
Computers and Structures 122 (2013) 2–12
Contents lists available at SciVerse ScienceDi rect 

Computers and Structu res 

journal homepage: www.elsevier .com/locate/compstruc
3D-shell elements for structures in large strains 
0045-7949/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compstruc.2012.12.018

⇑ Corresponding author. Tel.: +1 6179265199.
E-mail address: kjb@mit.edu (K. J. Bathe).
Theodore Sussman a, Klaus-Jürgen Bathe b,⇑
a ADINA R&D, Inc., Watertown, MA 02472, United States 
b Massachusetts Institute of Technology, Cambridge, MA 02139, United States 
a r t i c l e i n f o

Article history:
Received 3 October 2012 
Accepted 13 December 2012 
Available online 22 February 2013 

Keywords:
Shell elements 
3D-shell elements 
MITC tying 
Large strains 
Benchmark solutions 
Buckling
a b s t r a c t

We present in this paper MITC shell elements for large strain solutions of shell structures. While we focus 
on the 4-node element, the same formulation is also applicable to the 3-node element. Since the elements 
are formulated using three-dimensiona l continuum theory with the full three-dimensional constitutive 
behavior, they are referred to as 3D-shell elements. Specific contributions in this paper are that the ele- 
ments are formulated usi ng two control vector s at each node to describe the large deformations, MITC 
tying and volume preserving conditions acting directly on the material fiber vectors to avoid shear lock- 
ing, and a pressure interpolation to circumvent volumetric locking. Also, we present solutions to some 
large strain shell problems that represent valuable benchmark tests for any large strain shell analysis 
capability.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction 

The analysis of shells undergoing large strains has attracted a
considerable research effort, see Refs. [1–19] and the references 
therein. There are many practical situations where structures mod- 
eled as shells undergo large strains, like in metal forming and the 
crush and crash simulatio ns of motorcars. Special finite element 
programs have been developed to solve such problems . However,
although much research has been focused on the large strain anal- 
ysis of shells and various computer programs are already abun- 
dantly used to simulate shell structure s in large deformations 
and strains, there is still need for more reliable and efficient ele- 
ments. Indeed, the field of shell analysis – in general – is so rich 
that research in many areas is still needed, see Refs. [20–22].

To model the large strain behavior of shells, different ap- 
proaches can be pursued. The simplest approach is to perform a
large deformation analysis and update the thickness of the shell 
elements iteratively during the incremen tal solution [5]. This ap- 
proach requires relatively small incremental steps and is only 
attractive when the strains through the shell thickness are not very 
large.

The second approach is to model the shell using three-dimen- 
sional (3D) solid elements, and here typically 12-node or 27-node 
displacemen t-based elements are used to model the shell with a
single element layer to allow straining through the shell thickness.
These models suffer from shear and membrane locking, and to a
lesser degree from pinching locking [21]; hence very fine meshes 
may need to be used and as a consequence, general large strain 
shell problems in practice can be expensive to solve [23,24].

The third approach is to use three-dimensio nal continuum the- 
ory to develop 3D-shell elements. These elements contain the kine- 
matics of the three-dim ensional solid elements used in the second 
approach , referred to above, but the geometry and displacemen t
behavior are described with variables on the shell midsurface only.
For example, the 12-node solid element reduces to a 4-node shell 
element and the 27-node solid element reduces to a 9-node shell 
element, each with degrees of freedom at the shell element nodes 
that are used in addition to those usually employed for shell ele- 
ments. A mathematical analysis of the underlying displacemen t-
based 3D-shell mathematical model for linear analysis is given in
Refs. [21,25,26].

However , like the displacement- based 3D solid elements, the 
displacemen t-based 3D-shell elements used in the discretization 
of this mathematical model are hardly usable because of locking 
phenomena , and to obtain an effective 3D-shell element it is neces- 
sary to circumvent these detrimental effects [21]. A number of
researche rs used the enhanced assumed strain (EAS) approach to
propose 3D-shell elements, see e.g. Refs. [2,3,27]. Considering this 
approach , one disadvantag e is that the use of ‘enhanced strains’
render an element computationall y quite inefficient, due to the 
additional strain terms, but another disadvantag e is that such ele- 
ments exhibit severe instabilities at large strains, see Refs.
[28,29]. Many researchers used ‘reduced integration’ which also re- 
sults into instabilities, that is, spurious zero energy modes [30].
These instabilit ies – encounter ed with the EAS approach and the re- 
duced integration schemes – can be suppressed using artificial
numerica l factors that at large strains may need to change with 
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the deformation response [31–34]. While the reduced integration 
techniques have been used abundantly in explicit dynamic analy- 
ses, difficulties are encounter ed in static and slow dynamic situa- 
tions. In fact, the use of any of these numerical factors is quite 
undesirable, in particular, when large deformation s and large 
strains shall be predicted, since the solutions may contain physical 
instabilities that may be masked by artificial factors; hence the 
solutions can be unreliable and quite inaccurate.

A requiremen t that we focus on in our developmen ts, is to not 
have element instabilities in the formulat ion and not use any arti- 
ficial numerical factors. Spurious zero energy modes should not ex- 
ist, and this must hold for any amount of reasonable deformat ions 
and straining. Hence we do not use the methods of enhanced as- 
sumed strains and reduced integration. Instead, we employ, in gen- 
eral, the MITC approach to avoid shear and membrane locking in
plate and shell solutions [21,30], and the displacemen t/pressure 
(u/p) formulation to circumve nt volumetric locking in solids [30].

In the next sections, we give the formulat ion of the 3D-shell ele- 
ments that we deem to be effective. These elements build upon the 
usual triangular and quadrilater al MITC shell elements [35,36] and
are develope d to model large strain behavior. In a section thereaf- 
ter we present various example solutions that can be regarded to
be benchmark tests for large strain shell formulation s.

While we focus in the paper on a 4-node element (which is
mostly used), the discussion is also directly applicable to a 3-node 
element, however, as pointed out in Section 2.5, the relevant strain 
interpolations need to be used [36]. Both the 4-node and 3-node 
elements have been implemented in the ADINA finite element 
program.
2. Formulation of the 3D-shell element 

In this section we give the fundamenta l concepts used in the 
formulation of the 3D-shell elements and the notation. We con- 
sider general nonlinear analysis, with large displacemen ts and 
large strains. For the most part, the notation is the same as in
Ref. [30].
2.1. Kinematics 

The kinematic description of the 3D-shell element, in a Carte- 
sian coordinate system, is based on the quantities shown in
Fig. 1. The element in the figure, with four midsurface nodes 
Fig. 1. Nodes and control vec
L = 1, . . . ,4, is described by the positions of the nodes given at time 
t by the vectors txmL, with components txmL

i ; i ¼ 1;2;3, and the 
nodal control vectors taL and tbL, with components taL

i and
tbL

i ; i ¼ 1;2;3. An isoparametr ic coordinate system is used, in
which r1, r2 are the isoparam etric coordinates on the midsurface 
and r3 is the isoparam etric coordinate out of the midsurfa ce. At a
given point (r1, r2, r3), the position of a material particle at time t
is given by

txiðr1; r2; r3Þ ¼ txmi þ
1
2

r3 þ r2
3

� �
tai þ

1
2
�r3 þ r2

3

� �
tbi for i ¼ 1;2;3

ð1Þ
in which 

txmi ¼
X

hL
txmL

i ;
tai ¼

X
hL

taL
i ;

tbi ¼
X

hL
tbL

i for i ¼ 1;2;3

ð2a;2b;2cÞ

where txmi, i = 1, 2, 3, gives the position of a material particle on the 
midsurf ace, the tai and tbi, i = 1, 2, 3, are the component s of the 
control vectors ta and tb at the point (r1,r2), the hL are the shape func- 
tions defined on the midsurface and the summati on is over all nodes 
L. In the following presen tation we shall always imply that the sub- 
script i is for the values 1, 2, 3 and no longer explic itly state so.

There are two differences between the control vectors ta, tb and
the usual director vector tVn with components tVni [30]. The control 
vectors include the element thickness, whereas a director vector is
of unit length, and there are two control vectors at each point on
the midsurface, whereas there is only one director vector at such 
point. Note that the kinematic assumptions used here are more 
general than for the element presented in Ref. [37], which was 
develope d for large displacement solutions but small strains.

The initial (time = 0.0) control vectors at each node are equal 
and opposite, with 

0aL
i ¼

aL

2
0VL

ni;
0bL

i ¼ �
aL

2
0VL

ni ð3a;3bÞ

where aL; 0VL
ni are the initial thickne ss and the components of the 

director vector at node L. Hence the initia l control vectors 0a, 0b
are equal and opposite everywhere on the element midsurface .

Consider a line of material particles at a position r1, r2 that ex- 
tends from r3 = �1 to r3 = 1. This line is denoted as ‘‘the line 
through the thickness’’. Along this line,

@txi

@r3
¼ 1

2
ðtai � tbiÞ þ ðtai þ tbiÞr3 ð4Þ
tors in 3D-shell element.
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Evidently the line through the thickness is straight when ta and tb
are parallel (opposite but not necessarily of equal lengths), and is
curved otherwise. The stretch along this line is

t
0k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@txi

@r3

@txi

@r3

s , ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@0xi

@r3

@0xi

@r3

s
ð5Þ

which shows that the stretch along this line, and hence the strain 
along this line, depends on r3. For the case when ta, tb are parallel,
namely when tai = ktaktVni, tbi = �ktbktVni, Eq. (5) becomes

t
0k ¼

1
2 ðktak þ ktbkÞ þ ðktak � ktbkÞr3

1
2 ðk0ak þ k0bkÞ

ð6Þ

which shows that the stretch along this line depends in general lin- 
early on r3.

It is necessary to allow the strain along the line through the 
thickness to depend on r3. For example, in pure out-of-plan e bend- 
ing, with the material for r3 > 0 in tension and for r3 < 0 in compres- 
sion, the Poisson effect causes the element to thin for r3 > 0 and to
thicken for r3 < 0.

2.2. Nodal degrees of freedom 

Each node has, at most, the following nodal degrees of freedom:
Dui
 incremental translations of the node, with components 
in the global system,
Dhi
 incremental rotations at the node, with components in
the global system,
De
 constant thickness incremental strain,

D~e
 linear thickness incremental strain,

D~hi
 incremental warping rotations at the node, with 

components in the global system,
where we do not give the superscrip t L for ease of writing. We as- 
sume that the increments are finite, although relatively small, but 
consider of course very large total deformat ions.

The incremental motions of the control vectors are controlled 
by the Dui, and the Dhi;De;D~e and D~hi as follows. Define

Dha
i ¼

1
2
ðDhi þ D~hiÞ; Dhb

i ¼
1
2
ðDhi � D~hiÞ;

Dea ¼ 1
2
ðDeþ D~eÞ; Deb ¼ 1

2
ðDe� D~eÞ ð7a;7b;7c;7dÞ

Here the superscript a denotes a quantity that updates control vec- 
tor ta and the superscript b denotes a quanti ty that updates control 
vector tb. Then the updated control vector t+Dta is given by

tþDta ¼ kQ ta ð8Þ

where k = exp(Dea), and 

Q ¼ Iþ sin c
c

Sþ 1
2

sin c=2
c=2

S2;

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dha

1

� �2 þ Dha
2

� �2 þ Dha
3

� �2
q

;

S ¼
0 �Dha

3 Dha
2

Dha
3 0 �Dha

1

�Dha
2 Dha

1 0

264
375:

Here Q is the usual finite rotation update matrix described in, for 
exampl e Ref. [30]. The control vector tb is updat ed in exactly the 
same way using the variables with superscrip t b.

We note that the degree of freedom De controls the update 
in the lengths of ta and tb equally, hence the name ‘‘constant 
thickness incremental strain’’ is appropriate for De. Also, a positive 
value for D~e lengthen s ta and shortens tb, so the name ‘‘linear 
thickness incremen tal strain’’ is appropriate for D~e.

We also note that the degrees of freedom Dhi control the rota- 
tions of ta and tb equally, so these degrees of freedom can be said 
to be the ‘‘rotations’’ at the node. On the other hand, the degrees of
freedom D~hi cause equal and opposite rotations of ta and tb. Since 
0a and 0b are initially equal and opposite, if D~hi is zero throughout 
the analysis, then the vectors ta and tb remain opposite (but not 
necessar ily equal in length), and therefore all of the lines through 
the thickness remain straight. Hence the effect of D~hi is to warp 
the lines through the thickness from straight lines into curved 
lines, and the name ‘‘warping rotations ’’ is used for D~hi.

In thin shells, it is frequent ly assumed that the lines through the 
thickness remain straight. This condition is easily modeled by
deleting the warping rotation degrees of freedom. Then the nodal 
degrees of freedom are Dui;Dhi;De;D~e.

The choice of rotations Dhi;D~hi, with components given in the 
global coordinate system, has the drawback that an incremen tal 
rotation about ta causes no update of ta (and similar for an incre- 
mental rotation about tb). Hence there are two zero energy rota- 
tions per node. To avoid this situation , in each case, new 
directions of rotations with one component parallel to the control 
vector are chosen, and the degree of freedom for the parallel com- 
ponent is deleted. We do not give the details here, as the process is
similar to that given in Ref. [30].

2.3. Deformat ion gradients 

Let us define the deformation gradients with respect to the iso- 
parametri c configuration of the element at times 0 and t,
respectivel y,

0
r X ¼ @0xi

@rj

� �
; t

rX ¼
@txi

@rj

� �
ð9a;9bÞ

where within the brackets we give the componen ts, and we use the 
term ‘‘deformation gradient’’ for 0r X although no deformation might 
have actually occurred. Here, and in the following , we have that 
i = 1, 2, 3 and j = 1, 2, 3. The quantities @0x

@rj
; @t x

@rj
, with component s

@0xi
@rj
; @t xi

@rj
, can also be interpret ed as vectors corresp onding to a mate- 

rial fiber lying in the direction rj at times 0, t.
The inverse deformation gradients can be calculated using 

r
0X ¼ @ri

@0xj
¼ 0

r X�1; r
tX ¼

@ri

@txj
¼ t

rX
�1 ð10a;10bÞ

The usual deformat ion gradient t
0X ¼ @t xi

@0xj
can be calculated using 

[30]

@txi

@0xj
¼ @

txi

@rk

@rk

@0xj
ð11Þ

and the volume ratio det t0X can therefore be obtained as

det t
0X ¼ det t

rX det r
0X ð12Þ
2.4. Cauchy–Green deformation tensor and Green–Lagrange strain 
tensor

Here we define

t
rC ¼

@txk

@ri

@txk

@rj
; t

re ¼
1
2

t
rC � 0

r C
� �

ð13a;13bÞ

as the Cauchy–Green deformat ion tensor and Green–Lagrange 
strain tensor with respect to the isopara metric configuration of
the elemen t.
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The usual Green–Lagrange strain tensor t
0e can be calculated 

from t
re using

t
0eij ¼

@rk

@0xi

@rl

@0xj

t
rekl ð14Þ
2.5. Tying rule 

So far we presented the kinematics of a 3D-shell element based 
on displacement assumptions only. The kinematical description 
used represents an extension of the usual displacement- based 
shell description [30]. While the asymptotic behaviors of the math- 
ematical shell models using director vectors are understood 
[21,25,38], it is well-known that the displacement- based models 
are not effective due to locking phenomena. For the low-order ele- 
ments that we consider here, the shear locking effects need to be
relieved and we describe next how we proceed.

We focus in this section on the MITC4 3D-shell element but the 
presentation is also directly applicabl e to the 3-node element with 
the appropriate strain interpolations [36]. The tying rule to relieve 
shear locking in large strain analysis is an extension and reinter- 
pretation of the tying rule used in the classical shell element 
[30,35]. In the following, the superscript DI denotes a quantity ob- 
tained directly from the displacemen t interpolation and the super- 
script AS denotes an ‘‘assumed strain’’, namely a quantity obtained 
including the effects of tying. In the MITC4 classical shell element,
the components t

reAS
ij are computed from the t

reDI
ij using

t
re

AS
13 ¼

1
2
ð1� r2ÞtreDI

13

��
ð0;�1Þ þ

1
2
ð1þ r2ÞtreDI

13

��
ð0;1Þ ð15aÞ

t
re

AS
23 ¼

1
2
ð1� r1ÞtreDI

23

��
ð�1;0Þ þ

1
2
ð1þ r1ÞtreDI

23

��
ð1;0Þ ð15bÞ

with t
reAS

ij ¼ t
reDI

ij for the other strain component s.

Using Eq. (13b), the tying rules Eqs. (15a) and (15b) can also be
written

t
rC

AS
13 ¼

1
2
ð1� r2ÞtrC

DI
13

���
ð0;�1Þ

þ 1
2
ð1þ r2ÞtrC

DI
13

���
ð0;1Þ

ð16aÞ

0
r CAS

13 ¼
1
2
ð1� r2Þ0r CDI

13

���
ð0;�1Þ

þ 1
2
ð1þ r2Þ0r CDI

13

���
ð0;1Þ

ð16bÞ

t
rC

AS
23 ¼

1
2
ð1� r1ÞtrC

DI
23

���
ð�1;0Þ

þ 1
2
ð1þ r1ÞtrC

DI
23

���
ð1;0Þ

ð16cÞ

0
r CAS

23 ¼
1
2
ð1� r1Þ0r CDI

23

���
ð�1;0Þ

þ 1
2
ð1þ r1Þ0r CDI

23

���
ð1;0Þ

ð16dÞ

with t
rC

AS
ij ¼ t

rC
DI
ij for the other component s. Notice that the same ty- 

ing rule is used for the configuration at time 0 and the configuration 
at time t. In the following , we focus on the configuration at time t,
with the understand ing that we use the same tying rule for the con- 
figurations at all times considered .

Now the Cauchy–Green deformation tensor, referred to the iso- 
parametric system, is constructed as the dot product of vectors 
using Eq. (13a), for example 

t
rC13 ¼

@txk

@r1

@txk

@r3
; t

rC23 ¼
@txk

@r2

@txk

@r3
ð17a;17bÞ

Thus tying condition s expressed as conditions on the trCij can also be

expressed as tying conditio ns on the material fiber vectors @t x
@ri

. Since 

only t
rC13, t

rC23 are affected by the tying, it is natura l to keep the vec- 
tors @t x

@r1
; @

t x
@r2

unchanged during the tying proces s (so that the compo- 

nents t
rC11;

t
rC12;

t
rC22 are unchan ged). However, we replace the 

vector @t x
@r3

by a vector @t x
@r3

� 	AS
such that shear locking is relieved 

through the tying, hence 
t
rC

AS
13 ¼

@txk

@r1

@txk

@r3


 �AS

; t
rC

AS
23 ¼

@txk

@r2

@txk

@r3


 �AS

ð18a;18bÞ

Eqs. (18a) and (18b), together with Eqs. (16a) and (16c), thus give 

two equations for the three unknown components of @t x
@r3

� 	AS
.

To obtain a third equation , we assume that 

det t
rC

AS ¼ det t
rC

DI ð19Þ

or, equival ently,

det t
rX

AS ¼ det t
rX

DI ð20Þ

Since det trX
DI ¼ @t x

@r1
� @t x

@r2

� 	
� @t x

@r3

� 	DI
and det trX

AS ¼ @t x
@r1
� @t x

@r2

� 	
� @t x

@r3

� 	AS
,

we have that Eq. (20) can be written as

@tx
@r1
� @

tx
@r2


 �
� @tx
@r3


 �AS

¼ det t
rX

DI ð21Þ

Eqs. (18a), (18b), (21) can be combined in matrix form as

@t x1
@r1

@t x2
@r1

@t x3
@r1

@t x1
@r2

@t x2
@r2

@t x3
@r2

@t x
@r1
� @t x

@r2

� 	
1

@t x
@r1
� @t x

@r2

� 	
2

@t x
@r1
� @t x

@r2

� 	
3

26664
37775

@t x1
@r3

� 	AS

@t x2
@r3

� 	AS

@t x3
@r3

� 	AS

2666664

3777775 ¼
t
rC

AS
13

t
rC

AS
23

det t
rX

DI

2664
3775
ð22Þ

The three rows of this matrix are linearly indepen dent, since the 
vectors @t x

@r1
; @

t x
@r2

are not parallel (unless the element is overdistort ed)

and row 3 is orthog onal to both rows 1 and 2. Hence Eq. (22) can be

solved for the components of @t x
@r3

� 	AS
.

Section 3 gives a simple physical interpretation of this tying 
rule.

Once the components @t xi
@r3

� 	AS
and @0xi

@r3

� 	AS
for i = 1, 2, 3 are 

known, we can compute all quantities . For example, Eq. (13b) be-

comes t
re

AS ¼ 1
2

t
rC

AS � 0
r CAS

� 	
. Thus, through the remainder of our 

presenta tion, we drop the superscript AS.
Note that all the above discussion is directly applicabl e to the 3-

node 3D-shell element in which also only the transverse shear 
strain components (that is, the correspondi ng Cauchy–Green 
deformat ion tensor components) are interpolated and tied.

2.6. Material law 

In the formulat ion of classical small strain shell elements, it is
assumed that the stress in the direction normal to the midsurface 
is zero. This assumpti on allows the strain in this direction, for any 
material behavior, to be condensed out of the material relation- 
ship. Hence there are, for example, no difficulties with incompress- 
ible material behaviors.

However , in the 3D-shell element, the assumpti on of zero stress 
through the shell thickness is not used in the material law. All 
strain components / deformat ion gradient components enter the 
material law, exactly as in the material law for 3D solid elements.

We consider materials undergoing large strains. For hyperelas- 
tic materials, we can directly write 

t
0Sij ¼ t

0Sij
t
0eij

� 	
ð23Þ

where the t
0Sij are the component s of the 2nd Piola–Kirchhoff stress 

tensor. For inelast ic materials , we use a material law that operates 
directly on the deformation gradient 
tsij ¼ tsijðt0XijÞ ð24Þ
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where the tsij are the components of the Cauchy stress tensor. This 
approac h is used in the updated Lagrangi an Hencky formulation 
[30].

2.7. Principle of virtual work for incompressible analysis 

In practice, many materials undergoing large strains exhibit al- 
most incompressible behavior, for example, rubber-like materials 
and elastic–plastic materials. Hence a practical large strain shell 
element must be usable with incompress ible materials. For such 
analyses, the MITC4 3D-shell element should be used with the 
pressure interpolation discussed below to avoid volumetric 
locking.

In the following, we assume that the relationship between the 
pressure and volume ratio can be written as tp = f(t

0J3), where, for 
ease of writing, we define t

0J3 = det t0X. We will also use the inverse 
relationship t

0J3 = f�1(tp).
We use a form of the u/p mixed formulat ion [30] for the internal 

virtual work 

dW ¼
Z

0V

t
0Sijd

t
0eij

0dV þ
Z

0V
ð�t

0J3 þ t
0
eJ3Þd~p0dV ð25Þ

and employ the following definitions:
The material law is given by Eq. (23): t

0Sij ¼ t
0Sij þ ðt �p� t~pÞ @

t
0 J3

@t
0eij

.

The material law is given by Eq. (24): tsij ¼ t�sij þ ðt �p� t~pÞdij,
with t

0Sij calculated from tsij
t
0Sij
2nd Piola–Kirchhoff stresses as computed from the 
deformat ions (including the effects of tying)
t�sij
 Cauchy stresses as computed from the deformat ions 
(including the effects of tying)
t�p
 pressure computed from the volume ratio, that is,
t�p ¼ f ðt0J3Þ
t~p
 separately interpolated pressure 

t
0J3
volume ratio as computed from the displacemen ts. Note 
that by the explicit assumption in the tying rule the 
volume is not changed due to tying.
t
0
eJ3
volume ratio as computed from the separately 

interpolated pressure, that is, t
0
eJ3 ¼ f�1ðt~pÞ
dij
 Kronecker delta 
Fig. 3. Schematic tying example in two dimensions, element drawn from the side.
The force vector for the element is obtained by expressing dW in
terms of the variation s in the nodal point degrees of freedom 
dui; dhi; de; d~e; d~hi, and also the pressure degrees of freedom dpi.
The stiffness matrix for the element is obtained by differentiating 
dW with respect to both the nodal point degrees of freedom and 
the pressure degrees of freedom. Since we use pressure degrees 
of freedom that are not shared between elements, we use static 
condensation to eliminate these variables from the element force 
vector and stiffness matrix, before assembly into the global finite
element vector and matrix.

2.8. Pressure interpolation 

It is important to choose the interpolati ons for the separately 
interpolated pressure appropriate ly. For the 3D-shell element, we
use the interpolation 
t~p ¼ tp0 þ tp1r3 ð26Þ

where tp0 and tp1 are the pressure degrees of freedom in each 
element. It is necessary to include the r3 term in order to model 
out-of-pla ne bending. For an assemblag e of 3D-shell elemen ts
under going membrane action only, the tp1 degrees of freedom will 
be zero and the elements will all have constan t pressure, similar to
an assemblag e of three-dimen sional 8/1 elements (8 nodes for 
displace ments and constant elemen t pressure). These 8-node brick 
elemen ts can checker-bo ard in pressure when uniform meshes and 
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specific boundary conditio ns are used [30] but checker-bo arding is
hardly observed in practice.

Note that the 3-node 3D-shell element with the above pressure 
interpolation is not effective in incompress ible analysis, since in
pure membrane situations the element would lock as does the con- 
stant strain triangular element in plane strain conditions.
3. Physical interpretat ion of the proposed tying rule 

Section 2 describes a tying rule in which the material fiber

@t x
@r3

� 	DI
is replaced by the material fiber @t x

@r3

� 	AS
in a manner closely 

related to the tying of strain components in the MITC4 classical 
Fig. 4. Material fiber vectors before and after tying.

Fig. 5. Compatibility of adjacent laminae.

Fig. 6. Plane strain bending of a neo-Hookean rectangular block: geometry,
material properties and loading.
shell element, without changing the determinan t of the deforma- 
tion gradient.

The tying rule has a simple physical interpretation. Consider 
first that Eq. (1) can be interpreted as giving the positions of lam- 
inae parallel to the shell midsurfa ce (see Fig. 2). Namely, for each 
coordina te r3, there is a differentially thick lamina (the thickness 
is given by dr3).

Fig. 3 shows a simple schematic example in two dimensions , in
which the element is drawn from the side, so that the element 
thickness is in the y direction. Initially the sides of the element 
are straight (Fig. 3a) and the three differential elements A, B, C
along the shown lamina are square.

When the shell element is subjected to out-of-plan e shear 
(Fig. 3b), each of the differential elements A, B, C shear by the 

same amount. Thus Eq. (16) gives t
rC

AS
ij ¼ t

rC
DI
ij , Eq. (22) gives
Fig. 7. Deformed meshes for plane strain bending of a neo-Hookean rectangular 
block.
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@t xi
@r3

� 	AS
¼ @t xi

@r3

� 	DI
, and therefore the different ial elements are un- 

changed by the tying.
When the shell element is subjected to pure out-of-plan e bend- 

ing (Fig. 3c), the differential elements A, B, C stretch the same 
amounts in the x direction (in other words the material fiber @t x

@r1
in-

creases in length, and this increase is the same for each differential 
element). However the different ial elements also shear, and this 
shear varies along the lamina. This example illustrates the cause 
of shear locking, namely, when the shell element attempts to rep- 
resent a state of pure bending, spurious shear is produced in the 
laminae.

In this case Eq. (16) gives t
rC

AS
13 ¼ 0; 0

r CAS
13 ¼ 0; t

rC
AS
23 ¼ 0; 0

r CAS
23 ¼ 0.

The first two rows of Eq. (22) show that @t x
@r3

� 	AS
is perpendicular to

@t x
@r1

and @t x
@r2

, and the last row of Eq. (22) shows that the volume of the 

differential elements does not change as a result of the tying. The 
result is shown in Fig. 3d. Notice that the different ial elements 
Fig. 8. Moment-rotation curves for plane strain bending of a neo-Hookean 
rectangular block, different number of elements considered.

Fig. 9. Plane strain folding of a thin plastic shell: geometry, material properties and 
loading.
are now uniform within the lamina, each differential element has 
stretched , in accordance with the stretching of the lamina, and 
the undesirable shear has been removed. In addition, the differen- 
tial volume used in the stress–strain calculations is the same as the 
different ial volume obtained from the kinematical assumptions .
This is very important in incompressible analysis, since a motion 
that is volume preserving remains volume preserving after the ty- 
ing is applied. Fig. 4 summarizes schematical ly the change in the 
material fiber due to tying.

Note that the tying process violates displacemen t compatibilit y
between adjacent laminae, as shown in Fig. 5. Hence the tying can 
be interpreted as a weakening of the strain–displacement compat- 
ibility conditions (as can the MITC tying of strain components in
the classical shell element).
Fig. 10. Detail of undeformed mesh for plane strain folding of a thin plastic shell.

Fig. 11. Midsurface displacements in plane strain folding of a thin plastic shell.

Fig. 12. Detail of deformed mesh for plane strain folding of a thin plastic shell,
contours of accumulated effective plastic strain are shown.
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4. Illustrative solutions 

This section gives some illustrative benchmark problems and 
solutions. The geometries of the problems given here are relatively 
simple, and are fully described. The problems are solved not 
Fig. 13. Force–deflection curves for plane strain folding of a thin plastic shell,
different numbers and types of elements considered.

Fig. 14. Buckling of a thin geometric
addressing the questions of efficiency, the order of numerica l inte- 
gration through the thickness, how coarse a (possibly graded)
mesh could be used, and the effects of mesh refinements through 
the thickness (for the 3D solid element meshes used for compari- 
son). These questions we leave for further studies.

The problems are solved using the MITC4 3D-shell element 
which is clearly more effective than the triangular element [22].
As all of the solutions involve incompress ible material behavior,
the u/p formulation is used throughout. Addition al problem solu- 
tions in which the MITC4 3D-shell element is used are given, for 
example, in Ref. [39].
4.1. Plane strain bending, neo-Hookean material model 

Here we consider the solution of the problem given in Fig. 6. The 
analytica l solution to this problem can be obtained with the meth- 
od given in Ref. [40].

The problem can be solved using a mesh of 50 4-node 3D-shell 
elements , using 3-point Gauss integration through the thickness.
Fig. 7 shows the deformed meshes at four solution times. The thin- 
ning in tension and the thickening in compression are clearly 
observed .

Fig. 8 shows the moment–curvature response for finite element 
meshes with various numbers of 4-node 3D-shell elements, along 
with the analytical solution. The finite element solution is too stiff 
in general, however the solution improves as the mesh is refined.
ally perturbed cylindrical shell.



10 T. Sussman, K. J. Bathe / Computers and Structures 122 (2013) 2–12
4.2. Plane strain folding of a thin shell, elastic–plastic material model 

One way to generate high curvatures in thin shells is to form a
fold. Fig. 9 shows the problem considered. The shell is thin (thick-
ness/length = 1/500) and an elastic-perfe ctly plastic material mod- 
el is used. As the moving contact surface displaces downwards, the 
shell is squeezed and a fold forms where the shell is fixed.

For the solution, we use meshes of 4-node 3D-shell elements,
and also, for comparison, meshes of the 27/4 three-dimens ional 
(3D) solid elements (for which the u/p formulation with 27 nodes 
for the displacemen ts and 4 pressure degrees of freedom per ele- 
ment is used [30]). The meshes are graded so that the elements 
are smallest at the built-in end. In all of the analyses, 3-point Gauss 
integration is used through the shell thickness.

For the 100 element mesh of 3D-shell elements, Fig. 10 shows a
detail of the undeformed model near the built-in end, and Figs. 11
and 12 show the deformed mesh for the prescribed displacements 
discussed below.

Fig. 13 shows the calculated force–deflection curves. On both 
axes, a log scale is used so that the entire solution response over 
the whole range of displacemen ts can be shown in one figure.
The calculated responses are quite close to each other, however,
as expected, the 50 element 3D solid element model is stiffer than 
the other models.

For displacemen ts above 49.5 mm, the force–deflection curves 
exhibit a ‘‘stair-step’’ behavior. This behavior arises due to the con- 
tact algorithm; the force–deflection curve stiffens each time an
additional node comes into contact.

We note the following regarding the solution response at vari- 
ous displacements :

Displacemen t of 7.8 mm: The built-in end begins to become plas- 
tic. The force–deflection curve softens at this point. This soften- 
ing happens ‘‘suddenly ’’ because only three integration points 
Fig. 15. Mesh outlines for buckling of a thin geometrically perturbed cylindrical 
shell, undeformed mesh outline and outlines for compressive displacements of 1, 2,
3, 4 mm.
are used through the thickness, so most of the section becomes 
immediately plastic.
Displacement of 38.4 mm: The free end of the mesh becomes 
horizontal and the contact forces on the free end of the mesh 
start to become distributed over the free end. The plastic strain 
is only about 4.5% at the built-in end. The force–deflection curve 
begins to stiffen because the moment arm of the forces acting 
on the shell model begins to decrease.
Displacement of 49.34 mm: The free end of the mesh contacts the 
bottom contact surface.
Displacement of 49.9 mm: Fig. 12 shows a detail of the 100 ele- 
ment model of 3D-shell elements at the displacemen t of
49.9 mm, and also contours of the accumulate d effective plastic 
strain. The plastic strain at the built-in end is almost 67%.

4.3. Buckling of a thin geometricall y perturbed cylindrica l shell,
elastic–plastic material model 

Another way to generate high curvatures in thin shells is to cre- 
ate a plastic hinge by buckling . Fig. 14 shows the problem consid- 
ered. The shell segment is thin (thickness/length = 1/100) and an
elastic-p erfectly plastic material model is used. The geometry of
the midsurface of the perturbed cylindrical shell segment is given 
in terms of parametric coordinates n1, n2 as follows:

x ¼ n1; y ¼ ðR� bÞ cos hþ b cosðhþ aÞ;
z ¼ ðR� bÞ sin hþ b sinðhþ aÞ

where

b ¼ B
1þ cos pn1

L

2
; h ¼ p=2� n2=R; a ¼maxð0;4ðh� p=4ÞÞ

and 0 6 n1 6 L; 0 6 n2 6
p
2 R. Here R, L are the radius and length of

the shell segment, and B is the perturbat ion. With B = 0, the above 
Fig. 16. Deformed mesh for buckling of a thin geometrically perturbed cylindrical 
shell, displacement = 4 mm.
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formulas reduce to the geometry of a cylindric al segment with 
length L and radius R, and with boundaries x = 0, x = L, y = 0, z = 0.

The shell geometric perturbation at a constant x coordinate is
shown in Fig. 14c. It is seen that the cross-sectio n (thick line) is
constructed using two circles, one circle with radius R � b and
the other circle with radius b. The slope of the cross-sec tion line 
is zero at y = 0.

The shell cross-sectio n for y = 0 is shown in Fig. 14d. Here, it is
seen that the slope of the cross-sec tion line is zero at x = 0.

For the finite element solutions, we use 3D-shell elements and 
also 3D solid elements (the 27/4 solid element) for comparison.
In all cases, 3-point Gauss integrati on is used through the 
thickness.

Fig. 15 shows the calculated deformed geometri es of a 50 � 75
3D-shell element mesh for compress ive prescribed displacements 
of 1, 2, 3, 4 mm. Fig. 16 shows the same mesh for a prescribed dis- 
placement of 4 mm. A fold forms near the x = 0 line of symmetry 
and very large strains are generated at the fold.

Fig. 17 shows the force–deflection curves obtained using 3D- 
shell and 3D solid element meshes of various mesh refinements.
The calculated force–displacement responses are very close to each 
other. In addition, the location and shape of the fold is similar for 
all of the meshes.
5. Concluding remarks 

The objective in this paper was to present a large strain shell 
element formulation and benchma rk solutions.

The element formulat ion represents an extension of the now 
widely used MITC4 shell element. While we focused on the 4-node 
element, the same approach can directly be employed to also 
establish the 3-node MITC 3D-shell element, of course using the 
relevant strain tying interpolations . Considering higher-order MITC 
3D-shell elements , the discussion given in the paper is also appli- 
cable, but since the membrane and hence bending strains are also 
tied, see Ref. [30], additional considerations arise. Also, while high- 
er-order plate and shell elements can be effective in linear analyses 
[21,22,41,42], it is still questionable how effective such elements 
are in large strain solutions (involving frequently also contact 
conditions).

Some special considerations are needed to obtain a formulation 
that can reliably be used for the analysis of shells in very large 
strains. Specifically, we use two control vectors to describe the 
kinematics of the shell behavior, and tying conditions acting 
directly on the material fiber vectors to avoid shear locking and 
preserve the volume. Since material incompressibil ity may be
encounter ed in large strains, we also use the u/p formulat ion when 
this condition need be modeled.

To obtain insight into the capabiliti es of the element, we pre- 
sented the solutions of benchma rk problems . These solutions 
should also be valuable to test other shell element formulation s
for their applicability in large strain analyses. However, as previ- 
ously mentioned, further studies of these benchma rk problems 
regarding efficiency, numerical integration, mesh grading, and 
mesh refinements through the thickness (when using 3D solid ele- 
ment meshes) would be valuable.
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