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We studied the Mean first passage time for the DNA translocation through a narrow pore. We
also proved that, for an asymmetric rachet potential, the mean first passage time for the same DNA
to translocate through the membrane can be different when passing from the two different ends,
even without external potential. We further extended the situation to a more general case, where
a periodic chain with N subunits and m steps in each subunit is studied, and we proved that the
difference of the two mean first passage time is of the order linear to the number to periodicity. We
also explained the reason for the more distinct difference between MFPT when external potential
is present.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Recent experimental achievements have aroused great
interest in DNA translocation through a membrane.[1–3]
There is also much theoretical work done on the subject
of polymer translocation through a narrow pore.[4–8] In
these papers, translocation process with an external po-
tential is studied both for the continuous situation and
for the discrete situation. A common approach is to fo-
cus on the dynamics of a single variable representing the
monomer number at the pore, [4, 5, 7, 8] and define an
entropic barrier for the system.

However, recent experimental results have reported
that, the DNA translocation time through a membrane
exhibits two distinct values when there is an external
potential[4], and even when there is no external poten-
tial. To explain these experimental data, here we set
up several models for calculating the Mean First Pas-
sage Time(MFPT) for the DNA translocation through a
membrane. Assuming Brownian Motion, we found the
difference between translocation time can be explained
by an asymmetric configuration of the polymer itself due
to the different interaction potentials between different
monomers and the membrane pore.

We first studied the case for the simplest situation,
the two state periodic polymer without external poten-
tial.Then we extended the case to the polymer travelling
in an external potential, and explained why there are
give MFPT difference for travelling in an external poten-
tial. Finally, we presented a general model of the polymer
travelling without external potential, where each unit is
composed of m arbitrary subunits. We showed by the
general m-state model the behavior of the general MFPT.
We proved it is always to the order of N2, and the differ-
ence of the MFPT when reversing the travelling direction
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of the polymer is always linear to N, and proportional to
the interaction differences between subunits.

II. MEAN FIRST PASSAGE TIME

For a one-dimensional potential profile, the mean first-
passage time is a very good description of the diffusion
dynamics of the system[9, 10]. For a given set of proba-
bilities Pi,the MFPT i from 0 to N (in terms of number
of steps) can be described as:

t0,N = N +
N−1∑

k=0

ωk +
N−2∑

k=0

N−1∑

i=k+1

(1 + ωk)
i∏

j=k+1

ωj , (1)

here pi, qi are position dependent hopping probabilities
to the right and to the left, ωi = qi/pi. We assume the
particle here either jump forward or back ward, there
is no probability for them to stay in the original place,
thus they satisfy pi + qi = 1.According to Michael and
Mehran[5], it is most natural to assume that

pi ∝ e−β(Ui+1−Ui), qi ∝ e−β(Ui−1−Ui), (2)

where β = (kBT )−1, and Ui is the sequence dependent
component of the potential energy.

A. MFPT for Two-State Ratchet Potential without
External force

For the simplest situation, we assume the polymer
chain is periodic, and is only composed of two different
units as shown in 1. It is obvious that in this situation
one of the two units is easier to travel through the mem-
brane pore than the other. Thus we can assume the ωi

is alternating between two different values, x1 and x2.
They satisfy the constraint x1 ∗ x2 = 1. This is a typical
two-state ratchet potential, which is studied in many bio-
logical systems for both continuous situation and discrete
situation[11–14].
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FIG. 1: Model of the DNA configuration for two-state ratchet
potential.

To calculate the mean first-passage time difference for
a polymer’s travelling from the plus end and the minus
end through the membrane. According to equation 1,
suppose the chain is composed with N periods, each pe-
riod with a x1 and a 1/x1, equation (1) then becomes:

t0,2N−1 = 2N+N(x1+1/x1)+(2+1/x1+x1)N2−(1+x1)N
(3)

Hence we can see the first two terms are symmetric to
xi and 1/xi, only the last term changes when reversing
the DNA travelling direction.Where as in the last term,
the N2 term is still symmetric to changing the direction
of the polymer, but the linear term is not. Thus we can
see that the MFPT shows a difference in the polymer’s
travelling from the two different directions, even without
external force. We also see that this difference is:

∆t = N |(1/x− x)| (4)

thus is proportional to the number of periodicities of the
polymer chain.

B. MFPT for two-state potential with an external
force

In their paper[4],Nelson and Lubensky also reported
that there exists distinct difference between the DNA
travelling from the 3

′
end and the 5

′
end, when there

is external force. Here we will give an explanation for
the case with an external force, based on our two-state
scheme, and show that when external force is exerted,
the MFPT difference can be proportional to N2, thus is
much more distinct than the difference without an exter-
nal force.

When the external potential is large enough, the poly-
mer will gain a visible velocity towards one direction,
thus their original difference generated by the two dif-
ferent configurations can be neglected. If we assume the
velocity for the polymer moving forwards is v1, and the
velocity for the polymer moving backwards is v2, and
v1 > v2, and then we can assume the probability for
the polymer to jump forward and backward, p,q, has:
p/q = v1/v2, p + q = 1.

Then, following our derivation for the MFPT, let α =
q/p < 1, we can get:

t0,N = N(1 + α)/(1− α), (5)

FIG. 2: Model of the DNA configuration for arbitrary number
of state periodic ratchet potential.

when changing the direction of polymer travelling, we are
getting α = p/q > 1, then MFPT behaves like:

t0,N = αN (α2 + α)/(α− 1)2, (6)

Also when travelling from the 3′ and 5′ end, it is rea-
sonable that the α are different even if the same external
potential are exerted. Thus it is also reasonable for the
obvious MFPT difference in the situation with external
potential as shown in Nelson’s paper.

C. MFPT for a general periodic chain

To study the more general mean first-passage time be-
havior for the polymer translocation, we can further ex-
tent our model to a periodic chain with N periods, each
period contains m states, as shown in 2. Here, the drift-
ing velocity for each unit can be arbitrary, and thus the
ωi is a periodic function with periodicity m. We name
them ωni, where n ranges from 1 to N and denotes the
number of period the monomer belongs to, and i ranges
from 0 to (m − 1) and denotes the monomer’s position
in that particular period. Similar to the two-state sit-
uation, as there is no external force in this system, the
total velocity for the polymer to travel forward and travel
backward should be the same, thus we should have the
similar constraint as the two-state situation here:

m−1∏

i=0

ωni = 1 (7)

For simplicity, we denote ωni as xi, and we know when
the polymer travels from the reverse side, all the xis will
become 1/xi, and this still satisfies the constraint as in
equation 7.

Thus the equation 1 in this general case becomes:

t0,mN−1 = mN +
mN−1∑

k=0

ωk+
mN−2∑

k=0

(1+ωk)
mN−1∑

i=k+1

i∏

j=k+1

ωj ,

(8)
Here we want to compare the MFPT difference for the

xi set and the 1/xi set. Obviously, the first term remains
the same when all the ”xi”s are reversed. The second
term is just N

∑m−1
i=0 xi, thus the difference is also easy
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FIG. 3: the DNA model with periodic ratchet potential can
be visualized as a chain like this.

to calculate, simply as

∆t2nd = N(
m−1∑

i=0

(xi − 1/xi)), (9)

The third term in equation(8) is more complicated,
and here we shall study it in more detail. When k = 0,
the last term contributes:

t3rd0 = (1 + x0)(x1 + x1x2 + x1x2x3 + . . .

+x1 . . . xm−1 + x1 . . . xm), (10)

Using the periodicity property that xm = x0, also for
all xi, we have xi = xi+m(this can be seen more explicitly
as in Fig. 3), we can write the entire contribution of the
third term as:

t3rd = (N2 + N)[m + (x0 + x1 + . . . + xm−1)
+(x0x1 + x1x2 + . . . + xm−1x0)

+(x0x1x2 + . . . + xm−1x0x1) + . . .

+(x0 . . . xm−2 + x1 . . . xm−1 + . . . + xm−1 . . . xm−3)]
−N [(1 + x0) ∗ 0 + (1 + x1)(x2 . . . xm−1x0)

+(1 + x2)(x3 . . . xm + x3 . . . xm+1)
+(1 + x3)(x4 . . . xm + x4 . . . xm+1 + x4 . . . xm+2)

+ . . .

+(1 + xm−1)(xm + xmxm+1 + . . . + xm . . . x2m−1)],(11)

From this equation, we can see that, as all the ”xi”s
satisfy the condition that

∏m−1
i=0 xi = 1, when reversing

the travelling direction of the polymer, the first term in
t3rd remains the same. This term is proportional to N2+
N , and is thus determined by N2. On the other hand,
the second term on t3rd, which is proportional to N , will
change when all the xi become 1/xi. Thus combining
∆t2nd and ∆t3rd, we can draw the conclusion that for
a periodic chain with arbitrary potential configuration,
the difference of the MFPT is always linear to N, which
is the number of periods.

III. CONCLUSION AND DISCUSSION

In this paper, by setting up an asymmetric potential,
we gave an explanation for the difference of the DNA
translocation through a narrow pore. We argued that it
is because this is only a dynamic process, not a system at
equilibrium, and also because that we are only measur-
ing the mean first-passage time here, which is a statistical
parameter for non-equilibrium situation, that we are get-
ting different values for DNA translocation from the two
different ends. By using the simplified two state ratchet
potential and the generalized m-state potential, we fur-
ther calculated the difference between the two mean first-
passage time. We see that for the situation without ex-
ternal potential, the mean first-passage time is always to
the N2 order, and is not sensitive to the travelling direc-
tion of the polymer to the N2 term. However, the MFPT
without an external potential always differ to an order
proportional to N. Thus the MFPT difference can be rel-
atively important when N is small. Also, we can increase
the MFPT difference by making the drifting velocity of
each unit change drastically. In experiments where N is
between 20 and 30, distinct MFPT have been reported.
We also showed here, when an external force is exerted,
the difference between the two MFPT can vary greatly,
which means to the leading order of the travelling time.
This is observed in many experiments, and our result give
a good description of this phenomenon. We could further
extend our work to the continuum limit and solve it for
the diffusion equation, however, the continuum limit is
only an extreme situation of the m-state case discussed
above, and we already can see the behavior of the MFPT
for the general situation in the m-state model, thus we
believe it is a sufficient description here.
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