dynamic solution must be applicable to these

analysis conditions (which is not necessarily the case
when a crash analysis program is employed, see
Section 4.2).

Considering an implicit dynamic crush analysis,
which reduces to an incremental static analysis if the
time steps are large, the following equations are solved
in a Newton±Raphson iteration for a typical time

t+Dt considered [1]

M t�Dt ÈU � t�Dt Rÿ t�DtF �4�

where the matrices and vectors are as de®ned below
Eq. (3), but a consistent mass matrix is usually used

because more accurate results can then be expected.
The Newton±Raphson iteration to solve Eq. (4) is, for
i=1, 2, . . . , until convergence measures are satis®ed,

M t�Dt ÈU
�i � � t�DtK�iÿ1�DU�i � � t�Dt Rÿ t�DtF�iÿ1� �5�

where

t�DtU�i � � t�Dt U�iÿ1� � DU�i � �6�

and the `initial conditions' correspond to the state cal-

culated for time t

t�DtU�0� � t U, t�DtF�0� � t F, t�DtK�0� � t K �7�

In Eq. (5), K is the tangent sti�ness matrix and the
iteration counter is given by the superscript (i ). Eqs.

(4) and (5) are used with a time integration scheme
(typically the trapezoidal rule is used), and the iter-
ation is continued until convergence to a speci®ed tol-

erance is reached. Note that in Eqs. (4) and (5), the
contact conditions are not explicitly indicated. If a
penalty-type procedure is used, the sti�ness matrix K

and force vector F are appropriately modi®ed, whereas
if a Lagrange multiplier technique is employed, ad-

ditional (tangent matrix) equations are assembled and
solved [1].
Considering the implicit solution approach, the

major computational di�erences to the explicit
dynamic solution lie in that tangent sti�ness matrices
are established, equilibrium iterations are performed

and, of course, much larger incremental load (or time)
steps are used. Typically, for a crush analysis, about
100±200 steps are only required. In addition, it is im-

portant to note that there is also signi®cantly more
physical insight that can be gained in the analysis.
Namely, if an incremental static analysis is carried out,
the solution indicates bifurcation points that in an

explicit dynamic solution are not detected, because no
sti�ness matrix is calculated and the arti®cial inertia
e�ects mask these physical instabilities. It can be im-

portant that such bifurcation points are detected
because they indicate that additional equilibrium
paths, beyond those calculated are actually possible. In

general, one of these additional equilibrium paths, and
not the path calculated, may actually be observed in a
physical experiment or in the ®eld.

3. On ®nite element procedures for crush analysis

As pointed out in the previous section, the ®nite el-
ement procedures must be particularly robust and

e�ective for a crush analysis. The objective in this sec-
tion is to give some thoughts to the techniques that are
considered suitable for crush solutions.

3.1. Shell elements

An important ingredient of a ®nite element model
for crush analysis is the shell element employed. Any

elements used must ful®ll the reliability and e�ective-
ness criteria enumerated by the authors for some time
[1±4]: the elements must not contain any spurious zero

energy modes, must not be based on arti®cial numeri-
cal factors, must not lock in membrane and shear
actions, should be applicable to general shell geome-
tries, and ideally should display, independent of the

shell geometry, the optimal convergence rate consistent
with the interpolations used. The MITC shell elements
seem to represent the state-of-the-art according to

these criteria as evidenced in references [5] and [6]. In
particular, the element formulations are not based on
any numerical factors (as are used in stabilized ®nite

element formulations) and show good convergence
behavior for membrane and bending dominated pro-
blems.
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The general applicability, reliability and e�ectiveness
referred to above are di�cult to achieve, but much

progress has been made through physical intuition,
mathematical analysis and well-chosen numerical ex-
periments. The mathematical model underlying the

general shell elements used in practice (which are
based on three-dimensional continuum mechanics the-
ory degenerated to shell behavior), and the consider-

ations for stability, convergence and optimality of shell
elements for general applications are discussed in Refs.
[4±7].

A crucial part of the evaluation of shell elements is
to solve judiciously chosen problems in a study of the
convergence behavior. Such problem solutions are pre-
sented in Ref. [5], where it is shown that the MITC

shell elements perform well for the spectrum of types
of practical analyses encountered.

3.2. Large deformations and plasticity

The classical total and updated Lagrangian formu-
lations are e�ective for the solution of very large defor-
mations of solids and structures [1]. These

formulations have the advantage that they are total
and not rate-type formulations, which means that no
integration process is required in the kinematic updat-

ing process. The formulations are also e�ciently
employed with a fully implicit scheme to calculate the
plasticity variables, and the e�ective-stress-function

(ESF) algorithm to solve for the stresses is used [1,8±
11]. The Lagrangian formulations with the elasto-plas-
ticity ESF solution technique admit relatively large

incremental steps and consistent tangent matrices can
be evaluated [1].
The details of the MITC shell element formulation

for large deformation analysis are given in Ref. [1]. A

key ingredient in the formulation is that nodal point
director vectors are used whose positions and direc-
tions are updated in each incremental solution step.

This procedure allows for very large displacements and
rotations, in elastic and elasto-plastic conditions.
Of particular signi®cance is that elements with spur-

ious zero energy modes (for example, due to reduced
integration) should not be used in practice. An
example solution, in which due to reduced integration,
element zero energy modes result in nonzero ghost fre-

quencies of the complete structure is presented in Ref.
[1], p. 473.
In elasto-plastic analysis, there is a tendency to use

simple reduced integration to relieve the locking
phenomenon due to the incompressibility constraint
(and the locking phenomena due to arti®cial mem-

brane and shear stresses). Such reduced-integrated el-
ements should be employed with great care because of
the unphysical solutions that can be generated.

3.3. Contact algorithm

In crush analysis, contact conditions are an import-
ant phenomenon to be solved for. Let g be the gap
between two contacting media (for example, two thin

shells) and l be the magnitude of the normal com-
ponent of the contact traction (compression being
positive). Then the conditions for normal contact are:

gr0; lr0; gl � 0 �8�

where the last equation expresses the fact that the gap
must be zero when l is greater than zero, and vice

versa.
Let t be the magnitude of the tangential component

of the contact traction and uÇ be the magnitude of the

relative tangential velocity between the contacting
media at the point considered; then, using Coulomb's
law of friction, with m the friction coe�cient, the tan-

gential conditions during contact are (with l>0)���� t

ml

����R1;

���� tml
����<1 implies _u � 0

���� tml
���� � 1 implies _u can be 6� 0 �9�

The solution of solids in contact conditions therefore
entails the usual equations of analysis of the media
plus the satisfaction of Eqs. (8) and (9).

Developed, in ADINA, is the constraint function al-
gorithm [1,12,13], which can be used to solve very
complex contact conditions, including two-sided con-

tact, contact of a surface onto itself, and contact with
thickness o�set as employed in thin shell analyses. The
solution algorithm has been developed for static analy-
sis and dynamic solutions. A key ingredient is that con-

tinuous and di�erentiable (constraint) functions for any
values of g, l, _u and t/ml are used to enforce the con-
ditions of Eqs. (8) and (9). In the implementation, a

Lagrange multiplier method to impose the constraint
functions is employed but, of course, a penalty method
could be used as well [1]. Because of the continuity of

the functions, derivatives can be taken to obtain a
Jacobian that is incorporated into the tangent sti�ness
matrix. However, full quadratic convergence is fre-
quently not obtained, because the models of the con-

tact surfaces are not su�ciently smooth.

3.4. Solution of equations

The solution of a crush problem using implicit
dynamic or static analysis procedures is achieved by

solving Eq. (4) at the selected load levels (of course, in
the case of a static analysis, neglecting the inertia
forces in Eq. (4)). However, if the incremental load
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level is too large, di�culties in the convergence of Eq.
(5) are encountered. In this case, a solution strategy

must be employed that appropriately reduces and then
again increases the incremental load level [1,8]. In the
ADINA program, a load-displacement-constraint

(LDC) procedure and an automatic-time-stepping
(ATS) scheme can be used. These procedures have
been employed abundantly for large deformation ana-

lyses.
In each case, using the LDC method or the ATS

procedure, algebraic equations of the form given in

Eq. (5) must be solved. Until a few years ago, these
equations were most e�ciently solved using skyline or
wave front techniques. However, during the recent
years, sparse solution techniques have been developed

[1,14] that are much more e�cientÐfrequently, they
are an order of magnitude faster than the earlier
employed skyline solution methods. It is clearly im-

perative that a sparse solver be used in a crush analy-
sis. The ADINA sparse solver can be employed as an
in-core or out-of-core solver, and in parallel-

processing. The solution of the algebraic equations is
achieved in the following steps: the reordering of the
equations using graph theory, the symbolic factoriz-

ation, the numerical factorization, and the vector for-
ward reduction and back substitution. Table 1 gives
some solution times obtained with the ADINA sparse
solver.

4. Illustrative solutions

While all the developments described above have im-
portance in their own right, an e�ective solution to an

actual crush problem can only be achieved, if these
techniques are implemented together in an overall

e�ective solution program. Our objective in this section
is to illustrate the use of the solution schemes in the

ADINA program. Firstly, the solutions to two rather
simple illustrative crush problems are presented, merely
to show some of the features that need be available in

general applications. Secondly, the analyses of two
motor car models are presented, for which the crush
analysis procedures mentioned above are used to

obtain e�ective solutions.

4.1. Crush analyses of cylinder and box

To demonstrate the ADINA solution capabilities in
the analysis of some relatively simple problems, the
cylinder and the box problems shown in Figs. 1 and 2

are considered. The analyses of these structures
correspond to crush solutions, since the time scale of
applying the displacements (d ) is longÐ1 second. and

1.45 second. in the case of the cylinder and the box,
respectively.
Figs. 3 and 4 show the calculated responses of the

structures. For the cylinder, an axisymmetric model
was solved of 92 9-noded displacement/pressure (9/3)
elements. No initial imperfection was imposed, and a

total of 200 implicit dynamic analysis steps were used
to calculate the response. The shown deformations
developed `naturally' in the step-by-step solution pro-
cess. The force-de¯ection diagram is interesting in that

the force drops every time a new wrinkle develops.
For the closed square box, a three-dimensional

model representing one quarter of the box was solved.

The 27-noded displacement/pressure (27/4) element
was employed. No initial imperfections were imposed
and a total of 145 static analysis steps were used for

the solution. Fig. 4 shows the mesh and calculated de-
formations, and also the calculated force-de¯ection

Table 1

Sparse solver solution time records

Number of equations: 571,966

In-core solution

MITC4 shell elements and self-contact used

Computer: SGI O2000

1 processor 2 processors 4 processors

338 s 228 s 165 s

Number of equations: 745,497

Out-of-core solution

10-node tetrahedral elements used

Computer: HP V-Class

1 processor 2 processors 4 processors

2336 s 1769 s 1472 s
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Fig. 1. Cylinder considered (not drawn to scale). Crush and crash axisymmetric analyses. d is applied linearly as a function of time.

Fig. 2. Box considered (not drawn to scale). Crush and crash analyses. d is applied linearly as a function of time.

K.J. Bathe et al. / Computers and Structures 72 (1999) 31±4736



Fig. 3. Crush response of cylinder. (a) Deformations (showing development of wrinkles) (b) Crushing force-displacement relation-

ship. (c) E�ective plastic strain in crushed position at d=1.9 in.
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Fig. 3 (continued)
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graph. In this case, the wrinkles do not get into con-
tact, except in the corner of the box model, and hence
the force is almost constant after the initial maximum

value.
In each case, for the cylinder and the box, large

strains are measured in the response solution, see Fig.
3(c). The contact conditions were modeled by specify-
ing contact surfaces at the outer and inner surfaces of

the structures and specifying that self-contact is
allowed.

The two structures were also next analysed for their
crash behaviors by imposing the end displacements (d )
to take place within 1 and 5 ms, respectively. The
same ®nite element models were used and implicit time
integration (the trapezoidal rule) was employed for the

transient solutions. Figs. 5 and 6 show the calculated
results. It is seen that in these dynamic analyses, the

wrinkling takes place di�erently due to the signi®cant
inertia forces, and of course, the calculated time vari-
ations of end-forces are di�erent when compared with

the results given in Figs. 3 and 4. However, it is
interesting to note that the maximum forces reached
are almost the same in the static and dynamic
analyses.

Considering all the analyses reported upon above, it
was noted that while the overall response calculated in
an analysis was not very sensitive to the mesh

employed, the actual response path (for example, the
manner in which the wrinkles developed) was some-
what sensitive to the ®nite element discretization used.

4.2. Crush analysis of small motor car model

The motor car ®nite element model shown in Fig. 7

Fig. 4. Crush response of box. (a) Original mesh and deformations. (b) Crushing force-time relationship.
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was analysed for its crush response. In the analysis, a

heavy steel plate, assumed to be rigid, is applied to the

front left corner of the car frame. The speed of crush-

ing is 10 mm/s (which is about 0.022 mph). These con-

ditions clearly correspond to a static analysis.

The ADINA ®nite element model was created from

a Nastran input deck from which 4-node MITC4 shell

elements were created to model the car structure and

the windshield. Spring elements are employed to model

connections between the doors and the windshield and

frame, respectively.

Fig. 7 shows the calculated crushing load using

ADINA as a function of the plate displacement. The

same model was analysed as well using the LS-DYNA

code (an explicit ®nite element program) and the calcu-

lated response is also shown in the ®gure. Considering

the LS-DYNA solution results, as expected, the calcu-

lated crushing load depends on the speed of load appli-

cation. Clearly, for a speed of 10 mph the crushing

load is much too high. This would be indicated by the

kinetic energy being too large in comparison to the

strain energy of the ®nite element system. For a speed

of 0.05 mph, which is deemed to be su�ciently close to

the actual physical speed, however, the calculated re-

sponse appears to be numerically unstable. Reasonable

results are obtained using a speed of 0.5 mph, which is

about 23 times larger than the actual physical speed of

load application. Hence, with su�cient experience in

the use of the program capabilities of an explicit code,

acceptable results can probably be obtained. However,

to reach these results some numerical experimentation

may be necessary, which can be costly. Also, for the

dynamic e�ects to be negligible, still many time steps

need to be used (of the order of 100,000 instead of the

order of one million for the actual physical speed of

load application).

Fig. 4 (continued)
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Fig. 5. Crash response of cylinder. (a) Deformations. (b) Crashing force-displacement relationship. (c) E�ective plastic strain in

crashed position at d=1.9 in.
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Fig. 5 (continued)
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For the ADINA solution 160 load steps were used
and the complete analysis took about 8 h on a Silicon
Graphics O2000 machine.
Unfortunately, for this analysis no physical test data

are available for comparison.

4.3. Crush analysis of Ford Taurus model

The Ford Taurus shell model shown in Fig. 8 was
also analysed for its crush response. The same physical

conditions as in the above car crush analysis were
imposed.
The model consists of 98,494 MITC4 shell elements,

and is governed by 580,183 ®nite element equations.
The ADINA solution shown in Fig. 8 was obtained
using a total of 120 static incremental steps with a

total run-time of about 48 h on a Hewlett Packard V-
Class machine.
As is seen, the calculated response is quite close to

the laboratory test data. It should be noted that only

one model was created, without any tuning, and that
model was run to obtain the results reported in Fig. 8.

5. Concluding remarks

The objective was to present some advances for the
crush analysis of structures. Crushing a structure is a
low-speed, practically static event. However, because

of the solution di�culties with static analysis pro-
grams, so far, largely transient analysis procedures
based on explicit time integration have been used for

Fig. 6. Crash response of box. (a) Deformations. (b) Crashing force-time relationship.
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crush simulations. These analyses are computationally

very expensive, unless severe arti®cial modeling

assumptions regarding the speed of crushing, mass

density of the materials, or other analysis ingredients

are made. In addition, the transient analysis pro-

cedures may become numerically unstable at the cor-

rect physical conditions. Hence, arti®cial conditions

are frequently used with numerical experimentation to

`assure' a proper response prediction.

It is shown in this paper that, at the current state-of-

the-art, solution capabilities are available with which

the correct physical conditions can be modeled and the

static or low-speed dynamic solutions can be obtained

in an e�ective manner. Indeed, the solution times used

in the static analyses appear to be less than in the

explicit dynamic response calculations. Hence, there is

good reason to perform crush analyses in the manner

demonstrated in this paper. Of course, continued

e�orts will be made to strive for further improvements

in the static and implicit dynamic analysis capabilities,

such as provided by increasing the e�ciency of the

contact algorithm, using possibly higher-order MITC

shell elements, and through more e�ective parallel pro-

cessing. These improvements with the continuous

advances in computer hardware will render the sol-

ution of crush problems in the way demonstrated in

the paper even more attractive.

Fig. 6 (continued)
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Fig. 7. Crush response of small motor car model. (Top) Deformations. (Bottom) Crushing force-displacement relationships.
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Fig. 8. Crush response of Ford Taurus car model. (Top) Mesh used (also rigid steel plate is shown). (Bottom) Deformations.

(Overleaf ) Crushing force-displacement relationship: calculated values and test data.
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