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Abstract

In this paper, a stress integration algorithm is presented for a generalized elasto-plastic material model governed by the
three stress invariants I1, J2 and J3. The methodology is successfully applied to the Mohr–Coulomb material model with a
non-associated flow rule and implemented in ADINA.
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1. Introduction

In the finite element method, the integration scheme
of the inelastic constitutive behavior directly controls the
accuracy and stability of the overall numerical solution [1].
So far, effective methodologies have been proposed for
plasticity models whose yield criteria can be written as
functions of I1 (the first stress invariant) and J2 (the second
deviatoric stress invariant) [1] [2]. However, no efficient
algorithms are available for general material models of
great engineering interests, in which not only I1 and J2,
but also the third deviatoric stress invariant J3 is used, such
as in the Mohr–Coulomb material model. In this paper,
an integration scheme is proposed for such models and
specifically for the Mohr–Coulomb material description.
The scheme is based on return mapping of the stresses. The
objective of this paper is to briefly present the algorithm as
implemented in ADINA and give some results obtained in
the analysis of the excavation of a set of twin tunnels.

2. The algorithm

An inelastic solution scheme requires two ingredients:
the stress integration and the calculation of the consistent
tangent stress–strain matrix [1].
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2.1. The stress integration scheme

During the stress calculations, for any given strain in-
crement ∆e, the corresponding stress increment must be
computed iteratively. The stresses at time t C ∆t can be
written in the following form
tC∆tσ D CE tC∆t eE D CE

�
tC∆t e � t eP � ∆eP

Ð
(1)

where CE is the elastic stress–strain matrix, tC∆t e are the
total strains at time t C ∆t , tC∆t eE are the total elastic
strains at time t C ∆t , t eP are the total plastic strains at
time t , and ∆eP are the total plastic strain increments.
For a general elasto-plastic material model with its plastic
potential function written as g D g.I1; J2; J3; HÞ/, where
the HÞ are the N state variables (Þ D 1; 2; : : : N), the
plastic strain increments are given by

∆eP
i j D ∆eP

mŽi j C ∆e0P
i j .i; j D 1; 2; 3/ (2)

where Ži j is the Kronecker delta. Using the Euler backward
method, the above mean plastic strain and deviatoric plastic
strain increments based on the flow rule are, respectively
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tC∆t J2∆½Ži j (4)

and the pressure and deviatoric stresses at time t C ∆t are

tC∆t p D tC∆t pE C ∆½

3aM
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@p
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(5)
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Fig. 1. 3-D finite element mesh for the twin tunnels.
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where pressure p is defined as �I1=3, pE and SE
i j are the

elastic predictors for p and Si j , respectively, aE and aM

are elastic constants, ∆½ is called the plastic multiplier
and the superscript t C ∆t denotes the time of solution

[1]. It is noted that
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%
are functions of the stress components tC∆t p, tC∆t Si j and
the state variables tC∆t HÞ . Therefore, tC∆t p and tC∆t Si j

cannot be obtained explicitly from Eqs. (5) and (6), which
represents some difficulties in the stress integration with
the potential function g

�
tC∆tI1;

tC∆t J2;
tC∆t J3;

tC∆t HÞ

Ð
and

the yield function

f D f .tC∆tI1;
tC∆t J2;

tC∆t J3;
tC∆t HÞ/ (7)

In general, the increments in the state variables can be writ-
ten as functions of the stresses, plastic strain increments,
and the state variables tC∆t Hþ themselves

∆HÞ D ∆h.tC∆tI1;
tC∆t J2;

tC∆t J3;∆ep
m ;∆e0p

i j ;
tC∆t Hþ/

.Þ; þ D 1; 2; : : : N/ (8)

For a 3-dimensional problem, if ∆HÞ , or tC∆t HÞ , can
be expressed explicitly in terms of the stress components
and plastic strain increments, we need to solve Eqs. (5),
(6) and (7) for a total of 8 primary unknowns at time
t C ∆t : one pressure component tC∆t p, six deviatoric stress
components tC∆t Si j , and one plastic multiplier ∆½. The
solution is obtained using Newton–Raphson iterations.

2.2. Determination of the consistent tangential moduli

In a full Newton–Raphson scheme used to perform the
global equilibrium iterations, the tangent constitutive rela-

tion at time t C ∆t , consistent with the stress integration
scheme, needs to be calculated. The constitutive relation is
defined as the variation in the stresses tC∆tσ as a conse-
quence of a variation in the total strains tC∆t e

tC∆t CE P D @ tC∆tσ

@ tC∆t e
(9)

The components for the constitutive tensor take the form
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The expressions @ tC∆t p
@ tC∆t ekl

and
@ tC∆t Si j

@ tC∆t ekl
are obtained by the

differentiation of the yield function, equations to calculate
the stresses, and equations expressing the hardening rela-
tions with respect to the total strain components. Removing
the left superscripts t C ∆t from all the variables for ease
of writing, the differentiations are written as follows
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In the above equations, i , j , k, l , m and n range from 1 to
3. The differentiation of each equation governing the strain
hardening of the state variables, expressed as FH D 0, with
respect to the strain components gives
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Combining Eqs. (12), (13), (14) and (15), we have
(8 C N) equations that are established using the stress inte-
gration algorithm and solved for the unknowns: @∆½=@ekl ,
@p=@ekl , @Si j=@ekl , and @HÞ=@ekl .
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Fig. 2. Vertical displacement distribution along the tunnel crown at different excavation stages.

Fig. 3. Vertical displacement distribution at the sections X D 0, 30 and 60 m across the tunnel axis (m).

3. Application to the Mohr–Coulomb model

The yield function and the potential function of the
Mohr–Coulomb material model are [3]

f D I1 sin! C 1

2

ð
3.1 � sin!/ sin �

C
p

3 .3 C sin!/ cos �
Łp

J2 � 3c cos! (16)
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Fig. 4. Vertical normal stress distribution at the sections X D 0, 30 and 60 m across the tunnel axis (kPa).

g D I1 sin C 1

2

ð
3.1 � sin / sin �

C
p

3 .3 C sin / cos �
Łp

J2 � 3c cos (17)

in which ! is the internal friction angle,  is the dilation
angle, c denotes the material cohesion and � is the Lode an-
gle. The proposed return mapping algorithm for the Mohr–
Coulomb model has been implemented in ADINA, and
we give here some results obtained in a simulation of the
sequential excavation of a set of twin tunnels constructed
in a soft rock layer, see Fig. 1. Each tunnel was 15.6 m
in diameter. A soft rock domain of 100 ð 100 ð 50 m3

was taken for the analysis. The soft rock was assumed to
correspond to the following material parameters: E D 240
MPa, ¹ D 0:3, unit weight 	 D 21:5 kN=m3, ! D 22:0º,
 D 10:0º, c D 0:1 MPa. The liner was modeled assuming
a linear elastic material with E D 5000 MPa, ¹ D 0:25,
and unit weight 	 D 25:5 kN=m3. Five incremental ex-
cavation stages performed together for each tunnel were
completed in the longitudinal direction, each incremental
excavation comprising a 20 m advancement and containing
2 time steps to perform the radial excavation. The liner was
installed right after each longitudinal excavation.

To obtain three-digit accuracy in energy values, conver-
gence was reached using a maximum of 3 iterations in
each time step. Fig. 2 shows the vertical displacement dis-
tribution at different excavation steps. The displacements
are plotted for the nodal points along the tunnel crown.
The displacements are small before the tunnel face ap-
proaches the cross section, but increase immediately after
the face has passed, and then increase further, as the face

progresses, until a level of about 11 cm. The displacement
results assuming elastic conditions are also shown. These
values are of course smaller. Similar conclusions can be
drawn from Fig. 3, which shows the vertical displacement
distribution at three sections at the time 5.0. Fig. 4 gives
the corresponding vertical normal stress distributions.

4. Conclusions

A stress integration procedure has been presented for
a general elasto-plastic material model in which the stress
invariants I1, J2 and J3 are relevant. The proposed formu-
lation is capable of accommodating arbitrary yield criteria,
flow rules and hardening laws provided, of course, the first
and second derivatives of the yield and potential functions
with respect to the stress components are available. The
algorithm has been implemented for the Mohr–Coulomb
material model with a non-associated flow rule.
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