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SUMMARY

We propose a nine-node �ow-condition-based interpolation (FCBI) �nite element for the analysis of
2D incompressible �ows. Emphasis in the FCBI approach is on obtaining an element that is stable
and can be used in rather coarse meshes even when considering high Reynolds number �ows. The
formulation of the element is presented and the results obtained in the solution of some test cases are
given. Copyright ? 2006 John Wiley & Sons, Ltd.

KEY WORDS: incompressible �ows; �ow-condition-based interpolation; FCBI approach

1. INTRODUCTION

While numerical solutions of the Navier–Stokes equations are obtained daily by many engi-
neers and scientists, the more e�ective solution of �uid �ows represents still a major challenge,
see for example References [1–4] and the references therein. More stable, more accurate, and
computationally more e�cient techniques are needed.
An important �eld is the solution of incompressible �uid �ows with structural interactions.

Here frequently, the purpose of the analysis is to analyse the structure accurately for some
speci�c quantities but the �uid �ow response may not be needed to be highly accurate. The
�uid �ow must then only be simulated to solve accurately for the �uid forces that act onto the
structure, and clearly the use of very coarse meshes to solve for the �uid actions is attractive.
Then, to ensure good accuracy in the structural response of interest, like the bending moment
at the base of a rotor blade, goal-oriented error measures can be used [5, 6].
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918 H. KOHNO AND K. J. BATHE

However, in order to be able to use a coarse �uid mesh, it is necessary that the numerical
procedure for the �uid �ow be stable, even at high Reynolds number �ows, and always give
a reasonable solution [7, 8]. Of course, ideally, the solution should also be obtained using
consistent Jacobian matrices, for computational e�ciency, and be as accurate as possible for
the coarse mesh used.
Towards this aim, we have worked on the development of �nite elements with �ow-

condition-based interpolations (FCBI). These elements use the usual velocity and pressure
interpolations for the di�usion and pressure terms, respectively, to satisfy the inf–sup condi-
tion for incompressible analysis, and special velocity interpolations, dependent on the element
Reynolds numbers, for the advection term. Also, control volumes are used to satisfy local
momentum and mass conservation [8–11]. Naturally, these FCBI element formulations are
related to earlier proposed techniques [3, 9] and we have drawn on these to provide more
e�ective procedures. The FCBI approach is already used widely in the CFD and FSI solution
capabilities of ADINA [11] but we continue our research to improve the speci�c techniques
used. In particular, only e�ective low-order elements are available in ADINA and we are
still searching for more e�ective higher order elements, as these would be useful for error
estimation, see Reference [6].
The objective of this paper is to propose a new nine-node element FCBI formulation for

two-dimensional �uid �ows. We concentrate on the two-dimensional case to present and
study the technique but the three-dimensional implementation can directly be achieved. We
�rst present the formulation and then the results of some example solutions.

2. A NEW FCBI METHOD FOR THE SOLUTION OF THE
NAVIER–STOKES EQUATIONS

In this section, we present a new nine-node element based on the FCBI approach for the
analysis of incompressible �uid �ows. We �rst give the mathematical model considered and
then present the interpolations used.

2.1. Governing equations and �nite element formulation

We consider a two-dimensional steady-state �ow problem governed by the incompressible
Navier–Stokes equations. We assume that the problem is well-posed in the Hilbert spaces
V and P. The non-dimensional governing equations in conservative form are:
Find the velocity v(x)∈V and pressure p(x)∈P such that

∇ · v=0; x∈� (1)

∇ · (vv − �) = 0; x∈� (2)

subject to the boundary conditions

v= vs; x∈Sv (3)

� · n= f s; x∈ Sf (4)
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where �∈ �2 is a domain with the boundary S=Sv ∪ Sf (Sv ∩ Sf= ∅), � is the stress tensor
de�ned as

�= �(v; p)=− pI+ 1
Re

{∇v+ (∇v)T} (5)

with the identity tensor I and the Reynolds number Re, vs is the prescribed velocity on the
boundary Sv, f s is the prescribed traction on the boundary Sf, and n is the unit normal vector
to the boundary.
For the �nite element solution, we use a Petrov–Galerkin variational formulation with sub-

spaces Uh, Vh and Wh of V , and Ph and Qh of P of the problem in Equations (1)–(4). The
formulation for the numerical solution is:
Find u∈Uh, v∈Vh and p∈Ph such that for all w∈Wh and q∈Qh:∫

�
w∇ · (uv − �(u; p)) d�= 0 (6)

∫
�
q∇ · u d�= 0 (7)

The trial functions in Uh and Ph are the conventional functions of �nite element interpolations
for velocity and pressure, respectively, used to satisfy the inf–sup condition of incompressible
analysis [12]. In order to provide also stability regarding the advection term (the upwinding
e�ect), the trial functions in Vh are de�ned considering the �ow conditions. The weight
functions in the spaces Wh and Qh are step functions, which enforce the local conservation
of momentum and mass, respectively.

2.2. The nine-node element

Based on the original FCBI methods [7, 8], we propose in this section a new FCBI procedure
to reach a more e�ective nine-node element. As for the other FCBI methods, the functions
introducing the upwinding e�ect are spatially isotropic and are established by incorporating
the �ow conditions given by solutions of advection–di�usion equations. A nine-node element
was already proposed in Reference [7], but the �ow-condition-based functions in that earlier
contribution are quite di�erent from those used in the present paper (see Remark 3) and are
used as weight functions for the convection and di�usion terms. Also, control volumes are
not used. Another nine-node element is discussed in Reference [8] using control volumes
as in the present paper, but four ‘sub-elements’ per nine-node element are used. Hence the
velocity interpolations do not naturally approach the usual biquadratic interpolations as the
�ow Reynolds number decreases. On the other hand, the nine-node element we discuss in
the present paper does have this desirable property, and hence, when the local intensity of
�uid �ow (measured by the element Reynolds numbers) becomes small, the discretization
scheme gives second-order accuracy.
Figure 1 shows a nine-node element in which the velocity is de�ned through nine nodes,

the local node numbers 1–9, while the pressure is de�ned through the four corner nodes, the
local node numbers 1–4, in order to satisfy the inf–sup condition. If the usual Lagrangian
interpolation functions are used, this element is of course the Taylor–Hood element, or
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Figure 1. A nine-node element and segmentation for the control volumes: (a) segments in the
space Wh; and (b) segments in the space Qh.

Q9-Q4 or 9=4-c element [12]. The weight functions in the space Wh are the step functions as
in References [8–11], for example for node 9 de�ned as

hw9 =

{
1; (�; �)∈ [ 14 ; 34 ]× [ 14 ; 34 ]
0 else

(8)

Similarly, the weight functions in the space Qh are the step functions, for example for node
1 de�ned as

hq1 =

{
1; (�; �)∈[0; 12 ]× [0; 12 ]
0 else

(9)

Therefore, the control volumes corresponding to the spaces Wh and Qh are as shown in Figures
1(a) and (b), respectively. The �ux is calculated with the interpolated values at the centre
of the control volume sides, which are divided equally into eight per control volume in the
calculation space.
The velocity u and the pressure p are, respectively, calculated with the trial functions in

Uh and Ph as follows:

u= hui vi (10)

p= hpi pi (11)

where vi and pi are the nodal velocity and pressure variables, respectively. The trial functions
in Uh are de�ned as ⎡

⎢⎣
hu1 hu4 hu8
hu2 hu3 hu6
hu5 hu7 hu9

⎤
⎥⎦= h(�)hT(�) (12)

where

hT(y)= [h1(y); h2(y); h3(y)]= [(1− 2y)(1− y); y(2y − 1); 4y(1− y)] (y= �; � with 06�; �61)
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Figure 2. Four domains in an element considered in the trial functions in Vh: (a) FCBI in the �
direction; and (b) FCBI in the � direction.

which represents the biquadratic interpolation. On the other hand, the trial functions in Ph are
given by [

hp1 hp4
hp2 hp3

]
= h∗(�)h∗T(�) (13)

where h∗T(y)= [1− y; y] (y= �; � with 06�; �61), which represents the bilinear inter-
polation. The interpolation functions for pressure are the same as those in the original FCBI
methods [7, 8].
The trial functions in Vh are de�ned by employing the �ow conditions on the element

sides and centre lines. As in the FCBI method for triangular grids [10], we consider di�erent
interpolation functions for the velocity component vectors v‖ and v⊥, the directions of which
are, respectively, parallel and perpendicular to each side or centre line of the element. Then,
the velocity v in the advection term is calculated as follows:

v= hvi‖vi‖ + h
v
i⊥vi⊥

= hvi vi‖ + h
u
i vi⊥ (14)

where vi‖ and vi⊥ are the nodal velocity component vectors that are parallel and perpendicular
to the corresponding side or centre line, respectively. The interpolation functions for the
perpendicular component vector correspond to the trial functions in Uh and can be interpreted
as a particular case of the functions for the parallel component vector (see Remark 1). By
incorporating the �ow conditions into the interpolation, the functions hvi (= h

v
i‖) are de�ned in

the four domains shown in Figure 2 as follows (for a detailed derivation, see Appendix A):
In the domain 1:⎡

⎢⎣
hv1 hv4 hv8
hv2 hv3 hv6
hv5 hv7 hv9

⎤
⎥⎦=[h(x15); h(x47); h(x89)] diag(h1(�); h2(�); h3(�)) (15)
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with

xij=
1
2
eRe

e
ij(2�) − 1
eRe

e
ij − 1 (16)

In the domain 2:⎡
⎢⎢⎣
hv1 hv4 hv8

hv2 hv3 hv6

hv5 hv7 hv9

⎤
⎥⎥⎦ =[h(x52); h(x73); h(x96)] diag(h1(�); h2(�); h3(�)) (17)

with

xij=
1
2

(
eRe

e
ij(2�−1) − 1
eRe

e
ij − 1 + 1

)
(18)

In the domain 3:⎡
⎢⎢⎣
hv1 hv2 hv5

hv4 hv3 hv7

hv8 hv6 hv9

⎤
⎥⎥⎦=[h(x18); h(x26); h(x59)] diag(h1(�); h2(�); h3(�)) (19)

with

xij=
1
2
eRe

e
ij(2�) − 1
eRe

e
ij − 1 (20)

In the domain 4:⎡
⎢⎢⎣
hv1 hv2 hv5

hv4 hv3 hv7

hv8 hv6 hv9

⎤
⎥⎥⎦=[h(x84); h(x63); h(x97)] diag(h1(�); h2(�); h3(�)) (21)

with

xij=
1
2

(
eRe

e
ij(2�−1) − 1
eRe

e
ij − 1 + 1

)
(22)

where the subscripts and superscripts i and j represent the local node numbers. In Equa-
tions (15), (17), (19) and (21), h(xij) is written in the same form as in Equation (12). The
element Reynolds numbers Reeij are de�ned as follows:

Reeij=Re v ·�xij (23)

with

v= 1
6 (vr + 4vs + vt); �xij=xj − xi (24)

where v is the average velocity on the corresponding side or centre line, which is obtained
with two nodal velocities vr , vt at the ends and a nodal velocity vs at the centre; xi and xj
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Figure 3. Comparison of the pro�les of the functions between quadratic interpolation
and FCBI: (a) Ree=2; and (b) Ree=− 2.

are the position vectors at the nodes. The newly developed trial functions given above sat-
isfy the requirement

∑
hvi =1 regardless of the element Reynolds numbers. Moreover, when

the absolute value of the element Reynolds number becomes small, the functions in
Equations (15), (17), (19) and (21) approach the biquadratic interpolation functions in
Equation (12). The pro�les of the trial functions hvi for Re

e= ± 2 in the one-dimensional
space (06�61) are compared with those of quadratic interpolation in Figure 3. It is seen
that the upwinding e�ect is suitably generated according to the �ow direction.

Remark 1
If the trial functions hvi were also applied to the perpendicular component vector of velocity,
the interpolation in Equation (14) would be

v= hvi (vi‖ + vi⊥)= h
v
i vi (25)

However, it is more accurate to use di�erent interpolations for the parallel and perpendicular
component vectors of velocity because the element Reynolds number in the perpendicular
direction can be regarded as in�nitesimally small for the scheme used (consequently, the trial
functions for the perpendicular component vector are still the quadratic interpolations on the
element sides or centre lines). This approach is also mentioned in Reference [10], and the
improvement in accuracy is illustrated therein.

Remark 2
Since the calculation is conducted in the Cartesian co-ordinates, Equation (14) need be con-
verted into a form using the nodal velocity components vix and viy corresponding to the x and
y directions, respectively. First, we note that the nodal velocity component vectors vi‖ and
vi⊥ have the following relations with the components vix and viy:

vi‖ = vi‖e
jk
‖

= {vix(e jk‖ )x + viy(e jk‖ )y}e jk‖ (26)
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vi⊥ = vi⊥e
jk
⊥

= {vix(e jk⊥ )x + viy(e jk⊥ )y}e jk⊥ (27)

with

e jk‖ =
�xjk

‖�xjk‖ ; e jk⊥ = ex × ey × e jk‖

e jk‖ · ex = (e jk‖ )x; e jk‖ · ey=(e jk‖ )y
e jk⊥ · ex = (e jk⊥ )x; e jk⊥ · ey=(e jk⊥ )y

(28)

where the subscript or superscript i, j and k represent the local node numbers, ex and ey
are the unit vectors in the x and y directions, respectively. Then, by substituting
Equations (26)–(28) into Equation (14), vx and vy in the four domains are obtained with
the nodal velocity components vix and viy as follows:

vx = v · ex
= (hvi vi‖ + h

u
i vi⊥) · ex

=
9∑
i=1
�ixvix +

9∑
i=1
�ixviy (29)

vy = v · ey
= (hvi vi‖ + h

u
i vi⊥) · ey

=
9∑
i=1
�iyvix +

9∑
i=1
�iyviy (30)

The coe�cients have the following properties:

9∑
i=1
�ix=1;

9∑
i=1
�ix=0;

9∑
i=1
�iy=0;

9∑
i=1
�iy=1 (31)

due to the relation (e jk‖ )x=(e
jk
⊥ )y and (e

jk
‖ )y= − (e jk⊥ )x. Therefore, the requirement

∑
hvi =1

is still satis�ed in both velocity components. Moreover, it is readily con�rmed
from Equations (29)–(31) that the uniformity condition is also satis�ed; if the identical
velocity value (vx; vy)= (va; vb) is prescribed at the nine nodes, the interpolated value is also
(vx; vy)= (va; vb) at any point in the element. The interpolated values in vx and vy are inde-
pendent of the directions e jk‖ and e jk⊥ as long as these unit vectors are, respectively, parallel
and perpendicular to the side j − k.
Remark 3
It is worth pointing out the di�erence in the interpolation functions to those proposed for a
nine-node element in Reference [7]. Although both functions approach biquadratic interpola-
tion functions when the absolute value of the element Reynolds number decreases, the �ow
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conditions are di�erently evaluated on the element sides and centre lines. The previous FCBI
method adopts the following approximate solution:

w(�)=w3 + a�+ b(e−�� − 1) (32)

of the one-dimensional advection–di�usion equation with

�=
Re v3�x
2

; �x= x2 − x1 (33)

Here, the nodal values w1, w2 and w3 are, respectively, de�ned at x1, x2 and x3 (x16x6x2,
x3 = (x1 + x2)=2), and v3 is the velocity at x3. The constants a and b are determined by substi-
tuting the following boundary conditions into Equation (32): w1 =w(�= − 1), w2 =w(�=1).
Consequently, the following interpolation functions are obtained:

w(�)= hw1 (�)w1 + h
w
2 (�)w2 + h

w
3 (�)w3 (34)

with

hw1 (�) =
(e−�� − �e−�)− (1− �)

e� + e−� − 2 ; hw2 (�)=
(e−�� + �e�)− (1 + �)

e� + e−� − 2

hw3 (�) =
(1 + �)e−� + (1− �)e� − 2e−��

e� + e−� − 2 (35)

Note the interpolation functions in Equation (35) are used as weight (test) functions in the
former nine-node FCBI element. When we consider extending the above idea to the interpo-
lation of velocity, it appears to be appropriate to employ the following approximate solution:

v(�)= v3 + a�+ b(e�� − 1) (36)

in which ‘−��’ in Equation (32) is replaced with ‘��’ in order to reverse the pro�les of the
functions. However, there is one de�ciency; the interpolation function can exceed one (hv3¿1)
when the absolute value of � is large. For example, hv1 =−0:8002, hv2 = 0:0498 and hv3 = 1:7504
at �=0:85 when �=20, and then if v1 = 1:0, v2 = 1:3, v3 = 1:2; then v(�=0:85)=1:3650
(¿v1, v2, v3). The interpolation functions of the proposed nine-node FCBI element never
exceed one (see Appendix A).

3. NUMERICAL EXAMPLES

In this section, the performance of the proposed nine-node FCBI method is illustrated through
some test problems. First we verify the validity of the scheme in an advection–di�usion
problem, for which the exact analytical solution exists. Then we analyse the lid-driven �ow
in a square cavity as a Navier–Stokes �ow problem. The full Newton–Raphson method
is used to solve the nonlinear equations with the convergence criteria max(Rv)610−6 and
max(Rp)610−6 where Rv= ‖�v‖=‖v‖, Rp= |�p|=|p|. To reach the solutions for higher
Reynolds numbers, we use the converged solution of the lower Reynolds number case as
an initial condition.
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Figure 5. Comparison of temperature values on the centre line: (a) Pe=10; and (b) Pe=106.
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3.1. Solution of an advection–di�usion temperature problem between parallel plates

We �rst solve this problem in order to compare our calculated results with analytical solutions.
This temperature problem is a good test problem to assess the stability of the proposed
method. Of course, the above scheme is directly applicable (with the temperature now the
unknown, element P�eclet numbers used, and so on [9]). Figure 4 shows the analytical model
of the temperature problem considered with the boundary conditions. When a unit velocity is
prescribed in the x direction over the whole domain, the exact steady-state solution for the
temperature � is

�(x; y)=
cos�y
ea − eb (e

a+bx − eb+ax) (37)

with

a= 1
2(Pe+

√
Pe2 + 4�2); b= 1

2(Pe −
√
Pe2 + 4�2) (38)

where Pe is the P�eclet number.
A mesh of 15× 15 uniform elements is used in this study. Since the temperature is a scalar

variable, it is interpolated with only the trial functions hvi in the advection term while the
functions hui are employed for the interpolations in the di�usion term.
Figures 5 and 6 show the comparison of temperature values on the centre line and on

vertical lines transverse to the �ow for Pe=10 and 106. Good agreement with the exact
solutions can be seen in the low and high P�eclet number cases.

3.2. Solution of driven �ow in a square cavity

The e�ectiveness of the proposed scheme in Navier–Stokes �ow problems is next investigated
in the analysis of a square-cavity �ow. Figure 7(a) shows the geometry of the square cavity.

1.0

=sv

=
0

0sv

0.0

1.0

x

y

0=p

r

s
0

1

(a) (b)

Figure 7. The lid-driven �ow problem in a square cavity: (a) problem de�nition
(−16r; s61); and (b) 20× 20 mesh.
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Figure 8. Velocity distribution inside the cavity obtained with the 10× 10 mesh for Re=10 000.

The calculation is conducted in the x; y co-ordinate system, and the r; s co-ordinate system
along the centre lines are used for the display of the numerical results. The no-slip boundary
condition is imposed on the left, lower and right boundaries, while a unit horizontal velocity is
prescribed on the upper boundary including the corners. In addition, zero pressure is prescribed
at the lower left corner. Five regular meshes that consist of 10× 10, 20× 20, 40× 40, 80× 80
and 160× 160 elements, one of which is shown in Figure 7(b), are used for the solutions.
In all meshes used, the grid points are distributed �ner near the boundary according to the
following equations:

x(i) =
e(2�=N )(i−1) − 1
2(e� − 1) L

(
16i6

N
2
+ 1
)

(39)

x(i) =
{
1− e(2�=N )(N+1−i) − 1

2(e� − 1)
}
L

(
N
2
+ 16i6N + 1

)
(40)

where N is the number of elements on a side, L is the length of the side, i is the node
number and � represents the parameter for unequal division. The value of � is �xed at 2 for
the �ve meshes.
We �rst calculate the �uid �ow for Re=10000 with the 10× 10 mesh. Figure 8 shows the

velocity solution inside the cavity. This mesh is, of course, very coarse for this high Reynolds
number �ow, but still a reasonable velocity distribution is obtained.
Figures 9(a) and (b) show the comparison of our results with the solutions of

Ghia et al. [13] for Re=1000 and 5000, respectively. It is seen that, as we re�ne the mesh,
the velocity pro�les along the centre lines approach those reported by Ghia et al.
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Figure 9. Comparison of vertical and horizontal velocity pro�les along the centre lines obtained with
four di�erent meshes: (a) Re=1000; and (b) Re=5000.

4. CONCLUSIONS

In this paper we presented the formulation of a nine-node FCBI �nite element and some
solution results using this element. Of course, further studies of the element formulation and
improvements therein are very desirable.
However, the approach of using �ow-condition-based interpolations seems to have con-

siderable premise to provide e�ective �uid �ow analysis procedures, in particular when the
primary objective is to obtain stable and only reasonable �ow solutions using coarse �nite
element meshes. This is indeed the objective in �uid �ow structure interaction problems,
where rather coarse meshes to solve for the �uid �ow may be su�cient to solve accurately
for the structural response. The nine-node element proposed in this paper is a good candidate
for error assessment in goal-oriented solutions of a structural response. Here, generally, for
the �uid �ow, low-order (e.g. four-node) elements would probably be used but higher order
(e.g. nine-node) elements might be sometimes employed for an error assessment.
While we considered in this paper only two-dimensional solutions, the concepts employed

are also directly applicable to three-dimensional analyses.

APPENDIX A: CONSTRUCTION OF THE TRIAL FUNCTIONS hvi

We consider a one-dimensional advection-di�usion problem, in non-dimensional form, for
which the velocity u and the element length �x(¿0) are constants, with two �xed values
on the boundary (�1 and �2 at x1 and x2 with x16x6x2, respectively). For this problem, the
advection–di�usion equation to solve for � can be written as

u
d�
dx
=
1
Pe
d2�
dx2

(A1)
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where Pe is the P�eclet number. The analytical solution of Equation (A1) is

�=(1− 	)�1 + 	�2 (A2)

with

	=
ePe

e� − 1
ePee − 1 ; Pee=Peu�x (A3)

In the original FCBI method [8], the above exact solution of the one-dimensional advection–
di�usion equation is directly utilized for the interpolation of the velocity on the element sides.
When the �ow conditions are introduced into the interpolation, the velocity v12 on the side
1–2 is obtained with the nodal velocities v1 and v2 as follows:

v12 = (1− x1)v1 + x1v2 (A4)

with

x1 =
eRe

e� − 1
eRee − 1 ; Ree=Re v1 ·�x1 (A5)

where v1 is the average velocity on the side 1–2, and �x1 is de�ned as in Equation (24).
Of course, if we consider simply the bilinear interpolation, the velocity v12 is interpolated as
follows:

v12 = (1− �)v1 + �v2 (A6)

By comparing Equations (A4) and (A6), we notice that the trial functions providing the
upwinding e�ect are established by simply replacing the natural co-ordinate value � with x1,
where the coe�cient x1 contains the information of �uid �ow along the sides. Here, both �
and x1 range from zero to one, and x1 approaches � when Ree → 0.
Applying this idea to the quadratic interpolation, we can construct the trial functions hvi

shown in Equations (15)–(22). In the biquadratic interpolation over the nine-node element,
the velocity v152‖ on the side 1–5–2 is written as follows:

v152‖ =(1− 2�)(1− �)v1‖ + �(2�− 1)v2‖ + 4�(1− �)v5‖ (A7)

Then, by replacing � with x15 and x52, which are, respectively, calculated in Equations (16)
and (18), the velocity v152‖ is interpolated on the side by taking account of the �ow condition
as follows:

06�60:5: v152‖ =(1− 2x15)(1− x15)v1‖ + x15(2x15 − 1)v2‖ + 4x15(1− x15)v5‖ (A8)

0:56�61: v152‖ =(1− 2x52)(1− x52)v1‖ + x52(2x52 − 1)v2‖ + 4x52(1− x52)v5‖ (A9)

Note that for x15 and x52 we have 06x1560:5, 0:56x5261. The velocities v473‖ and v896‖ are
also obtained by considering the �ow conditions on the corresponding side and centre line in
the same way. Finally, the velocity inside the domains 1 and 2 in Figure 2(a) can be expressed
by connecting the three velocity values v152‖ , v473‖ and v896‖ with quadratic interpolation as
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follows:

v1;2‖ = (1− 2�)(1− �)v152‖ + �(2�− 1)v473‖ + 4�(1− �)v896‖

= hvi vi‖ (A10)

By the above strategy, we could construct FCBI schemes for various elements in the two-
and three-dimensional spaces.
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