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In this paper, we present a novel procedure to improve the stress predictions in static, dynamic and non-
linear analyses of solids. We focus on the use of low-order displacement-based finite elements – 3-node
and 4-node elements in two-dimensional (2D) solutions, and 4-node and 8-node elements in 3D solu-
tions – because these elements are computationally efficient provided good stress convergence is
obtained. We give a variational basis of the new procedure and compare the scheme, and its performance,
with other effective previously proposed stress improvement techniques. We observe that the stresses of
the new procedure converge quadratically in 1D and 2D solutions, i.e. with the same order as the dis-
placements, and conclude that the new procedure shows much promise for the analysis of solids, struc-
tures and multiphysics problems, to calculate improved stress predictions and to establish error
measures.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

During the last decades, many different stress improvement
procedures have been explored [1–27]. The aim is to reach en-
hanced stress predictions, as part of the solution of the mathemat-
ical models, and to establish solution error estimates [3,4]. If an
effective scheme to enhance the stress predictions were available,
the finite element method could be used with coarser meshes,
reducing the expense of analysis. Furthermore, an effective scheme
to assess the error would be valuable to assure an adequate solu-
tion. Early procedures were based either on stress smoothing
[5,6] or L2 projection techniques [7]; however, these approaches
are not particularly effective and they have hardly been used in
practice.

Considering inexpensive solution error indicators, the stress
band plots proposed by Sussman and Bathe [1,8–10] have been
used extensively, both for linear and nonlinear analyses, but of
course these only give an indication of the solution accuracy – they
do not improve the stress predictions.

The calculation of improved stress predictions is particularly
important if low-order elements are to be used. For example, con-
sidering three-dimensional (3D) solutions, the use of 4-node con-
stant strain tetrahedral elements would frequently be
computationally efficient if the stresses could be predicted to a
higher accuracy than given directly by the displacements. That is,
the constant stress assumption, implied by the assumed linear dis-
placements, is not good in many analyses.
ll rights reserved.
A widely-recognised contribution towards a stress improve-
ment procedure was published by Zienkiewicz and Zhu, when they
proposed the ‘superconvergent patch recovery’ method [11]. This
technique is based on the existence of superconvergent points, also
referred to as Barlow points [12], where the stresses are of one or-
der higher accuracy than at any other point in the element domain.
Appropriate order polynomials approximating the stresses are
smoothly fitted through these points, sometimes in a least squares
sense. Later, variants of the original method were developed to fur-
ther enhance its performance [13–15].

Although the superconvergent patch recovery methods seemed
to work relatively well for certain elements, superconvergent
points do not always exist – e.g. in triangular elements, distorted
isoparametric elements and in elements with varying material
properties (hence nonlinear analyses) – see the discussion by Hiller
and Bathe [16]. Three widely used procedures that do not require
the knowledge of superconvergent points are the ‘posterior equi-
librium method’ (PEM), the ‘recovery by equilibrium in patches’
(REP) method, and the ‘recovery by compatibility in patches’
(RCP) method.

The PEM was proposed by Stein and Ohnimus [17] and is based
on the work published earlier by Stein and Ahmad [18,19]. This
method uses the principle of virtual work to calculate improved
interelement tractions for the purposes of local error estimation
[17,20]. The REP method was proposed by Boroomand and Zie-
nkiewicz [21,22]. This method uses the principle of virtual work
to calculate improved stresses within the finite element domain.
The RCP method was proposed by Ubertini [23] and further devel-
oped by Benedetti et al. [24]. This method uses the principle of
minimum complementary energy to calculate improved stresses
that satisfy point-wise equilibrium. Later, Castellazzi et al.
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Fig. 1. General 3D body of volume V and surface area S, where Su [ Sf = S and
Su \ Sf = 0.
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established a solution error estimate based on the RCP method to
guide adaptive meshing [25].

All three stress calculation procedures yield impressive results
that exceed the performance of the superconvergent patch recov-
ery method. However, to ensure a well-posed problem for the solu-
tion of the unknown stress coefficients, several assumptions are
employed, and these assumptions limit the accuracy of the results.
Specifically, the PEM assumes that the improved interelement trac-
tions are approximately equal (by a difference minimization) to the
tractions directly-calculated from the displacement solution [17];
the REP method uses element nodal point forces that correspond
to individual stress components [22]; and the RCP method imposes
differential equilibrium for all points in the element [24], a con-
straint which is too severe, as a result the RCP solution is not reli-
able for all classes of problems.

Recently, we proposed the NPF-based method [26,27]. This pro-
cedure also employs the principle of virtual work, but without the
assumptions used in the earlier methods. While the numerical re-
sults in Refs. [26,27] are encouraging, the method still requires to
consider specific element stress domains and some stress averag-
ing. We concluded, see Refs. [26,27], that a variational basis was
necessary to obtain further insight and possibly improve the
schemes.

For various problems in engineering and the sciences – like in
the analysis of (almost) incompressible media, thin structures,
and multiphysics phenomena – optimal finite element discretisa-
tions can only be obtained if mixed variational formulations are
used [1,28–34]. Indeed, in Ref. [35], Mota and Abel show that the
stress smoothing, L2 projection and superconvergent patch recov-
ery techniques are based on the use of the Hu-Washizu principle.

Our objective in this paper is to show that the PEM and the REP,
RCP, and NPF-based methods are also all based, with certain
assumptions, on the Hu-Washizu variational principle, and then
present a novel and significantly improved procedure for stress
predictions. Throughout we focus on the use of low-order displace-
ment-based finite element discretisations of solids, that is, 2-node
elements in 1D solutions, 3-node triangular and 4-node quadrilat-
eral elements in 2D solutions, and 4-node tetrahedral and 8-node
brick elements in 3D solutions. These elements are computation-
ally efficient provided good stress convergence is obtained.

We analyse the new stress prediction procedure in detail for 1D
problems using 2-node elements with arbitrary loading and
material properties (but constant cross-sectional area), and prove
that the procedure is reliable, giving stresses that are, in fact,
optimal stress predictions (in the norm used), with the order of
convergence being quadratic, i.e. the same order as for the
displacements. This order of stress convergence is also seen
numerically in 1D and 2D solutions. In a study, we compare the
performance of the new method with the other above-mentioned
procedures (that is, with the best stress improvement procedures
currently available). It is important to note that we consider static,
dynamic and nonlinear solutions. Throughout the paper we use the
notation of Ref. [1].

2. Fundamental equations

Consider the equilibrium of a body of volume V and surface area
S, subjected to externally applied surface tractions f S on the area Sf

and body forces f B; see Fig. 1. The body is supported on the area Su

with prescribed displacements u p, and, for now, linear analysis
conditions are assumed. We seek to calculate the unknown dis-
placements, strains and stresses.

In the differential formulation of the problem, the unknown re-
sponse is calculated by solving the governing differential equations
of equilibrium and compatibility, with the constitutive relation-
ships, subject to the applied boundary conditions. That is, we solve
div ½sex� þ f B ¼ 0

eex ¼ @euex

sex ¼ C eex

subject to

uex ¼ up on Su

f S ¼ sexn on Sf

where uex, eex and sex are the exact displacements, strains and stres-
ses, respectively, @e is the differential operator on uex to obtain the
strain components eex, C is the stress–strain matrix, and n is the unit
outward normal vector on the surface Sf.

A second (but entirely equivalent) approach to the solution of
the problem is given by minimising the total potential energy P(u),

PðuÞ ¼
Z

V

1
2
eTs dV �

Z
Sf

uT f S dS�
Z

V
uT f B dV ð1Þ

with the constraints

e ¼ @eu

s ¼ C e

u ¼ up on Su

ð2Þ

where u is any displacement field satisfying the boundary condition
on Su, and e and s are the strains and stresses corresponding to u.

For approximate solutions, a larger class of trial functions can be
employed when we operate on the total potential energy rather
than on the differential formulation of the problem; see Refs.
[1,10]. This has important consequences and much of the success
of the finite element method hinges on this fact.

3. Finite element methods for stress predictions

In this section, we first review the displacement-based finite
element method, then we present a mixed formulation based on
the Hu-Washizu principle. Thereafter, we specialise this mixed for-
mulation to arrive at the basic equations of the PEM and the REP,
RCP, and NPF-based methods. Finally, we use this mixed formula-
tion – and its properties – to present our new stress prediction
scheme.

3.1. Displacement-based finite element method

In the displacement-based finite element method, we assume a
displacement pattern within each element m, that is, uðmÞ ¼ HðmÞ bU ,
where H(m) is the displacement interpolation matrix and bU lists the
nodal point displacements of the assemblage (including those at
the supports).

With this assumption, the strains e(m) and stresses sðmÞh of ele-
ment m follow directly from Eq. (2),
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eðmÞ ¼ @euðmÞ ¼ BðmÞ bU ð3Þ
sðmÞh ¼ CðmÞeðmÞ ¼ CðmÞBðmÞ bU ð4Þ

Then, minimising P of Eq. (1) yields

XN

m¼1

Z
V ðmÞ

BðmÞT CðmÞBðmÞ dV
� �" #bU

¼
XN

m¼1

Z
SðmÞ

f

HðmÞT f S dSþ
Z

V ðmÞ
HðmÞT f B dV

 !( )
ð5Þ

where B(m), C(m), V(m), and SðmÞf are the strain–displacement matrix,
the stress–strain matrix, the volume, and the surface area with
externally applied tractions of element m, respectively. We sum
over all N elements in the mesh and use Eq. (5) to obtain bU; see
for example Ref. [1]. Finally, sðmÞh is calculated using Eq. (4).

In the following, we focus on the use of low-order finite element
discretisations (the 2-node element in 1D solutions, the 3-node
and 4-node elements in 2D solutions, etc.). It is well known that
the accuracy of sðmÞh is then poor, as compared with the accuracy
of the calculated displacements, and this deficiency can be seen
using stress band plots of unsmoothed stresses [1,8–10]. We refer
to these stresses as the ‘‘directly-calculated finite element
stresses’’.

3.2. Mixed formulation

To arrive at accurate stress predictions, a mixed interpolation
approach – which can be thought of as a special use of the Hu-
Washizu principle – can be more effective. In this formulation,
rather than applying the stress–strain relationship point-wise, we
relax this relationship and apply it over the element volumes using
Lagrange multipliers. The primary solution variables are then the
unknown displacements, Lagrange multipliers and stresses. Hence,
the equivalent of the minimisation of P in Eq. (1) is

P�ðuðmÞ;kðmÞ;sðmÞÞ ¼
XN

m¼1

Z
VðmÞ

1
2
eðmÞTsðmÞ dV�

Z
SðmÞ

f

uðmÞT f S dS

 

�
Z

VðmÞ
uðmÞT f B dV�

Z
V ðmÞ

kðmÞTfsðmÞ �CðmÞeðmÞg dV
�

¼ stationary ð6Þ

with the constraints

eðmÞ ¼ @euðmÞ

uðmÞ ¼ up on Su
ð7Þ

As in the displacement-based finite element method, the dis-
placements u(m) of element m are defined by nodal point variables
that pertain to adjacent elements in the assemblage, uðmÞ ¼ HðmÞ bU ,
and the strains e(m) follow directly from Eq. (7), eðmÞ ¼ BðmÞ bU . How-
ever, the Lagrange multipliers k(m) and the stresses s(m) of element
m are defined by internal degrees of freedom that pertain only to
the specific element m considered.

In order to furnish improved stress predictions, we must as-
sume a richer space for s(m) than that implicitly assumed for sðmÞh .
Also, we want to enhance the fulfilment of equilibrium. Hence,
we now assume

dimðsðmÞÞP dimðkðmÞÞP dimðeðmÞÞ ð8Þ

andZ
V ðmÞ

dfðmÞT div sðmÞ
� �

þ f B
n o

dV ¼ 0 ð9Þ

where dim (.) denotes the dimension of the space of the variable
considered, d denotes, as usual, ‘‘variation of’’, f(m) is an element
of a space discussed below (the space depends on the method used),
and the square parentheses indicate that the stress vector has been
arranged into matrix form.

With this assumption, invoking the stationarity of P⁄ with re-

spect to u(m), k(m) and s(m) yields
XN

m¼1

Z
V ðmÞ

deðmÞT
1
2
sðmÞ þ CðmÞkðmÞ

� �
dV

�

�
Z

SðmÞ
f

duðmÞT f S dS�
Z

V ðmÞ
duðmÞT f B dV

!
¼ 0 ð10ÞZ

V ðmÞ
dkðmÞ TfsðmÞ � CðmÞeðmÞg dV ¼ 0 8 m ð11Þ

kðmÞ ¼ 1
2
eðmÞ 8 m ð12Þ

Since Eq. (11) holds for all variations of k(m), including when
dkðmÞ ¼ 1

2 deðmÞ, Eq. (10) contains as a special case

XN

m¼1

 Z
VðmÞ

deðmÞT
1
2

CðmÞeðmÞ þ CðmÞkðmÞ
� �

dV

�
Z

SðmÞ
f

duðmÞT f S dS�
Z

V ðmÞ
duðmÞT f B dV

!
¼ 0

Then, using the solution kðmÞ ¼ 1
2 e
ðmÞ from Eq. (12) we obtain

XN

m¼1

Z
VðmÞ

deðmÞT CðmÞeðmÞ dV�
Z

SðmÞ
f

duðmÞT f S dS�
Z

VðmÞ
duðmÞT f B dV

 !
¼0

ð13Þ

Of course, when inserting the element interpolations, Eq. (13)
gives Eq. (5). Here Eq. (13) (and hence Eq. (5)) would give – at this
stage – a specific solution of the stresses in the stress space of s(m),
namely sðmÞh . However, to complete the calculation of the improved
stresses we also use Eqs. (9) and (11).

An important practical feature of this ‘mixed formulation’ is
that the displacement problem in Eq. (13) is decoupled from the
additional calculations of the stresses. Therefore, in a general anal-

ysis, we first solve for u(m) as is standard, and then – rather than

applying the stress–strain relationship – we obtain s(m) from u(m)

by applying Eqs. (9) and (11) to each element m in the assemblage.
This element-based approach works well in 1D solutions; how-

ever, in 2D and 3D solutions, better results are obtained when the
stresses are defined over a predetermined patch of NP elements

known as the stress calculation domain. In this case, s(m) is ob-

tained from u(m) by applying Eqs. (9) and (11) either to each ele-
ment m in the stress calculation domain, or to the entire stress
calculation domain,
XNP

m¼1

Z
V ðmÞ

dkðmÞTfsðmÞ � CðmÞeðmÞgdV
� �

¼ 0 ð14Þ

XNP

m¼1

Z
V ðmÞ

dfðmÞTfdiv ½sðmÞ� þ f BgdV
� �

¼ 0 ð15Þ

Since s(m) is obtained from u(m), the accuracy of s(m) is limited by
that of u(m); hence, the highest order of convergence of the stresses
that we can expect is O(h2) in the H0 norm (that is, in the L2 norm) –
one order higher than that observed for sðmÞh .

The key question for the formulation is now: What interpola-

tions should be used for k(m) and f(m) to ensure a well-posed prob-
lem with stresses that converge at order O(h2)? Indeed, the choice
of interpolation determines the number of equations available and
the accuracy of the results. Examples are given below.
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3.3. The PEM and the REP method

In the PEM and the REP method, k(m) is interpolated in the same
way as the strains e(m) and f(m) is interpolated in the same way as
the displacements u(m). With this assumption, we obtain from Eqs.
(14) and (15)

XNP

m¼1

Z
V ðmÞ

deðmÞTsðmÞdV
� �

¼
XNP

m¼1

dbUT
FðmÞ

� 	
ð16Þ

XNP

m¼1

Z
V ðmÞ

duðmÞT div ½sðmÞ� þ f B
n o

dV
� �

¼ 0 ð17Þ

where dbU are the virtual nodal point displacements that correspond
to de(m) and F(m) are the element nodal point forces, in fact already
used in Eq. (5),

FðmÞ ¼
Z

V ðmÞ
BðmÞTsðmÞh dV ¼

Z
V ðmÞ

BðmÞT CðmÞBðmÞdV

 �bU ð18Þ

Using the mathematical identity du(m)Tdiv[s(m)] = div(du(m)T

[s(m)]) � de(m)T s(m), the Gauss divergence theorem and Eq. (16),
we can write Eq. (17) as

XNP

m¼1

Z
SðmÞ

f

duðmÞT ½sðmÞ�nðmÞdSþ
Z

VðmÞ
duðmÞT f BdV

 !
¼
XNP

m¼1

dbUT
FðmÞ

� 	
ð19Þ

where n(m) is the unit normal to the boundary surface SðmÞf of ele-
ment m.

Eq. (19) is the basic equation of the PEM and Eq. (16) is the basic
equation of the REP method. That is, for any virtual displacement
pattern contained in the interpolation functions, the PEM balances
the virtual work of the boundary tractions (adjusted for body force
effects) with the virtual work of the nodal point forces, whereas the
REP method balances the internal virtual work of the stresses with
the virtual work of the nodal point forces.

Since each method uses only one principle of virtual work state-
ment (of the two possible statements given by the mixed formula-
tion), the governing matrices corresponding to the basic equations
of the PEM and the REP method may be singular; hence, several
assumptions are employed to add extra constraints (and these
assumptions limit the accuracy of the results) – see Refs. [17,22].

3.4. The RCP method

Let Vs be the assumed stress space for s(m), and let �Vs be the
subspace of the self-equilibrated stresses in Vs. Then, let �sðmÞ be
any element in that subspace

�Vs ¼ �sðmÞj �sðmÞ 2 Vs; div �sðmÞ
� �

¼ 0
� 


ð20Þ

In the RCP method, k(m) is interpolated in the same way as
CðmÞ�1�sðmÞ and f(m) is any element in L2(Vp), where L2(Vp) is the space
of square integrable functions in the volume, Vp, of the stress calcu-
lation domain. With this assumption, we obtain from Eqs. (14) and
(15)

XNP

m¼1

Z
V ðmÞ

d�sðmÞT CðmÞ�1sðmÞ � eðmÞ
� 


dV
� �

¼ 0 ð21Þ

div ½sðmÞ� þ f B ¼ 0 ð22Þ

Eqs. (21) and (22) are basic equations of the RCP method. To sat-

isfy Eq. (22), an a priori particular solution sðmÞp:s: to the differential

equations of equilibrium is embedded in s(m) [23,24]. However,

establishing sðmÞp:s: for distorted isoparametric elements in dynamic
analysis is difficult and is an outstanding issue to be solved. More-
over, the differential equilibrium constraint in Eq. (22) is too se-
vere, as a result the RCP solution is not reliable for all classes of
problems; see section 5.

Considering nonlinear analysis, a complication with the RCP
method is that the basic equations involve the use of the constitu-
tive relationships; hence, in problems with path-dependent non-
linear material conditions, an incremental solution procedure
may have to be used to solve for the unknown stress coefficients
in Eq. (21).

3.5. The NPF-based method

In the NPF-based method, k(m) is interpolated in the same way
as the strains e(m) and f(m) is interpolated in the same way as the
displacements u(m). With this assumption we obtain from Eq.
(11) and Eq. (9)Z

V ðmÞ
deðmÞTsðmÞdV ¼ dbUT

FðmÞ ð23ÞZ
V ðmÞ

duðmÞTfdiv½sðmÞ� þ f BgdV ¼ 0 ð24Þ

where F(m) is defined in Eq. (18) and, using similar steps as those
used to obtain Eq. (19), we can write Eq. (24) asZ

SðmÞ
f

duðmÞT ½sðmÞ�nðmÞdSþ
Z

VðmÞ
duðmÞT f BdV ¼ dbUT

FðmÞ ð25Þ

Eqs. (23) and (25) are the basic equations of the NPF-based
method. In contrast to the PEM and the REP method, the NPF-based
method uses both principle of virtual work statements, Eqs. (23)
and (25), and applies them to each element m in the stress calcula-
tion domain. Consequently, the problem solution for the unknown
NPF-based stress coefficients is well-posed without the (limiting)
assumptions used in the earlier methods.

However, a drawback of the NPF-based method is that the num-
ber of equations available – and hence the dimension of the inter-
polation functions assumed in Vs – is dependent on the number
(and type) of elements in the stress calculation domain. Therefore,
to get close to O(h2) convergence for the stresses, a large stress do-
main is needed and a domain stress averaging procedure has been
employed; see Refs. [26,27].

3.6. The new stress improvement procedure

In this section, we present a novel and significantly improved
procedure for stress predictions. We first develop the method for
linear static and dynamic analysis and then we extend the method
to nonlinear solutions. Finally, we consider the computational cost
of the technique.

3.6.1. Linear static and dynamic analysis
The new stress improvement procedure assumes k(m) is interpo-

lated in the same way as the self-equilibrated stresses �sðmÞ and f(m)

is any element in P1(Vp), where Pk(Vp) is the space of complete
polynomials of degree k in the volume, Vp, of the stress calculation
domain. With this assumption, we obtain from Eqs. (14) and (15)

XNP

m¼1

Z
VðmÞ

d�sðmÞT sðmÞ � sðmÞh

n o
dV

� �
¼ 0 ð26Þ

XNP

m¼1

Z
VðmÞ

dfðmÞT div ½sðmÞ� þ f B
n o

dV
� �

¼ 0 ð27Þ

where the stresses s(m) are assumed to be continuous and quadrat-
ically interpolated across the stress calculation domain, s(m) 2 P2

(Vp), and the space of self-equilibrated stresses, �Vs, is given by
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Fig. 2. Checkerboard mode of constant element stress. Here + and � denote þDsðmÞij

and �DsðmÞij , where DsðmÞij is an arbitrary value; see Ref. [1].
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�Vs ¼ f�sðmÞj �sðmÞ 2 P2ðVpÞ; div ½�sðmÞ� ¼ 0g ð28Þ

Eqs. (26) and (27) are the basic equations used. The first equa-
tion, Eq. (26), expresses that the projection of the difference in the
enhanced and directly-calculated stresses onto �Vs shall be zero.
Hence, this condition in essence extracts from sðmÞh that part which
is of good quality. The second equation, Eq. (27), then enforces that
the difference in the divergence of the enhanced and the exact
stresses in the projection onto the space P1 is also zero.

To obtain the corresponding finite element equations, we intro-
duce the interpolations

sðmÞ ¼ Esŝ; �sðmÞ ¼ Es �̂s; fðmÞ ¼ Eff̂ ð29Þ

where the interpolation matrices Es, Es, and Ef are given in Eq. (35)
for 1D analysis, and in Eqs. (45)–(47), respectively, for 2D analysis.
Note that in these matrices locally based coordinate origins are used
to avoid ill-conditioning, and div½Es� ¼ 0, as is required by Eq. (28).

Substituting from Eq. (29) into Eqs. (26) and (27) we arrive at

XNP

m¼1

R
V ðmÞ ET

s EsdVR
V ðmÞ ET

f @sEsdV

 !" #
ŝ ¼

XNP

m¼1

R
VðmÞ ET

s sðmÞh dV
�
R

VðmÞ ET
f f BdV

 !( )
ð30Þ

where @s is the differential operator on s(m) to obtain the divergence
of the stress field (see Eqs. (36) and (48)), ŝ lists the unknown stress
coefficients to be found, and, in dynamic analysis, we must include
the d’Alembert inertia forces in f B; see section 5.5.

Since s(m) 2 P2(Vp), and �sðmÞ 2 �Vs, f(m) 2 P1(Vp), it follows that Eq.
(30) represents a determined system of equations in terms of ŝ –
irrespective of the number (and type) of elements used in the stress
calculation domain – such that a unique solution for ŝ always ex-
ists, even if only one element is used in the stress calculation
domain.

To summarise, the important attributes of the new method are:

1. The assumed stresses s(m) are interpolated with complete poly-
nomials of degree 2; hence, the order of convergence of s(m) is
expected to be O(h2).

2. The number of equations available is independent of the num-
ber (and type) of elements used in the stress calculation
domain.

3. The system of equations is always determined.
4. The equations do not involve the use of the constitutive rela-

tionships (other than in the calculation of sðmÞh ).
5. The stress calculations can be performed for the entire assem-

blage, or just in localised regions of concern.
6. The fulfilment of differential equilibrium is enhanced, and dif-

ferential equilibrium is fulfilled at every point in the element
if f B 2 P1.

7. The method does not use an a priori particular solution (like
used in the RCP method).

8. sðmÞh can also be established from a mixed formulation (such as
the u/p formulation, the incompatible modes formulation, etc.),
and the method can still be used to enhance the stress solution.

9. The enhanced stress solution will not be afflicted with a spuri-
ous checkerboard mode of constant element stresses.

Spurious checkerboard modes of constant element stresses can
be found in some displacement-stress solutions – see Fig. 2 and
Ref. [1]. To prove that the improved stresses s(m) are not afflicted
we use Eq. (26) to obtain

XNP

m¼1

Z
V ðmÞ

sðmÞdV
� �

¼
XNP

m¼1

Z
V ðmÞ

sðmÞh dV
� �

ð31Þ

and note that the directly-calculated stresses, sðmÞh , established in a
proper formulation (e.g. the displacement formulation), are not
afflicted.
Also, because the exact stresses satisfy the differential equa-
tions of equilibrium, we can write Eq. (27) as

XNP

m¼1

Z
V ðmÞ

dfðmÞT div½sðmÞ�dV
� �

¼
XNP

m¼1

Z
V ðmÞ

dfðmÞT div½sex�dV
� �

ð32Þ

such that

XNP

m¼1

Z
V ðmÞ

div ½sðmÞ�dV
� �

¼
XNP

m¼1

Z
V ðmÞ

div½sex�dV
� �

ð33Þ

Eqs. (32) and (33) are important since they relate the calculated
and exact stresses in the volume of the stress calculation domain.
Indeed, we shall use these relationships when we consider an error
bound on s(m).

Finally, we note that the PEM, and the REP and NPF-based
methods satisfy the condition on k(m) given in Eq. (8), irrespective
of NP. However, the RCP method and the new method only satisfy
this condition when NP = 1 (because these two methods assume
k(m) to be continuous across element boundaries whereas e(m) does
not show that continuity).

3.6.2. Nonlinear analysis
In nonlinear analyses, all theory presented is applicable, but of

course the current volumes and current Cauchy stresses must be
used; see Ref. [1]. That is, if t denotes ‘‘in the current configura-
tion’’, the stress coefficients t ŝ are obtained using

XNP

m¼1

R
t VðmÞ ET

s EsdVR
t VðmÞ ET

f @sEsdV

 !" #
tŝ ¼

XNP

m¼1

R
t V ðmÞ ET

s
tsðmÞh dV

�
R

t V ðmÞ ET
f

tf BdV

 !( )
ð34Þ

where tVm is the current volume of element m (obtained from the
displacement solution t bU), tsðmÞh lists the directly-calculated Cauchy
stresses at time t, and t bU is established using a step-by-step incre-
mental solution procedure [1].

Therefore, once t bU has been established, the enhanced stress
predictions are obtained using Eq. (34), as in linear analysis.

3.6.3. Computational expense
The computational expense to furnish improved stress predic-

tions is given by the numerical effort involved in solving for 18 un-
known stress coefficients in 2D solutions (and the 60 unknown
stress coefficients in 3D solutions) for each element m where stres-
ses are to be improved.

This expense is small, compared with factorising the global
stiffness matrix. Indeed, the expense to enhance the stresses for
the entire assemblage in a typical linear static analysis problem
(with 105 to 106 degrees of freedom) is probably only about 1%
of the total solution cost. In nonlinear analyses the expense is, rel-



(a)

(b)
Fig. 3. Ad-hoc test problem to assess the performance of the proposed scheme in
1D solutions (E = 110 � 109, A = 1 � 10�4): (a) the test problem and (b) stress
convergence curves measured in the Sobolev norm k � kk of order k.

Fig. 4. Stress solutions to the 1D problem defined in Fig. 3a for various different
densities of mesh, where N denotes the number of elements used.
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atively, even lower because a step-by-step solution procedure is
needed to obtain t bU .

Of course, in practice, the stress calculations need not be per-
formed for the entire assemblage, but instead might be performed
only for those elements where stresses should be improved.
4. Insight into the new procedure in 1D solutions

In this section, we first present the solution procedure of the
new stress improvement method in 1D settings, then we analyse
the method in detail. Thereafter, we compare the performance of
the new method with that of the PEM and the REP method.

4.1. Matrices used in 1D solutions

In the following, we consider the 1D case with only one stress
component, for arbitrary loading and material properties, and as-
sume that the cross-sectional area of the 1D structure is constant.
In this case, an element-based approach is adopted. Hence, to solve
for the unknown stress coefficients ŝ for a general element m, we
apply Eq. (30) with NP = 1,

Es ¼ 1 x x2
� �

; Es ¼ ½1�; Ef ¼ 1 x½ � ð35Þ

and

@s ¼
d
dx


 �
ð36Þ

where ŝ ¼ a1 a2 a3f gT , and x is the element m local coordinate
system.

4.2. Reliability, optimality and convergence of the stress prediction

The fundamental objective of the new procedure is to enhance
the accuracy of the stresses. Mathematically, therefore, our goal
is to find stresses s(m) such that

XN

m¼1

ksex � sðmÞkV ðmÞ 6 c
XN

m¼1

sex � sðmÞh

��� ���
VðmÞ

ð37Þ

with a constant c < 1, dependent on the problem, and ideally c <<1.
Here we use the H1 semi-norm k � kVðmÞ which, when the function

in the norm is zero on some part of the boundary, is equivalent to
the H1 norm (by the Poincaré–Friedrichs inequality [1,28]). The
semi-norm is appropriate for the stresses because of Eq. (31). We
analyse the 1D case considered in Section 4.1 and give details to
provide some insight.

In this case, the distance between the exact and the calculated
solution is

ksex � sðmÞk2
V ðmÞ ¼ ksexk2

VðmÞ þ ks
ðmÞk2

V ðmÞ

� 2
Z

VðmÞ

dsðmÞ

dx

� �
dsex

dx

� �
dV

� �
ð38Þ

Because NP = 1, Eq. (32) gives



Fig. 5. Stress convergence curves measured in the Sobolev norm k � kk of order k to
the 1D problem defined in Fig. 3a, where, in this case, the Young’s modulus varies as
E = 110(1 + 0.64sin (20px)) � 109.

Fig. 6. Rotor blade problem (E = 110 � 109, q = 4400, and x = 10). The rotor blade
spins at a sufficiently high rate that gravitational forces are negligible as compared
with the centrifugal forces which act on the blade. The blade is either pinned at
node 1 and is free at node 3 (bU1 ¼ 0 and bU3 – 0), or is pinned at node 1 and is
welded to a rigid hoop at node 3 ðbU1 ¼ bU3 ¼ 0Þ.

(a)

(b)

Fig. 7. Stress results for the rotor blade problem defined in Fig. 6: (a) the statically
determinate pinned-free case (bU1 ¼ 0 and bU3 – 0) and (b) the statically indeter-
minate pinned–pinned case ðbU1 ¼ bU3 ¼ 0Þ.
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dx
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and hence we obtain from Eq. (38) the result

ksex � sðmÞk2
V ðmÞ ¼ ksexk2

V ðmÞ � ks
ðmÞk2

VðmÞ ð39Þ

Using the Cauchy–Schwarz inequality [1,28]
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Eq. (33), we have
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In light of Eqs. (39) and (40), we obtain

ksex � sðmÞk2
V ðmÞ 6 1� 1

V ðmÞ

R
VðmÞ

dsex
dx

� �
dV

� �2R
VðmÞ

dsex
dx

� �2
dV

 !
ksexk2

VðmÞ ð41Þ

Finally, because the displacements vary linearly, then

sex � sðmÞh

��� ���2

V ðmÞ
¼ ksexk2

V ðmÞ

and hence we obtain from Eq. (41) the required result

ksex � sðmÞkV ðmÞ 6 c sex � sðmÞh
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with

c ¼ 1� 1
V ðmÞ
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dsex
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� �2
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where c < 1. It is interesting to note that if sex 2 P1, we have c = 0,
such that the calculated stresses are exact (when measured in the
H1 semi-norm), irrespective of the coarseness of mesh used.



(a)

(b)

Fig. 8. Stress results for the rotor blade problem defined in Fig. 6: (a) the statically
determinate pinned-free case (bU1 ¼ 0 and bU3 – 0) and (b) the statically indeter-
minate pinned–pinned case ðbU1 ¼ bU3 ¼ 0Þ. The PEM assumes a linear stress, the
REP method assumes a constant stress, and the proposed scheme assumes a
quadratic stress in each element domain.

Fig. 9. Stress calculation domain used to solve for the unknown stress coefficients ŝ
for a general 2D 4-node element m.

Fig. 10. Stress calculation domain used to solve for the unknown stress coefficients
ŝ at a specific node i for a 2D 4-node element mesh.

Fig. 11. Stress calculation domain for a general 2D 4-node element m between a
titanium housing and a steel Keensert. Element m belongs to the titanium housing
group of elements. Since the steel Keensert elements are not included in the stress
domain, there is no smoothing across the material discontinuity.

318 D.J. Payen, K.J. Bathe / Computers and Structures 112–113 (2012) 311–326
Eq. (42) proves the new method satisfies the fundamental
requirement in Eq. (37) for each element, as well as for the entire
domain. Also, because sðmÞh is stable and converging in the norm
[1,10], Eq. (42) proves the method is reliable in 1D solutions and
the stresses (within each element) are always more accurate than
sðmÞh when measured in the norm used.
Furthermore, it can be proved (following the usual procedures
[1]) that the new method chooses s(m) so as to minimise the error
within the volume of each element m, i.e. s(m) is, in fact, the optimal
stress prediction,

ksex � sðmÞkV ðmÞ 6 ksex � ~sðmÞkVðmÞ 8~sðmÞ 2 P2 ð43Þ

and using interpolation theory on s(m) with the result given in Eq.
(43), it can also be proved that

XN

m¼1

ksex � sðmÞkV ðmÞ 6 ch2 ð44Þ

where the constant c is independent of h, but depends on the exact
solution sex.

Therefore, s(m) converges to the exact theory of elasticity solu-
tion with order O(h2) in the H1 norm. In problems where the nodal
point displacements are the exact displacements (e.g in Fig. 3), we
indeed observed that s(m) converges at O(h3) in the H0 norm. How-
ever, if the nodal point displacements are not the exact displace-
ments, the accuracy of s(m) is limited by that of u(m); hence, the



Fig. 12. Actuator subjected to pressure loading problem (E = 72 � 103, t = 0.3,
thickness = 1, plane stress conditions). The pressure loading is produced by passing
current through the armature in the presence of a magnetic field.

(a)

(b)

Fig. 14. Starting meshes for the stress convergence curves given in Fig. 13: (a) the
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highest order of convergence of s(m) that we can expect is O(h2)
when measured in the H0 norm.

Of course, these derivations represent theoretical results; how-
ever, experience shows this indeed closely represents the actual
(a) (b)
Fig. 13. Stress convergence curves for the actuator problem defined in Fig. 12,
measured in the H0 norm for: (a) the 3-node triangular and (b) the 4-node
quadrilateral element.

3-node triangular and (b) the 4-node quadrilateral element.

(a)

(b)
Fig. 15. Refinement sequence used in stress convergence studies. The thick lines
depict the initial mesh and the thinner lines depict the next (refined) mesh in the
sequence for: (a) the 3-node triangular and (b) the 4-node quadrilateral element.
behaviour of the discretisations. Figs. 3 and 4 shows the results
of an application in which the nodal point displacements are the
exact displacements; see Ref. [1]. In Fig. 3, we see that the order
of convergence of the enhanced stress is 2.99 in the H0 norm and
1.99 in the H1 norm, which compares well with the theoretical re-
sult. We further observe in Fig. 4 that when N = 3, the directly-cal-
culated stress is zero at every point in the domain (as discussed by
Grätsch and Bathe [4] and Hiller and Bathe [16]), but the enhanced
stress is still quite reasonable.
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Fig. 5 shows the results of an application in which the nodal
point displacements are not the exact displacements. As expected,
in this case, s(m) converges at O(h2) in the H0 norm, the same as for
u(m), but one order higher than that observed for sðmÞh .

4.3. Numerical example: a rotor blade problem

To illustrate the effectiveness of the new procedure, the re-
sponse of a rotor blade is studied. Fig. 6 defines the problem. The
inboard end of the rotor blade is driven at a constant angular veloc-
ity x; the outboard end is either left free or is welded to a rigid
hoop. The rotor blade is idealised as an assemblage of two 2-node
truss elements, and the problem is solved using both the usual dis-
placement-based method and the proposed scheme.

We note that in this problem one element has a constant cross-
sectional area whereby the other element has a varying area, as
shown in Fig. 6. The varying area enters in the equilibrium equa-
tion, so that Eq. (15) becomesZ

LðmÞ
dfðmÞT

d
dx
ðAðxÞsðmÞÞ þ AðxÞf B

x

� �
dx ¼ 0

where L(m) and A(x) are the length and cross-sectional area of ele-
ment m, respectively, and the area is a function of x.

Fig. 7 shows the stress results. In Fig. 7 (and in all other figures),
‘‘exact’’ refers to the exact analytical (or a very accurate numerical)
Fig. 16. Stress convergence curves for the actuator problem defined in Fig. 12,
measured in the H0 norm, for the 4-node quadrilateral element with (dashed line)
and without incompatible modes (solid line).
solution of the mathematical model, ‘‘directly-calc’’ refers to the
directly-calculated finite element stresses, and ‘‘prop. scheme’’ re-
fers to the finite element stresses predicted using the proposed
stress improvement scheme.

Considering the results, we see that the enhanced solution for
the stress is significantly more accurate than given directly by
the displacements. We further observe that the gradient of the en-
hanced stress is exact at every point in element 1. Indeed, this will
always be the case when the exact stress varies quadratically
across the element domain; see Eq. (43).

Next, the rotor blade problem is solved using the PEM [17] and
the improved REP method [22]. Typically, the PEM is used to calcu-
late improved interelement tractions for the purposes of error esti-
mation; however, in our comparison the governing equations of
the PEM are used to calculate improved stresses.

Fig. 8 shows the stress results, where, for consistency, all meth-
ods use only one element in the stress calculation domain. We see
that the new procedure performs best. This is expected because the
new procedure uses a stress with a higher degree of interpolation
than can be used with the other methods, and (most importantly)
the solution of the new procedure satisfies the properties discussed
in Section 3.6.1. Also, the assumptions employed in the PEM and
the REP method limit the accuracy of the results; see Refs.
[17,22] and the earlier discussion in Section 1.

Lastly, we note that when f B 2 P1, the solution obtained using
the RCP method is similar to that obtained using the new method
(see Section 5.4.1); hence, for clarity, we do not consider the RCP
results here.

5. Insight into the new procedure in 2D solutions

In this section, we first present the solution procedure of the
new stress improvement method in 2D settings for a general ele-
ment m. Then, we discuss how to establish enhanced stresses at
a specific node i and how to deal with discontinuous solutions.
Thereafter, we assess the performance of the method in static, dy-
namic and nonlinear solutions.

Since the performance of the RCP methods exceeds that of the
REP method (by a considerable margin) [23], we only compare
the stresses of the new procedure with the RCP stresses here.

5.1. Matrices used in 2D solutions

In 2D (and 3D) problems, better results are obtained when mul-
tiple elements are used in the stress calculation domain. Hence, to
solve for the unknown stress coefficients ŝ for a general element m,
we use the union of elements that surrounds (and includes) ele-
ment m as the stress calculation domain; see Fig. 9. Then, we apply
Eq. (30) with

ð45Þ

ð46Þ

ð47Þ

and



Fig. 17. von Mises stress band plots for the actuator problem defined in Fig. 12, where the forward leg rollers are removed and the material stiffness is reduced by a factor 10.
The plate is idealised as an assemblage of 3-node triangular elements. The stress in the band plots is un-averaged (and is shown on the deformed geometry), while the
numerical stress values are the averaged nodal point stresses, with the solution error given in parentheses.

Fig. 18. Large displacement, large strain, rubber plate problem, stretched to 100% of
its original length (Ogden material law: l1 = 0.7, l2 = �0.3, l3 = 0.01, a1 = 1.8,
a2 = �1.6, a3 = 7.5, j = 1000, thickness = 0.5, plane stress conditions). Because of
symmetry, only one-quarter of the plate is modelled.
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where and (y, z)
are the locally based coordinates of the stress calculation domain.

The above description completely defines the stress calculation
domain for all types of element and mesh patterns, and no special
procedures are needed near the boundaries (nor at the corners) of
the mesh. Also, because there is only one possible configuration of
stress domain for each element m, the averaging procedure re-
quired in Refs. [26,27] is no longer needed.

The RCP method uses the same definition of stress calculation
domain [24].

5.2. Solution procedure for a specific node i

For certain problems, we are interested in the stresses at a spe-
cific node i, rather than within the element domain. In this situa-
tion, we use the union of elements connected to node i as the
stress calculation domain. Then, we apply Eq. (30) to solve for
the unknown stress coefficients, with the interpolation matrices gi-
ven in Eqs. (45)–(47).

In the exceptional case where only one element m is connected
to node i (e.g. in a corner of the meshed geometry), the elements
properly connected to element m should also be included in the
stress domain; see Fig. 10.
5.3. Dealing with discontinuous solutions

In an actual implementation, the stress calculation domain only
contains elements with equal settings. Boundaries between the
element groups are treated as free boundaries; see for example



Fig. 19. von Mises stress band plots to the rubber plate problem defined in Fig. 18.
The plate is idealised as an assemblage of 3-node triangular elements and the
results are shown in the same format as in Fig. 17.

Fig. 20. von Mises stress results along section A–A to the rubber plate problem
defined in Fig. 18. The coordinate z references the deformed geometry.
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Fig. 11. This prevents the scheme from smoothing discontinuities
present in the exact solution.

5.4. Static analysis problems

Two classes of problems are considered: the first where f B 2 P1

and the second where f B R P1. We show that the new stress
improvement method gives good results for both classes of
problems, whereas the RCP method only performs well when
f B 2 P1.

5.4.1. The actuator problem: a case when f B 2 P1

The first problem solution involves an actuator subjected to
pressure loading. Fig. 12 defines the problem. The problem is stat-
ically indeterminate and is solved using both the new method and
the RCP method.

Fig. 13 shows the stress convergence curves when a sequence of
3- and 4-node element meshes are used for the solutions. The se-
quence of meshes is constructed by starting with a mesh of uni-
form elements of (approximately) equal size, see Fig. 14, then
subdividing each element into four equal new elements to obtain
the next (refined) mesh in the sequence and so on; see Fig. 15.
The mesh size parameter h is calculated by averaging the size of
all elements in the assemblage (where the size is taken to be the
diameter of a circle which encompasses that element).

Considering the results in Fig. 13, we see that the RCP solution is
similar to the solution obtained using the proposed scheme. This
will always be the case when f B 2 P1 because the quadratically
varying stresses are sufficiently rich to satisfy equilibrium for all
points in the stress calculation domain; that is, Eq. (27) reduces
to Eq. (22) when f B 2 P1. However, the solutions are not identical
due to the Poisson coupling effects in Eq. (21).

The new procedure can also be used to furnish improved stress
predictions for the incompatible modes formulation [1]; see
Fig. 16. In these calculations, the unknown stress coefficients are
obtained using Eq. (30), where sðmÞh is established from the incom-
patible modes solution. This enriches the space implicitly assumed
for sðmÞh , but since s(m) is still assumed to be quadratically interpo-
lated, the solution for s(m) is similar both with and without incom-
patible modes.



Fig. 21. Armature in a magnetic field problem (E = 72 � 103, t = 0, thickness = 1,
plane stress conditions). A battery drives constant (direct) current through the
armature and the moving charges experience a Lorentz force in the presence of the
magnetic field. The Lorentz force is modelled as a body force f B

Y . We use t = 0 to
avoid stress singularities at the four corners.

directly-calc

RCP

prop. scheme

0.9

1.7

1.0

1.9

Fig. 22. Stress convergence curves for the armature problem defined in Fig. 21,
measured in the H0 norm for: (a) the 3-node triangular and (b) the 4-node
quadrilateral element.
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Next, consider the situation where the rollers supporting the
forward leg are removed and the material stiffness is reduced by
a factor of ten. This requires a large deformation solution. Fig. 17
shows the von Mises stress results for three different meshes (plot-
ted on the deformed geometry). As is clear from this figure, the
procedure performs well in the large displacement analysis. In-
deed, we see the enhanced stresses, s(m), are more accurate than
the directly-calculated stresses, sðmÞh , even when four times more
elements are used to calculate sðmÞh (i.e. s(m) of Mesh 1 is more accu-
rate than sðmÞh of Mesh 2, etc.).

Finally, we solve a large displacement, large strain problem,
which includes nonlinear material effects. Fig. 18 defines the prob-
lem. The rubber plate is stretched to 100% of its original length by
imposing a uniform horizontal displacement at the right end.
Figs. 19 and 20 show the von Mises stress results. As expected,
the stresses are considerably improved, especially in those regions
of high stress gradients, which, of course, is due to the fact that the
directly-calculated stresses are constant for the 3-node finite ele-
ment. Indeed, in Fig. 20, we see that the accuracy of the stresses
of the new scheme (calculated using 3-node elements) is compara-
ble to the accuracy of the stresses given directly by the displace-
ments of a 6-node element mesh.

5.4.2. The armature problem: a case when f B R P1

In this problem solution, the static response of an armature in a
magnetic field is studied. Fig. 21 defines the problem. We wish to
establish the stresses in the armature due to the Lorentz force.
The problem is solved using both the new method and the RCP
method.

Fig. 22 shows the stress convergence curves when a 5 � 100
starting mesh is used. We see that the new method performs well,
but the RCP method gives stresses that are less accurate than sðmÞh

for coarse meshes.
The reason that the RCP method gives inaccurate results is that

the equilibrium constraint in Eq. (22) is too severe when f B R P1.
Indeed, to satisfy differential equilibrium, the RCP method uses
the following additive decomposition:

sðmÞ ¼ sðmÞh:s: þ sðmÞp:s: ð49Þ

where sðmÞh:s: is the unknown homogenous solution of Eq. (22) and sðmÞp:s:

is a particular solution of the same equation to be established a pri-
ori [23,24].

The homogenous solution sðmÞh:s: is assumed to be an element in
the subspace of self-equilibrated stresses in P2, and the unknown
stress coefficients in sðmÞh:s: are obtained using Eq. (21),
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with the particular solution sðmÞp:s: taken as:

sðmÞp:s: ¼ syyðmÞ
p:s: szzðmÞ

p:s: syzðmÞ
p:s:

n oT

syyðmÞ
p:s: ¼ �

R y
0 f B

y dy; szzðmÞ
p:s: ¼ �

R z
0 f B

z dz; syzðmÞ
p:s: ¼ 0

Therefore, the dimension of sðmÞp:s: depends on f B and the compo-

nents in Eq. (49) are mismatched when f B R P1. As a result, the RCP

method is unreliable when f B R P1 – e.g. in problems with electro-
magnetic forces, piezoelectric forces [36], etc. – and gives inaccu-
rate results.

5.5. Dynamic analysis problems

Our objective in this section is to assess the performance of the
new method and the RCP method in solving dynamic analysis



Fig. 23. Impact of an elastic bar (E = 200 � 109, q = 8000, A = 1). The bar is initially
at rest and the response at time t = 1 � 10�3 is sought. During this time the wave
propagates to x = 5, there are no reflections. The bar is idealised as an assemblage of
1D 2-node elements of size h = 0.025 (400 elements). We give the best results
obtained using the Newmark method and the Bathe method when changing for
each method the time step size (i.e. the CFL number).

Fig. 24. Propagation of a wave in an elastic bar problem (E = 200 � 109, q = 8000,
t = 0, thickness = 0.2, plane stress conditions). The bar is initially at rest and is
subjected to a sudden pressure load at one end. The response at time
t = 1.3 � 10�3 is sought. During this time the wave propagates to x = 6.5, there
are no reflections.

Fig. 25. Longitudinal stress results at t = 1.3 � 10�3 to the wave propagation
problem defined in Fig. 24. The bar is idealised as an assemblage of regular 4-node
quadrilateral elements, where h denotes the element size and Dt is the time step
used. In each case, CFL number = 1.

Fig. 26. Lightweight cantilevered plate subjected to base excitation problem
(E = 200 � 109, q = 7800, t = 0, thickness = 1, plane stress conditions). The plate is
initially at rest and the response at t = 0.01902 is sought. No physical damping is
introduced in the model. The base of the plate is rigid and the enforced
displacement dynamically excites the first eight natural modes of the plate. We
use t = 0 to avoid stress singularities at the two corners of the built-in end.
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problems. We show that the new method performs well in dy-
namic analysis and can be used for distorted isoparametric ele-
ments, whereas the RCP method can only be used if the elements
in the assemblage are un-distorted.

5.5.1. Solution procedure
Stress calculations in dynamics are performed as those in stat-

ics, except now the d’Alembert inertia forces are included in f B.
That is, to obtain the stress coefficients t ŝ of the new method at
time t, we use



Fig. 27. von Mises stress band plots at t = 0.01902 to the lightweight cantilevered plate problem defined in Fig. 26, using 152 time steps. The plate is idealised as an
assemblage of 3-node triangular elements. The results are shown in the same format as in Fig. 17.
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where q(m) is the mass density of element m, t €bU lists the nodal point
accelerations (i.e. the second time derivative of t bU), and the nodal
solutions are established using a time integration scheme [1]. In
our examples, we use the Bathe implicit time integration procedure
because spurious oscillations are very small [37,38]. Fig. 23 gives an
example solution where, for the mesh used, we give the best results
obtained by the Newmark method (trapezoidal rule) and the Bathe
method when changing for each method the time step size (i.e. the
CFL number).

To obtain the RCP stresses, we use Eqs. (49) and (50), with the
particular solution taken as:

tsðmÞp:s: ¼ tsyyðmÞ
p:s:

tszzðmÞ
p:s:

tsyzðmÞ
p:s:

n oT

tsyyðmÞ
p:s: ¼

R y
0 qðmÞt €uðmÞy � t f B

y

� 	
dy; tszzðmÞ

p:s: ¼
R z

0 qðmÞ t €uðmÞz � t f B
z

� 	
dz; tsyzðmÞ

p:s: ¼ 0

where t €uðmÞ ¼ t €uðmÞy ; t €uðmÞz

h iT
¼ HðmÞt

€bU . However, establishing this

particular solution for distorted isoparametric elements is difficult
and is an outstanding issue to be solved.

5.5.2. Numerical examples
The first problem solution involves the propagation response of

a wave in an elastic bar. Fig. 24 defines the problem. While solved
using 2D meshes, due to the geometry and the material definition,
this is effectively a 1D wave solution. The problem is solved using
both the new method and the RCP method.

Fig. 25 shows the stress results at time t = 0.001284; as is clear
from this figure, both the new method and the RCP method gives
good results.

We note that if spurious oscillations are present in the calcu-
lated response, the new method outperforms the RCP method.
The reason is that the point-wise equilibrium constraint in Eq.
(22) is too severe when the calculated accelerations vary signifi-
cantly over the stress calculation domain.

In the second problem solution, a lightweight cantilevered plate
subjected to base excitation is studied. Fig. 26 defines the problem.
The problem is solved using the new procedure. The RCP method
cannot be used, since the elements in the assemblage are distorted.

Figs. 27 and 28, respectively, show the von Mises band plots and
the stress convergence curves at time t = 0.01902. We see that the
enhanced stresses are significantly more accurate than the di-
rectly-calculated values, both for the 3-node triangular and the
4-node quadrilateral element, and converge at order O(h2).

6. Concluding remarks

The objective of this paper was to present a general stress
improvement procedure that can be used in static, dynamic and
nonlinear solutions. We focused the development on the use of
low-order displacement-based elements.

First, we showed that the PEM and the REP, RCP and the NPF-
based methods [17–27] can all be derived from (or be related to)



(a) (b)
Fig. 28. Stress convergence curves at t = 0.01902 for the lightweight cantilevered
plate problem defined in Fig. 26, using 152 time steps, measured in the H0 norm for:
(a) the 3-node triangular and (b) the 4-node quadrilateral element.
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a mixed formulation based on the Hu-Washizu principle, where
the stress–strain relationship is point-wise relaxed but the fulfil-
ment of equilibrium is enhanced.

This mixed variational formulation gives insight, which we used
to develop a new stress improvement scheme.

For 1D problems with arbitrary loading and material properties
(but constant cross-sectional area), we proved that the new stress
improvement scheme is reliable, giving stresses that are, in fact,
optimal stress predictions (in the norm used), with the order of
convergence being quadratic, i.e. with the same order as the dis-
placements. This convergence behaviour was also seen numerically
in 1D and 2D solutions. Indeed, we obtained excellent numerical
results for the 1D and 2D problems solved, with the predicted
stresses converging quadratically and with a significant downward
shift.

While only 1D and 2D solutions are considered here, in linear
and nonlinear analyses, the proposed method is directly applicable
to 3D solutions in an analogous way and similar results can be
expected.

Regarding future research, the use of the new stress improve-
ment procedure might be explored in shell analyses [28], in the
solution of multiphysics problems, as well as to establish solution
error estimates [3,4].
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