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We propose a new 8-node hexahedral element, the 3D-MITC8 element, for the analysis of three-
dimensional solids. We use the MITC method and find the assumed strain field from a thought experi-
ment using a truss idealization. For geometric nonlinear analysis, when needed to suppress hour-glass

deformations, the formulation also uses automatically displacement-based contributions to the shear
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strains. The element shows a much better predictive capability than the displacement-based element.
It is computationally more effective than the 8-node element with incompatible modes, and considering
accuracy, in linear analysis performs almost as well, and in nonlinear analyses we do not observe spuri-
ous instabilities. We show that the new 3D solid element passes all basic tests (the isotropy, zero energy
mode and patch tests) and present the finite element solutions of various benchmark problems to illus-
trate the solution accuracy reached with the new element.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

A three-dimensional 8-node hexahedral solid finite element is
frequently employed for the finite element analysis of solids in
engineering practice. The element can be used to model many
three-dimensional (3D) solids and performs considerably better
than the 4-node tetrahedral element. However, the standard 8-
node 3D solid element does not satisfy the inf-sup conditions,
hence the solution accuracy can severely deteriorate due to shear
and volumetric locking [1,2].

To improve the behavior of the standard displacement-based
element, additional “incompatible modes” are frequently used
[3]. The incompatible modes technique is a special case of the
enhanced assumed strain (EAS) method, and the resulting 8-node
3D solid element requires, compared to the standard pure
displacement-based element, an additional 9 internal degrees of
freedom to represent the conditions of pure bending [3-6]. The ele-
ment is quite powerful since it alleviates both shear and volumet-
ric locking, but it uses the additional degrees of freedom and can
show a non-physical instability in the analyses of nonlinear prob-
lems [5-8].

The instability of the EAS elements has been observed to occur
in both small and large strain nonlinear analyses [7-14]. If an ele-
ment mesh is subjected to compression, a spurious hour-glass
bending mode may occur in elements eventually resulting into
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an indefinite stiffness matrix at a certain critical compressive strain
[8]. Initially, the hour-glass deformations are small but as they
grow, the incremental analysis leads to a spurious collapse of the
model.

To treat the spurious instability special solution methods and
various element formulations have been developed. The varia-
tional principle for nonlinear analysis has been modified, stabiliza-
tion parameters have been proposed, and mixed-enhanced
elements have been developed [9-14], see these references and
the references therein. However, further developments are of
much interest and, based on our success of developing reliable
and efficient shell elements based on the MITC technique [1], we
believe that we can also obtain an effective 3D eight-node MITC
element.

In this paper we propose a new 8-node hexahedral element
based on the standard displacement interpolations and the MITC
(Mixed Interpolation of Tensorial Components) approach
[1,2,10,15-20]. To obtain a stable element, we choose the tying
positions and strain interpolations based on the physical behavior
of a simple truss structure that idealizes the 8-node solid element.
For geometric nonlinear analysis to suppress hour-glass deforma-
tions, the formulation also uses automatically when needed a sta-
bilization scheme based on displacement-based contributions in
shear strains. Using these key ideas for the assumed strain field,
we find the 3D-MITC8 element to give solution stability, good solu-
tion accuracy, and to be computationally efficient. We also extend
this element to obtain the 3D-MITC8/1 element based on a mixed
displacement-pressure formulation.
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In the next section we present the concepts we use for the tying
and interpolation of the strains in the MITC procedure. Then, in
Section 3, we propose the new 3D-MITC8 and 3D-MITC8/1 ele-
ments using the total Lagrangian (T.L.) formulation. Of course,
the linear behavior corresponds to the first step in the T.L. formu-
lation. Further, in Section 4, the stability and accuracy of the ele-
ment are assessed using basic tests (the isotropy, zero energy
mode and patch tests) and the solutions of various benchmark
problems. Finally, in Section 5, we present our conclusions.

2. Tying and interpolation of strains in the MITC procedure

In this section, we present the concepts we employ in the MITC
procedure for the new element. The tying positions and interpola-
tions of the assumed strain components are developed considering
stability in linear and nonlinear analyses.

The geometry of an 8-node hexahedral solid element is shown
in Fig. 1. The element domain is given and the strain components
are defined corresponding to the three natural coordinates, r, s
and t. For the 3D solid element, there are three normal (in the
directions of r, s and t) and three shear (on the planes of rs, st
and tr) strain components. The six assumed strain components
are denoted by o€y, 0€ss, 0€¢ts 0€rs, 0€s¢ and €.

The choice of assumed strain interpolation must be such that
the solid element is stable corresponding to each strain compo-
nent. To obtain insight, we idealize the hexahedral domain as a
truss structure with 8 joints that correspond to the nodes, see
Fig. 2(a), of the 8-node 3D element. The selected truss structure
is shown in Fig. 2(b). This structure is stable and consists of the
minimum number of 2-node truss elements. We next consider
the location and direction of each truss element to correspond to
an assumed strain component. The location of tying is given by
the truss element but to obtain better accuracy using the 3D ele-
ment in analyses we can move these locations to corresponding
Gauss integration points.

If the truss structure we use is stable with the minimum num-
ber of truss elements, we can expect that in linear analysis the 3D
MITC element will also be stable and will not lock, because a min-
imum number of truss elements is used. The use of the truss struc-
ture to idealize the solid element is similar to how the classical
transverse shear assumption was developed by Dvorkin and Bathe
for 4-node shell elements, notably for the MITC4 shell element
[15]. Here the 4-node shell element transverse shear behavior
was idealized by the behavior of four 2-node isoparametric beam
elements located along the edges of the shell element, with each
beam assuming a constant transverse shear strain [1,15].

A

Fig. 1. A standard 8-node hexahedral 3D solid element.

We place a tying location at the center of each truss, and inter-
polate the assumed strain components according to these loca-
tions, see Fig. 2(c). The normal strains (o€, ¢€ss and oé;) are
interpolated bilinearly over the planes defined by their respective
tying locations and the shear strains (o€, o€s: and o€, ) are interpo-
lated linearly between the tying points.

While the resulting assumed strain field yields stability in linear
analysis, there is an instability that can arise in nonlinear analysis.
The phenomenon has been widely observed for enhanced assumed
strain elements when initially regular meshes undergo compres-
sion [7-14]. Indeed, for the incompatible modes elements, spuri-
ous bending deformations or hour-glass modes are seen at a
critical state even in small strains [8]. For an 8-node hexahedral
element, possible 2D and 3D hour-glass modes are depicted in
Fig. 3(a) and (b), respectively. This behavior occurs if an 8-node
element has the ability to express pure bending deformations
and the surrounding elements cause mixed behavior of bending
and compression. The behavior is possible for the incompatible
modes element.

The mechanism of this nonlinear instability was studied by
Sussman and Bathe [8], where it was found that a spurious bending
deformation occurs when a critical compressive strain state is
reached. For the two different kinds of hour-glass modes we treat
the potential instabilities separately. We suppress the accumula-
tion of a 3D hour-glass mode by using the incremental displace-
ments to calculate the constant compressive strain. Further, we
suppress the 2D hour-glass modes and their coupling to the 3D
hour-glass mode by interpolating an additional stabilizing shear
strain term bilinearly on the respective planes defined by the
mid-points on the edges, see Fig. 3(c).

Incorporating these ideas, the assumed strain field is proposed
as

oer =AY +Als+ A2t 4+ Al st,
0bss =A% + ALt + AZr + Al tr,
0w =AY+ ALT + Als + AT,
08rs = Av + ALt + Sk + SAS + SuTs,
085 = A% + AL+ Sks + SEt+ Shst,
08y =AY +ALS + Spt + Sir+ Sitr,

in which the Ag. and Sg are the unknown strain coefficients. The con-
stants Ag- (k=0, 1, 2, 3) and corresponding interpolations allow

overall stability in linear and nonlinear analyses. The constants Sf;
(k=1, 2, 3) are designed to automatically suppress 2D hour-glass
deformations in nonlinear solutions and are significant only when
compressive strain has been accumulated.

3. Formulation of 3D-MITC8 element

We use the left-superscript t to denote the current configura-
tion (or ‘time’) of the element. We employ the total Lagrangian for-
mulation with the reference configuration at time 0 indicated by
the left subscript 0.

The geometry and displacement of the standard 8-node hexahe-
dral 3D solid element is interpolated by [1]

8
X = th(ﬁ s, 0)X;
i=1
= Xiy + 'yiy + 'zi;
=[xty 4],
]T

with x; = ['% 'y, 'z

’
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Fig. 2. Identification of tying strains and positions. (a) 8 joints forming a hexahedron. (b) An ideal (minimally stable) truss structure. (c) Tying positions for each assumed
strain component.

1 3
hi(r,s,t) = g(l +&r)(1+n5)(1 + Gt), u= z:hi(r“g7 )
i=1
(& & & &4 & &6 & & = Uk Vly + Wi
=(u v w]
-1 11 -1 -1 11 -1],
withw = [ 2 w]". (3)

(M M M35 Mg Ms Mg N7 M)

The covariant base vectors and displacement derivatives for the 3D
=-1 -1 11 -1 -1 1 1],

solid element are given as

. . . . . . t t t
(G G G G 6 G & G g :8_)( fgza_x ‘g za_xi ur:@_u
_ (2) "o ST as St ot T ore
=-1 -1 -1 -1 1 1 1 1],
u _ou u _ou (4)
in which h;(r,s,t) is the standard 8-node interpolation function for ST et T ot
the isopargmetric pr.ocedure, and iy, iy, i2. are base vgctors in the gl.o— and we define the following ‘distortion vectors’
bal Cartesian coordinate system, see Fig. 1. The incremental dis-
placement vector u from the configuration at time t to the to 1 8 Lty by 1 8 by,
configuration at time t + At is Xs =3 ;én" X Xa=g ;'M: X
t+At t 138 18
u(rvsv t) = X(r757 t) - X(r757 t)7 [Xtr = gz‘:iéitxh txrst‘ = nginigitxﬁ (5)
i-1 i-1



88 Y. Ko, KJ. Bathe /Computers and Structures 202 (2018) 85-104

(c)

Fig. 3. Identification of tying strains and positions. (a) Two-dimensional hour-glass modes and corresponding distortion vectors. (b) Three-dimensional hour-glass mode and
corresponding distortion vector. (c) Tying positions for each assumed strain component.

which measure hour-glass deformations. The three ‘2D distortion
vectors’ ‘X5, ‘X;; and ‘X, correspond to 2D deformations, and the
‘3D distortion vector’ ‘X,;; corresponds to a 3D deformation, see
Fig. 3(a) and (b).

We define the following covariant base vectors at the element
center,

t/g\i = tgi(ov 07 0) with tgl = térv t§2 = tés’ t§3 = tgf‘ (6)

These three vectors characterize the regular geometry (‘\7,_,) of the
element domain (*V,), see Fig. 4.

The seven vectors fgr, fgs, fgt, X, "X, X and X, establish the
geometry of the 8-node hexahedral element and we define the cor-
responding incremental displacements from time t to t + At using

twC S s D
X :[tgr ‘g '8 Xy X Xy tert]’

UC = HAtXC*tXC: [ur u u ug Uy Uy urstL (7)

where we note that the displacement vectors u,, us, U;, U, Ug, U
and u,;; are independent of each other.

The contravariant base vectors are obtained from the covariant
base vectors using the standard relationship [1]

(@ (b)

Fig. 4. Characteristic geometry vectors. (a) Three covariant base vectors at the
center of the element. (b) The three covariant base vectors characterizing a regular
mesh.

‘g -'gl = o], with'g, ='g,, ‘g, ='g, 'g&="g.
g =g 'g="¢ g="¢" (8)
The covariant Green-Lagrange strain components in the configura-

tion at time t with respect to the reference configuration at time
0 are



Y. Ko, K,J. Bathe / Computers and Structures 202 (2018) 85-104 89

1
0i(r5,0) =5 ('8 '8 — "8 °g). 9)

Using Eq. (3) in Eq. (9) applied at time t and ¢ + At, the incremental
covariant strain components are

OEU(r S, t) t+A(§8 (r,S, t) - (t)gij(rvsv t)

1
=5 (g utu gy, (10)

which can be separated into a linear part (oe;) and a nonlinear part
(om1;)

1 1
0€j =5 (‘8- W+ ;- 'g),offy =5 (Wi - 4y), (11)

in which ‘g; = Z% and u; = 3—’;‘ with ry =1, r, =5, r3 = t. Note that
i ’ i

0811 = 0@, 0€22 = 0€ss, 0€33 = 08, 0€12 = 0€rs, 0€23 =€y and
0€31 = o€y, and similarly for o77;;.

We use the strain components transformed to a fixed covariant
coordinate system defined at the element center in the reference

configuration

Oel_) Oeklglgjvoi/lu Oi/lklglg] with g; g] (12)
and

0:
O(r,s,t) = J(0,0,0 with %(r,s,t) = det [°g, °g, O°g,], (13)

as done in previous works [4-6,10,14,16].
We also use the following geometric measure in geometric non-
linear analysis

() (e) - (S (S
() ()

be=tc—"O (14)

where ‘c measures the normal compressive deformation of the hex-

ahedral element and §c accumulates the history of the measure.
In order to correctly account for the element domain (°V,), we

employ the volume-averaged constant incremental strains [16]

O 1 [ =
0ef’" = o A 0eid’Ve, 0" =5, A offidVe,

oy = av.,, (15)
Ove
which results in the same constant strain part as given by the stan-
dard 8-node displacement-based element.
We express the 3D distortion vector as
+'d'g;, (16)

[ert = tdr[gr + tdstgs

with

tdr = txrst : tgr7 tds = txrst . tgs7 tdt = txrst . tgt with [gi . tgj = a,]a

and obtain likewise the corresponding displacement vector
Uy = 'dou, + 'dgug + 'deu,. (17)

In Eq. (17) the 3D distortions are expressed using the regular defor-
mations. To obtain overall stability in nonlinear analysis, the 3D
hour-glass deformations need to be suppressed using the constant
strain parts. Hence, we use Eq. (17) in Eq. (15) and denote the result-
ing ‘constant strain’ as oeg™ and offi", see Appendix A for details.

Based on the above considerations, we thus use for the 3D-
MITC8 element the assumed incremental linear strains

Oerr = Oecon

V3 _(043)

+Toerr

O(r,s,t) (s +t+ \/§st)
(011
+ \/T?oer(ro' & ‘@)O/I(r,s, t) (,5 —t+ \/§st)

+ éOE,(,O'%’V%)‘))v(r,s, t) (s —t- \/§st)

4
N ?Ogr(rof%%) OZ(T', s,b) <75 +t— \/§St)7
Oess _ Oecon
N \{foes(sﬂox/') Ar,s,b) (t +r+ \/§tr>
. ?OES(;\%O ’%)Oi(r,s, £) (—t —r \@tf)
N ?OES(S%’O"%)OA(r,s, t) (—t +r— x/§tr)
N ?OES(S—\]TE,O-,%) O)L(r7 s, t) ([ —Tr— \/itr) )
08 = 08"
N ?055%%»0)0/1“ s,b) (r +5+ ﬁrs)

(o
+?oe[([ ERE 0)(’/l(r,s, t)(—r —s+ \/§rs)

+ \/T?oa(ﬁ'f%'o) 0)(r,s,t) (r —5— \/§rs>

+ ?oa(;%%@'o) 0i(r,s,t) (—r +5— \/§rs>7

( 001)

+ tanh(,c)o e (r, 5)0A(r, s, 1),

08rs = 08" + 00~ 1>)‘)A(r,s, )

N —

1
085t = 08" + 5 (0 ell00 _ 100)>02(r,s, 0r
+tanh(gc)o e (s, £)°A(r, s, 1),
- - 1
08 = 08" + 2( 010 _ 01005 5 s

+tanh(}c)pes®(t, 1) A(r, s, t), (18a)

oen” = \f( er(s %1)4-055;%’”%' )>(r+s+\@rs)
771)><—T—S+\/§rs>
7_77]))(r757\/§rs)

7])) (—r+s - \@rs),
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(0.320, 0.186, 0.643)
(0.677, 0.305, 0.683)
(0.788, 0.693, 0.644)
(0.165, 0.745, 0.702)

’éstab _ é

tr

(i1 (o
oe[(,‘@']”) + oet(,ﬁ' ! ”)) (t +r+ \/§tr>

o]
~

ook 7 el 5B (Lo vaw)

(0ol 1 oel5 ) (e r - vaw)

8
I A (R o)
(18b)

in which the superscript ‘stab’ denotes the strain terms obtained
directly from the displacements for stabilizing the spurious hour-
glass modes. These strain terms are multiplied by the function tanh
(§c) and hence the effect of stabilization is maximum at large com-
pressive deformations. In linear analysis there is no accumulated

Table 2
Predicted stress-xx (x10?) at the support (point B) in the cantilever problem.

Fig. 6. Cantilever problem (1 x 4 mesh, E = 3.0 x 10* and v = 0.0). (a) Regular

mesh. (b) Distorted mesh.

(b)

Elements Regular mesh Distorted mesh
H8 0.466667 0351417

H8I9 0.700000 0.618222
3D-MITC8 0.700000 0.580764

Exact solution 0.700000

Fig. 7. Cook’s problem (4 x 4 mesh, E = 1.0, plane stress conditions with v =1/3;
plane strain conditions with v = 0.3, 0.4 or 0.499).

Table 3
Table 1 Predicted y-displacement at point A in Cook’s problem with plane stress conditions.
Predicted y-displacement at the tip (point A) in the cantilever problem. Elements Mesh
Elements Regular mesh Distorted mesh 2x2 4 x4 8x8 16 x16 32 x32
H8 0.235611 0.204659 H8 109771 173332 21.5484 23.2055 23.7209
H8I9 0.347833 0.345307 H8I9 20.3889 22.6184 234766 23.7740  23.8840
3D-MITC8 0.347833 0.304211 3D-MITC8 19.0821 22.2906  23.4092 23.7695  23.8893
Exact solution 0.347833 Reference solution  23.9642
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Fig. 8. Convergence curves for Cook’s problem with plane strain conditions. The bold line represents the optimal convergence rate.
. ¢ . . . o o 1. -
deformation, ¢ in Eq. (14) is zero, and thus the strain terms in Eq. 00175_9,, = S0 — 2 5ol 5 = 5u£N$—”ue, 21)
(18b) are not activated. 3

We use as tying positions the Gauss numerical integration
points (%a = %) for the in-plane bilinear interpolations of the nor-

mal and shear strains in Figs. 2 and 3 and the mid-points of the
faces (Ja = 1) for the linear interpolations of the shear strains in
Fig. 2. These positions of tying the normal and shear strains
decrease the solution errors.

We employ the same assumed strain field for the incremental
nonlinear strain oﬁy, and hence the incremental strain components
in the global Cartesian coordinate system are

088 = ofi(ii - °8¥) (i - °g"), 08l = oefy" (i - °g") (i - °g").
SoTT = doia(i; - °*)(i; - "), doTl! = dompig" (i - °g*) (s - °g"),  (19)

in which superscripts ‘as’ and ‘dil' denote assumed and dilata-
tional strain parts. The dilatational strains are constructed only
from the constant part of the assumed strains to alleviate volu-
metric locking.

The constant volumetric strain is obtained as [1,21]

svol odil odil 5dil __ Rpol
08" = €y + 08y + o€y = B,
ol 77dil 77dil F7dil T\ vol
901"* = S0l + oy + dolz; = oU N, (20)

and the deviatoric strain components are obtained from

Sdev
06

Has
o€ —

1 _ —
§Oeym(51‘j — Bgevue?

Table 4
CPU time used for evaluating the element stiffness matrices of Cook’s problem (320 x
320 element mesh).

Elements CPU time (s) used Normalized CPU time
H8 16.1 1.0

H8I9 24.2 1.50

3D-MITC8 18.3 1.14

3D-MITC8/1 19.0 1.17

A laptop with dual core Intel 3.50 GHz CPU and 8.0 GB RAM is used

with the nodal displacement vector u, = [u} ug}T. The effi-
cient computation of the strain-displacement matrices given in
Egs. (20) and (21) is presented in Appendix B.

Fig. 9. Clamped square plate subjected to in-plane moment (plane strain condi-
tions, L=1.0, E=1.0, M = 1.0, and v = 0.3, 0.4 or 0.499). (a) Problem description
with regular mesh (4 x 4 mesh). (b) Distorted mesh (4 x 4 mesh).
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The stiffness matrix (‘K) and internal force vector ({F) are [1]
K = %V Kﬁyoﬂﬁyoldove + AV EgeyTCgevﬁgedeVe

+ ! ( Sxx + Osyy + ()S )NDOIdOV + / fSUNdevdo

ov, 3
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Alternatively, we can construct an 8-node element using the
assumed strain field in Eq. (18) to obtain a mixed displacement-
pressure (u/p) formulation for alleviating volumetric locking.

The stiffness matrix (‘K) and internal force vector ({F) of the
3D-MITC8/1 element are

K = Kuw — (1/Kpp) Kip' KL,

tF / Bvol S + S + Szz d V / Bdev ts dO (22) , B B B
K = / BleY' CIVBLedOV, + / [ 3 (550t 05 + 52 NV,
in which §S;; denotes the second Piola-Kirchhoff stress measured in R tevt0 ’
t ev
the global Cartesian coordinate system, and k = 3(152‘,) is the bulk + A/ 05Ny d’Ve
modulus with Young’s modulus E and Poisson’s ratio v. For
the linear isotropic material considered in this study, ) 1 oy
d d d d d d K _ Reol” 10 _ Loy 7V
Cx =Gy =C;" =15 and Cy¥ = (3" = €)Y = 5 Ky = . B d°V., Kpp = Ave ;cd Ve = o
The incremental Green-Lagrange strains in Eq. (10) are
expressed using the linear and nonlinear strains in Eqs. (20) and . vulTl e . 0 .
(21), and the global incremental strain values are then obtained as ~ oF = / B 05w + 05y + Oszz>d Ve + lv B (S;d°V..  (25)
0e” = B, + ;uTN”"lue, *d“’ Bde”ue + ;uTNd” (23) The single pressure variable (p,) is
_ T
The second Piola-Kirchhoff stress is updated as Pe = —(1/Kpp)K, . (26)
LS — 85+ 05,055 = KoE™'0; + C?f”oE?f% (24) and the second Piola-Kirchhoff stress is updated as
tHHALC LT T. C._ _ dey dez)
and the nodal geometry is updated using Eq. (3). 055 = 05 + 05ij,055 = —Pedij + Gy ' (27)
H8 H8I9 3D-MITCS8
0 1 1 0 1 1 1 1 1 0 1 1 1 T T
-0.6 4 -0.6fF 4 -0.6f -
-1.2F 4 -1.2F 4 -1.2} -
logEp -1.8F 4 -1.8fF 4 -1.8f .
2.4} 4 24} 4 -24} .
88 v=03
B i a3l J 3l AA v=04
-3 3 3 o6 v-0499
-3.6 L1111 -3.6 N T N N 3.6 | T N T | |
-1.8 -1.2 06 0 -1.8 -1.2 -06 O -1.8 -1.2 -0.6 O
logh logh logh
(a)
H8 H8I9 3D-MITC8
0 T T o 1 1 1 1 1 0 1 1 1 1 1
-0.6 4 -0.6} 4 -0.6fF —
1.2} 4 1.2k 4 -1.2f .
logEp -1.8F 4 -1.8fF 41 -1.8f .
2.4} 4 24} 4 -24} .
B85 v=03
B i a3l J 3l A-A v=04
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Fig. 10. Convergence curves for the clamped square plate subjected to in-plane moment using (a) uniform meshes and (b) distorted meshes. The bold line represents the

optimal convergence rate.
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When compared with the 3D-MITC8 element, the 3D-MITC8/1
element shows the same performance in linear analyses and can
give slightly different solutions in nonlinear analyses. For the
numerical solutions below, the results are the same as for the
3D-MITC8 element unless otherwise noted.

In the finite element solutions, we use 2 x 2 x 2 Gauss integra-
tion over the element volume considered.

4. Illustrative solutions

In this section, we present the performance of the new 3D solid
element through the solutions of various 3D examples. Compar-
isons are made with the standard displacement based 8-node ele-
ment referred to as “H8” as well as the standard 8-node
incompatible modes element referred to as “H8I9”, see Refs.
[1,3-5].

First, the new 3D solid element is assessed considering the basic
numerical tests. Then the performance of the new 3D solid element
is investigated in linear plane stress and plane strain analyses,
namely, a cantilever beam problem, Cook’s problem, a clamped
square plate problem, a pressurized cavity problem, and a clamped
plate subjected to a uniform pressure. The geometric nonlinear
solutions are included to test the occurrence of instability: a can-
tilever subjected to tip forces, a rubber block problem, and a panel
problem. We use ADINA to obtain the solutions of the geometric
nonlinear problems with the incompatible modes element [22].
In all analyses we assume that the material response is described
by Young’s modulus E and Poisson’s ratio v, where we recognize
that there is a strain limit that such material can be subjected to
before a material model instability occurs [1].

Using the derivations in Appendix B, we have found that the cal-
culation of the 3D-MITC8 element stiffness matrix is not much
more expensive than the calculation of the H8 element stiffness
matrix commonly used (see Section 4.3 for an example).

4.1. Basic numerical tests

We consider the isotropy, zero energy mode and patch tests in
linear analysis.

The spatially isotropic behavior and invariance to the nodal
numbering is important for any element [1,17,19]. The 3D-MITC8
element passes the isotropy test.

In the spurious zero energy mode test, the stiffness matrix of a
single unsupported element should show only zero eigenvalues
corresponding to the correct rigid body modes. Six rigid body
modes corresponding to the 3 translations and 3 rotations should
be present. The 3D-MITC8 element passes this test.

In the patch tests [1,15,23], the patch of elements shown in
Fig. 5 is subjected to the minimum number of constraints to pre-
vent rigid body motions, and forces are applied at the boundary
corresponding to the constant stress states. The predicted normal
and shearing stresses should be the analytically correct values at
any location within the patch of elements. The 3D-MITC8 element
passes the patch tests.

4.2. Cantilever problem

We solve the cantilever problem shown in Fig. 6. The structure
is subjected to a shearing force at its tip. The cantilever is modeled
using regular and distorted meshes with four elements as in Refs.
[20,24,25].

Tables 1 and 2 give the tip vertical displacement at point A and
the xx-component of stress at point B with reference to the refer-
ence solutions. As when using the H8I9 element, the use of the
3D-MITC8 element gives the exact solution with a regular mesh.

For the distorted mesh case, the solution using the 3D-MITCS ele-
ment is much more accurate than when using the H8 element, and
not much less accurate than obtained using the H8I9 element.

4.3. Cook’s cantilever problem

We consider Cook’s problem shown in Fig. 7 [4,20,24,26]. The
cantilever is clamped at one end and is subjected to a distributed
shearing force of total magnitude P at its tip. We consider the solu-
tions using plane stress conditions with Poisson’s ratio v =1/3,
plane strain conditions with v =0.3, 0.4 and 0.499, and meshes
of N x N elements with N = 2, 4, 8, 16 and 32. The plane strain con-
dition is modeled by imposing w = 0 for the entire mesh.

Table 3 gives the vertical displacement at point A for the plane
stress case. The performance of the 3D-MITCS8 element is similar to
that of the H819 element. For the plane strain case, we measure the
solution error using the s-norm [27,28] with reference solutions
obtained using a 72 x 72 mesh of the standard 27-node
displacement-based element for the cases v=0.3, 0.4 and the
27/4 element for the case v =0.499 [1].

The s-norm used is given by

||l.lref — Uy Hsz = / ASTA‘Ceref, with Ag = &ref — &, AT= Tref — Th,
Qref

(28)

and then the relative error is

~"p=p, cos(Zé)‘ .

(b)

Fig. 11. Pressurized cavity problem (plane strain conditions, L=1.0, E=1.0,
p = 1.0 for uniform and p, = 1.0 for smoothly varying loads, and v = 0.3, 0.4 or
0.499). (a) Problem description with uniform pressure (4 x 8 mesh). (b) Smoothly
varying pressure.
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where u, is the reference solution, u, is the solution of the finite
element discretization, the subscript h corresponds to the element
size used, € and 7 are the strain and stress vectors, and Ej, is the rel-
ative error.

The behavior of an element is optimal if the convergence for the
element in a sequence of meshes is given by
Ey = Ch?, (30)
in which C is a constant independent of the material properties and
h is the element size.

Fig. 8 shows the convergence of the relative error as a function
of the element size h = 1/N. For v = 0.499, the convergence is
severely degraded when using the H8 element. The 3D-MITC8
and H8I9 elements behave nearly optimally and show comparable
performance.

To indicate the computational effectiveness of the new element,
Table 4 gives the CPU time used to calculate the element stiffness
matrices for a fine mesh with N = 320, that is, 102,400 elements.
We employ the standard formulations for the H8 and H8I9 ele-
ments, with the internal degrees of freedom of the H8I9 element
condensed out [1,3-5]. The time used for the 3D-MITC8 element
is larger than for the standard H8 element, but not by much.
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4.4. Clamped square plate subjected to an in-plane moment

We solve the clamped square plate problem shown in Fig. 9 [20]
and assume plane strain conditions with Poisson’s ratios v = 0.3,
0.4 and 0.499. For the solutions, we use regular and distorted
meshes with N x N elements and N=2, 4, 8, 16 and 32, see
Fig. 9(a) and (b), where the element edges are discretized in the
ratio Ly:Ly:Ls:...:Ly=1:2:3:...:N. The following boundary
conditions are imposed: u = v =w =0 along AD, and w =0 for
the entire mesh.

The relative error is measured using the s-norm with the
reference solutions obtained using a 72 x 72 mesh of the standard
27-node displacement-based element for the cases v = 0.3, 0.4 and
the 27/4 element for the case v = 0.499. Fig. 10 shows a compara-
ble performance of the 3D-MITC8 and H8I9 elements, where the
convergence is nearly optimal for the uniform and distorted
meshes.

4.5. Pressurized cavity problem

We consider a square structural domain with an internally pres-
surized circular cavity as shown in Fig. 11. Plane strain conditions
are assumed with Poisson’s ratios v = 0.3, 0.4 and 0.499. Because of
symmetry, only one-quarter of the structure is modeled using
N x 2N elements with N = 2, 4, 8, 16 and 32. The following bound-

H8 H8I9 3D-MITCS8

0 T T 0 1 1 1 1 1 0 1 1 1 1 1
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-1.2f 4 1.2} 4 12 .
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Fig.

12. Convergence curves for the pressurized cavity problem using (a) the uniform and (b) smoothly varying loads. The bold line represents the optimal convergence rate.
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ary conditions are imposed: u = 0 along BC, v = 0 along DE, and
w = 0 for the entire mesh.

The structure undergoes in-plane compression or bending
according to the type of internal pressure p used. We test the cases
of uniform internal pressure, see Fig. 11(a), and smoothly varying
pressure, see Fig. 11(b).

Fig. 12 shows the convergence of the solutions measured using
the s-norm, for which the reference solution is obtained with a 36
x 72 mesh of the standard 27-node displacement-based element
for the cases v=0.3, 0.4 and the 27/4 element for the case
v = 0.499. Unlike the H8 element which severely locks near the
incompressible limit, the 3D-MITC8 and H8I9 elements behave
optimally.

4.6. Clamped square plate subjected to a uniform pressure

We consider a clamped square plate transversely loaded by a
uniform pressure, see Fig. 13(a) [17,19,20]. Utilizing symmetry,
only one quarter of the plate is modeled using N x N elements with
N =4, 8, 16, 32 and 64. We vary the ratio of the shell thickness to
the overall dimension of the structure, t/L=1/10, 1/100 and
1/1000. The element size is h = L/N. The boundary conditions are
u=0,=0 along BC, v=0,=0 along DC and
u=v=w-=0,=0, =0 along AB and AD. We use only one layer
of elements in the thickness direction.

We also perform the convergence studies with the distorted
mesh pattern shown in Fig. 13(b), where each edge is discretized
by the elements in the following ratio: L;:Ly:L3:...:Ly=
1:2:3:...:N for the N x N element mesh.

Fig. 14 shows the convergence measured using the s-norm; the
reference solution is obtained using a 72 x 72 element mesh of the
MITC9 shell element [28,29]. The element behavior is optimal if the
convergence curves have the optimal slope and the curves are
independent of the plate thickness and material properties. For
the 3D solid elements, we can hardly expect to see as good a per-
formance as when using shell or plate elements. However, the 3D-
MITC8 element shows the optimal convergence behavior when
using the regular mesh. The convergence behavior deteriorates
when a distorted mesh is used, but the performance of the 3D-
MITC8 element is better than the performance of the H819 element.

4.7. Cantilever in large displacements

We solve the cantilever problem shown in Fig. 15; the structure
is subjected to tip forces of magnitude F. To test the mixed effect of
compression and bending, two tip forces are applied at corners of
the structure. The increment in load per step is 2.0. The fully
clamped boundary condition of u = v =w =0 is applied at the
bottom.

Figs. 16 and 17 present the load-displacement curves and the
deformed shapes, respectively. The reference solution is obtained
using the standard 27-node displacement-based element. The
3D-MITC8 and incompatible modes elements follow the reference
behavior, however, using the H8I9 element, the cantilever is pre-
dicted to already collapse at F = 68.0 due to the propagation of
an element instability near the bottom of the model.

4.8. Rubber blocks in large displacements and large strains

We solve the rubber block problems shown in Fig. 18 [12,13,20].
The structures are supported at the bottom, loaded with the pres-
sure p in plane strain conditions with v = 0.49. The increment in
load per step is 1.2.

We analyze the rectangular and trapezoidal structures using
coarse meshes and, of course, do not claim to have reached solu-

Fig. 13. Clamped square plate with uniform pressure (L = 1.0, E = 1.7472 x 10’,
p=1.0 and v = 0.3). (a) Problem description with regular mesh (4 x 4 mesh). (b)
Distorted mesh (4 x 4 mesh).

tion convergence of the continuum problems. The purpose of the
solutions is to investigate whether an instability arises when using
the 3D-MITCS8 element.

Fig. 19 shows the calculated load-displacement curves. Since
Poisson’s ratio is not very close to 0.5, we obtain the reference solu-
tions using the standard 27-node displacement-based element.
The standard H8 element shows a too stiff behavior. Using the
H8I9 element, the analysis stops at the spurious collapse loads
p=380.4 and p = 85.2 for the rectangular and trapezoidal struc-
tures, respectively. The solutions using the 3D-MITC8 element
are as stable as when using the 2D-MITC4/1 or the standard 27-
node elements. Fig. 20 shows deformed shapes obtained using
the 3D-MITC8 element; these shapes are acceptable in contrast
to those obtained when using the H8I9 element which show spu-
rious hour-glass patterns.

4.9. Rubber panel in large displacements and large strains

We consider the panel shown in Fig. 21. The pressure load p is
applied asymmetrically on the top in order to also have significant
bending of the structure. The increment in load per step is 1.6.
Since the mesh is coarse, we do not claim to have reached conver-
gence in the solution of the continuum problem. The purpose of
this problem is to investigate whether a spurious instability arises.

Fig. 22 shows the load-displacement curves. The reference solu-
tion is obtained using the standard 27-node displacement-based
element. While the analysis using the H8I9 element predicts a spu-
rious path of solution, the prediction using the 3D-MITC8 element
closely follows the reference load-displacement curve. The
deformed shapes are compared in Fig. 23. Unlike the H8I9 element
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Fig. 14. Convergence curves for the clamped square plate problem using (a) regular and (b) distorted meshes. The bold line represents the optimal convergence rate.

mesh which shows strong hour-glass shapes, the 3D-MITCS8 ele-
ment mesh deforms smoothly as in the reference solution.

5. Concluding remarks

We proposed a new 3D 8-node solid element based on the MITC
approach for linear and nonlinear analyses. We established the
assumed strain field from physical considerations using a truss
structure to idealize the solid element and previously obtained
knowledge regarding MITC element formulations, specifically the
2D-MITC4, the 2D-MITC4/1 and the MITC4 shell elements
[15,20]. However, unlike in previous MITC element formulations,
we needed to include stabilization terms of displacement-based
shear strains to suppress spurious modes in geometrically nonlin-
ear solutions. These stabilization strain terms are only, and then
automatically, activated in geometrically nonlinear analyses when
needed.

The new 3D-MITC8 passes all basic element tests and we pre-
sented various problem solutions to illustrate the predictive capa-
bilities of the element. In linear analyses, the element compares
well in the accuracy of solutions reached with the H8I9 element
but is computationally more efficient because no incompatible
modes are used. In geometrically nonlinear analyses, the element
did not show instabilities as observed when using the H8I9 ele-
ment. However, it would be valuable to further study the element

and in particular to obtain deeper insight into the element formu-
lation through a mathematical analysis.

Appendix A. Representation of assumed strain field using
characteristic vectors

Here we decompose the covariant strain components using the
characteristic vectors and use the decomposition to represent the
constant assumed strain in Eq. (18).

Note that the incremental linear and nonlinear strain parts in
Eq. (11) can be expressed as

0€;i(1, s, t) = ("X + 'y, v + Zwy)ngy (1,8, £),

(1,8, ) = (wtty + vvy + wiwp)ngy (1, s, £), (A1)

in which I, J=1,...,8 are node numbers. Note that any part of
incremental strains can be expressed using the corresponding nodal
constants (ng; with nyy; = nuy = ny = nyy). The geometry s
described and corresponding incremental displacements are

XC =[x xR xBl g kBl g6 xl7]
= [tgr ‘C '8 X K Xy ‘xm]v

UC:f-AfxC_fxC:[um u?Z uB u¥ ub ud u?],
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Fig. 15. Cantilever subjected to tip forces (2 x 1x30 mesh, E=1.0 x 10° and
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Fig. 16. Load-displacement curves for the cantilever.
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Fig. 17. Deformed shapes for the cantilever.

1 [y withl, J=1,...,8and K, L=1,...,7,

KIL K L, ~
! = oe (e + ¢
P gt g G =l m Goam md L& aml.
(A3)
Using Eq. (A.2) in Eq. (4),
¢ X, 1] ctyld] | ttyl6] txl7]
grzﬁz XU 4 X 4 X 4 sEX
u, = % =u 4+ su® 4 tu® 4 stu,
t
g — aa_sx — tx2 x4ty g,
u, = % =u? + tuP 4 ru + tru,
t:
'8 = aa—tx = %P4 r'x® 4 stxBl o rstx)
ou_ 6 1 guld! )
uﬁtzazu + ru® 4 suP + rsu’. (A4)

Using Eqgs. (A.1), (A.3) and (A.4) with Eq. (11) we obtain the nodal

constants for the covariant strain
4 2tn£”6] + 25t(n}}m + n}j"s])

1] [
+2an m
6(6 2..6]7 242
po 4+ 2ty + s*tn

Ny (1,5, £) = 1y
+s2ny® 4 252" + 20 77
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Fig. 18. Rubber blocks subjected to pressure (6 x 1 x 15 mesh, E = 1.0 x 10* and
v = 0.49). (a) Rectangular block. (b) Trapezoidal block.

Ny (1,5, 8) = m? + 27 + 2m® 4 2tr(n” + nj™)

+ 0y 20 mp e 200+ 2ty

J >

306 35

Ny (r,5,t) = ;™ + 2" + 20 + 2rs(mi)” + np®)

2,066, 526 617) | 20505 2,507, 22007
+ 2y 4 2r2sn)" 4 s 4 2rs?np” 4 sty

My (1,5, £) =y + 0™+ %) + g 4 r(nff® + ")

+snp® 4 st(n®™ + nf") + rsnf ¥+ 2rstny”

2 1[516] 211(617] 2[5(7] 2[717]
+tn,] +tTTlU + St TlU + 18t TIU s

2/3]

Ry (.5, £) =l 26) | i3] 255 217

+r(ng® + gy + s 4 rs(nif 40

+ ) (' + ng") st 2rseng!”

2 1[4(6] 2 onl4l7] 2 1(617] 2 tnl717)
+ T n,] +r an + tr n,] +r Stnl] s

(115! 1316]

Ny (1,5, £) = 1y * + s(nf¥ + ny ™) + e}
17)

+ )+ rs(n® + nj

+st(mp® +ny")

6/6 6/7
)+ trnp® + 2rstn!”
+ 52 2?4 s 4 rs?en]” (A.5)

with Ny = M1y, Nssyy = N2y, Ny = N33y, Nysyp = Na2gy, Ney = N3y and
Ny = n31y. Using Eq. (17) with Eq. (A.3),

ay " =tdny "+ tdomy® 4 tdim)® with K =1,....6,
g =ty + 2 + iR+ 24d, dnj?

+2'd den® + 2'd ' d ey P, (A6)
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Fig. 19. Load-displacement curves for the rubber blocks. (a) Rectangular block. (b)
Trapezoidal block.

Substituting A" for njf” (K =1,...,7) in Eq. (A.5), we obtain the
nodal constants for the assumed covariant strain
ny(r,s,t) = [y faay sy figy flazy sy

Appendix B. Calculation of strain-displacement matrices
We aim to obtain good computational efficiency in the evalua-

tion of the element matrices.
Rearranging the strain transformation in Eq. (12),

- T _ -~ T
ny(r,s,t) =Gny(r,s,t),
n’](rvs7t):|:n]]lj Nyy N33y Ny Moy n31u]’

ny(r,s,t) =[Ny Ny Nszy Ny Moy Maygl,



99

Y. Ko, K,J. Bathe / Computers and Structures 202 (2018) 85-104

Reference

~

A

1.0 x 10°

Fig. 21. A rubber panel subjected to surface loading (3 x 3 x 9 mesh, E

and v

0.49).

N
///////////

M\

T
NN
AN
7 N

N

O

(/77777777777777

Reference

-© -0- H8I9

— - 3D-MITC8
-+ 3D-MITC8/1

220

NN
A

200 |-

171.2

Reference

MU
A\

N
N

MITC8

3D

25

1.5

Displacement (W)

R
N\

Fig. 22. Load-displacement curves for the rubber panel.

o
v
=
o
@

‘T

o

(b)

Fig. 20. Deformed shapes for the rubber blocks.
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at the tying positions of the assumed strain components in Eq. (18)
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in which the signs are [{; (] =[1 -1}, [& & & &=
[-1 1 1 =1] and [y #2 #5 fa]=[-1 -1 1 1]. We

note that the constants in Eq. (B.2) are calculated only once for each
element.
We define the following representative nodal constants
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~[K|7] - . -
Here, the part of n}| 7 related.to n}] 7 is updated }Jsmg Eq. (A..6) once Ny H2 H! H! H: HS H: H: H]
for each element per each increment of nonlinear solution. The ﬁfru _ Hg Hg Hé Hé HZ; H(Sa Hg Hg Sl (B.5)

remaining parts of n¥

. i — k
;» and the constants Ej|, (j= 123) nf ) H' H H H H H, H H

and S;| p (j =4, 5, 6) are independent of solution increments, loca-

tions within elements and are the same for all elements and hence
are only calculated once.
It is possible to represent the assumed strain field in Eq. (18) in

Mgy
In Eq. (B.4), we carry out the computations that depend on the nat-

ural coordinates (r, s, t) (for each Gauss point), once for each differ-
ent nodal coupling (nodes I and J). Using Eqs. (B.2) and (B.3) to Eq.

terms of nodal constants as (B.5), we calculate (once per each element) the constants nj, ﬁ{;k,j,
/i " ﬁf{ky, ﬁgu, ﬁﬁju, E{J'.U and ﬁgu, and update A%" in each increment.
Az, = iy +TO Ar,s, )5, +TO Ar,s,omt, . The rlodlal corijtants for th.e global volumetric and deviatoric
strains (7j* and 7{{”) are obtained from

3, ~
+20(r,s, t)stnt

4 77 i —vol _ =dil | wdil | wdil =dev _ = J—
™ = My ~+ Myyiy + gy, M = My — 51 04

cos scon V3 ~ V3 ~ “us  mas ;3 0ckves ORI mdil  sconss 0ckves 0
0, t 0 as __ pas (3 Ogkyz Ogly ;dil _ mcongs  Ogky(i. . Ogl
nggy = Mgy t Ar,s, t)tng, t A1, s, trng, iy = Mgy (i - ") (1 - °8"), Mgy = Mgy (1 - "g7) (1 - °8). (B.6)
3 " i i in-di 1 Rdev Ndev
4 Z0 AT, t)trngu, The _devnatorlc strain-displacement matrices (B§” and Ni) are
obtained by
ndevt
Ao — feon +\/_§Ol(r s t)r’ﬁr +§0/«L(r s t)sh\s _ B B B B s Mijy X 0 0
ttl] ttl] 4 39y ttl] 4 [l ttl] dejeu _ (Bgﬁ” L. Bg'i” .. B%U)ng‘?y — Z 0 ﬁg-?}”tJ’J 0 ,
3 N . J=1 Tdevt
+ZOA(T‘, s, t)rsngy, 0 0 'y
Ndev Ndev
1 . V3 . . N¢ - a
=as __ mcon 0 t t r s ij11 ij18 1 0 0
nrslj - nrsl] + i )L(T,S, t)tnrsl] + ? tanh(oc)(nrsljr + nrsl]s _ _
Niev = | - Neev Ny =ngrl 001 0|, (B.7)
ars 0 : i :
+V3nyrs)0A(r s, 1), Nier Nier 00 1
iig1 ij88
| V3 - - L . . -
A, = gy Jrio Ar,s, )l +g tanh(oC) (ngys + niyt V\{here similar rfelatlo_n : also_h;)ld§ E)rl volumetric  strain
displacement matrices, B and N*°' with nj*.
+V3ngst)i(r,s, 1),
References
= = 0, - t Tt I
n?rsu = nfﬁI}l + i /“(r’sv t)snfﬂj + ? tanh(oc)(nm]t + n;ryr [1] Bathe KJ. Finite element procedures. Prentice Hall; 1996, 2nd ed. K. Bathe,
- Watertown, MA; 2014 and Higher Education Press, China; 2016.
+ \/gngutr)o,l(n& t), (B.4) [2] Bathe K]. The inf-sup condition and its evaluation for mixed finite element
methods. Comput Struct 2001;79(2):243-52.
[3] Wilson EL, Ibrahimbegovic A. Use of incompatible displacement modes for the
~con scon  =con  =con  =con =con1T 9 MM calculation of element stiffnesses or stresses. Finit Elem Anal Des 1990;7
[nrrlj nssl] nttI] nrsl] nstl] ntrl] ] = Zco no |1]7 (3):229-41.
M=1 [4] Simo JC, Rifai MS. A class of mixed assumed strain methods and the method of
incompatible modes. Int ] Numer Meth Eng 1990;29(8):1595-638.
F—~ - [5] Kasper EP, Taylor RL. A mixed-enhanced strain method: part I: geometrically
n,s-r,] Gf G} G‘]1 G? Ny Gg G; (;‘21 G; linear problems. Comput Struct 2000;75(3):237-50.
~ 3 4 ] 5 —~ 3 4 ] 5 [6] Alves de Sousa R], Natal Jorge RM, Fontes Valente RA, César de Sa JMA. A new
n,.,,] = Gl Gl Gl Gl E |I]’ ngs,, = G2 Gz Gz G2 E2|1]7 volumetric and shear locking-free 3D enhanced strain element. Eng Comput
~ 4 3 2 1 ~ 4 3 2 1 2003;20(7):896-925.
ﬂ,s,ﬁ,] Gl Gl G] Gl n;g,, GZ G2 Gz GZ [7] Wriggers P, Reese S. A note on enhanced strain methods for large
a - deformations. Comp Meth Appl Mech Eng 1996;135(3-4):201-9.
[8] Sussman T, Bathe K]. Spurious modes in geometrically nonlinear small
-ﬁf T G G ¢ ¢ displacement finite elements with incompatible modes. Comput Struct
ttl] 3 3 3 3 2014;140:14-22.
s — 3 4 1 2 at o CG*nl 1.2 [9] Korelc ], Wriggers P. Consistent gradient formulation for a stable enhanced
ey G3 G3 G3 G3 E; |’]’ Mgy G4n4 |U + G4ll4 |U’ strain method for large deformations. Eng Comput 1996;13(1):103-23.
s G‘; Gg G§ G; [10] Pantuso D, Bathe KJ. On the stability of mixed finite elements in large strain
L el | analysis of incompressible solids. Finit Elem Anal Des 1997;28(2):83-104.
[11] Reese S, Kiissner M, Reddy BD. A new stabilization technique for finite
—ﬁ’ b - 1 4 u3 w6 w5 18 - elements in non-linear elasticity. Int ] Numer Meth Eng 1999;44(11):1617-52.
rsif H; H, H, H; H; H; H; H, [12] wall WA, Bischoff M, Ramm E. A deformation dependent stabilization
ﬁislj — Hi Hi Hl Hi HZ; Hi Hi Hz Saly, n;“] :G?)HHU +G;n§|u7 ;t\;chgigueé%%eom]p;gi? 8b§,9 E7AlS elements at large strains. Comp Meth Appl
~ D s R R - ech Eng ; :699-/1.
ne LH, H; H; H, H, H; H; H] 13] Bischoff M, Bletzinger KU. Interaction of locking and element stability at large
rsl]
a h strains. In: VIII international conference on computational plasticity.
Barcelona; 2005.
'ﬁs 1 C1e2 1 4 3 6 5 8 74 [14] Korelc ], Solinc U, Wriggers P. An improved EAS brick element for finite
/A“" H; H; H; H; H; H; H; H; _ deformation. Comp Mech 2010;46(4):641-59.
nty | =|H: Hf Hy H H] HI H} H|Ss|;.ny= Généhj +Géné{lj, [15] Dvorkin EN, Bathe KJ. A continuum mechanics based four-node shell element
~ H H H: H' H H. H® H® for general non-linear analysis. Eng Comput 1984;1(1):77-88.
L ”ify ] i R T A T - e e [16] Radovitzky RA, Dvorkin EN. A 3D element for non-linear analysis of solids. Int ]

Numer Meth Bio Eng 1994;10(3):183-94.


http://refhub.elsevier.com/S0045-7949(18)30038-5/h0010
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0010
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0015
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0015
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0015
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0020
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0020
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0025
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0025
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0030
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0030
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0030
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0035
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0035
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0040
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0040
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0040
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0045
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0045
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0050
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0050
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0055
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0055
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0060
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0060
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0060
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0070
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0070
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0075
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0075
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0080
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0080

104 Y. Ko, K,J. Bathe / Computers and Structures 202 (2018) 85-104

[17] Lee PS, Bathe KJ. Development of MITC isotropic triangular shell finite
elements. Comput Struct 2004;82(11):945-62.

[18] Bucalem ML, Bathe KJ. The mechanics of solids and structures - hierarchical
modeling and the finite element solution. Springer; 2011.

[19] LeeY, Lee PS, Bathe KJ. The MITC3+ shell element and its performance. Comput
Struct 2014;138:12-23.

[20] Ko Y, Lee PS, Bathe KJ. A new 4-node MITC element for analysis of two-
dimensional solids and its formulation in a shell element. Comput Struct
2017;192:34-49.

[21] Sussman T, Bathe K]. A finite element formulation for nonlinear
incompressible elastic and inelastic analysis. Comput Struct 1987;26(1-
2):357-409.

[22] ADINA R & D, Inc. ADINA Theory and Modeling Guide; 2017 <http://www.
adina.com>.

[23] MacNeal RH, Harder RL. A proposed standard set of problems to test finite
element accuracy. Finit Elem Anal Des 1985;1(1):3-20.

[24] Chen XM, Cen S, Long YQ, Yao ZH. Membrane elements insensitive to
distortion using the quadrilateral area coordinate method. Comput Struct
2004;82(1):35-54.

[25] Cen S, Chen XM, Fu XR. Quadrilateral membrane element family formulated by
the quadrilateral area coordinate method. Comp Meth Appl Mech Eng
2007;196(41):4337-53.

[26] Li HG, Cen S, Cen ZZ. Hexahedral volume coordinate method (HVCM) and
improvements on 3D Wilson hexahedral element. Comp Meth Appl Mech Eng
2008;197(51):4531-48.

[27] Hiller JF, Bathe KJ. Measuring convergence of mixed finite element
discretizations: an application to shell structures. Comput Struct 2003;81
(8):639-54.

[28] Chapelle D, Bathe K]. The finite element analysis of shells - fundamentals, 1st
ed. Springer; 2003; 2nd ed. Springer; 2011.

[29] Bathe K], Lee PS, Hiller JF. Towards improving the MITC9 shell element.
Comput Struct 2003;81(8):477-89.


http://refhub.elsevier.com/S0045-7949(18)30038-5/h0085
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0085
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0090
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0090
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0095
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0095
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0100
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0100
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0100
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0105
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0105
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0105
http://www.adina.com
http://www.adina.com
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0115
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0115
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0120
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0120
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0120
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0125
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0125
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0125
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0130
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0130
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0130
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0135
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0135
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0135
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0145
http://refhub.elsevier.com/S0045-7949(18)30038-5/h0145

	A new 8-node element for analysis of three-dimensional solids
	1 Introduction
	2 Tying and interpolation of strains in the MITC procedure
	3 Formulation of 3D-MITC8 element
	4 Illustrative solutions
	4.1 Basic numerical tests
	4.2 Cantilever problem
	4.3 Cook’s cantilever problem
	4.4 Clamped square plate subjected to an in-plane moment
	4.5 Pressurized cavity problem
	4.6 Clamped square plate subjected to a uniform pressure
	4.7 Cantilever in large displacements
	4.8 Rubber blocks in large displacements and large strains
	4.9 Rubber panel in large displacements and large strains

	5 Concluding remarks
	Appendix A Representation of assumed strain field using characteristic vectors
	Appendix B Calculation of strain-displacement matrices
	References


