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Abstract8

Abstract:9

Most organisms grow in space, whether they are viruses spreading within a host tissue or inva-10

sive species colonizing a new continent. Evolution typically selects for higher expansion rates11

during spatial growth, but it has been suggested that slower expanders can take over under12

certain conditions. Here, we report an experimental observation of such population dynamics.13

We demonstrate that the slower mutants win not only when the two types are intermixed at14

the front but also when they are spatially segregated into sectors. The latter was thought to be15

impossible because previous studies focused exclusively on the global competitions mediated by16

expansion velocities but overlooked the local competitions at sector boundaries. We developed a17

theory of sector geometry that accounts for both local and global competitions and describes all18

possible sector shapes. In particular, the theory predicted that a slower, but more competitive,19

mutant forms a dented V-shaped sector as it takes over the expansion front. Such sectors were20

indeed observed experimentally and their shapes matched up quantitatively with the theory. In21

simulations, we further explored several mechanism that could provide slow expanders with a22

local competitive advantage and showed that they are all well-described by our theory. Taken23

together, our results shed light on previously unexplored outcomes of spatial competition and es-24

tablish a universal framework to understand evolutionary and ecological dynamics in expanding25

populations.26

Significance27

Living organisms never cease to evolve, so there is a significant interest in predicting and controlling28

evolution in all branches of life sciences from medicine to agriculture. The most basic question is29

whether a trait should increase or decrease in a given environment. The answer seems to be trivial30

for traits such as the growth rate in a bioreactor or the expansion rate of a tumor. Yet, it has31

been suggested that such traits can decrease rather than increase during evolution. Here, we report32
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a mutant that outcompeted the ancestor despite having a slower expansion velocity. To explain33

this observation, we developed and validated a theory that describes spatial competition between34

organisms with different expansion rates and arbitrary competitive interactions.35

Introduction36

Population dynamics always unfold in a physical space. At small scales, microbes form tight associa-37

tions with each other, substrates, or host cells [1, 2]. At large scales, phyto- and zooplanktons form38

complex patterns influenced by ecological interactions [3–5] and hydrodynamics [6, 7]. Between39

these two extremes, populations constantly shrink and expand in response to changing conditions,40

and there is still a great deal to be learned about how spatial structure affects ecology and evolu-41

tion [8–12]. Better understanding of these eco-evolutionary dynamics is essential for management42

of invasive species [13, 14], controlling the growth of cancer [15], and preserving biodiversity [16,43

17].44

It is particularly important to understand how natural selection operates at the edge of expanding45

populations. These expansion frontiers are hot spots of evolution because mutations that arise at46

the edge can rapidly establish over large areas via allele surfing or sectoring [18–21]. Furthermore,47

numerous studies argue that selection at the expansion front favors faster expanders and therefore48

makes population control more difficult [22–32]. Indeed, organisms that expand faster have a head49

start on growing into a new territory and may face weaker competition or better access to nutrients.50

A well-known example is the evolution of cane toads which increased the expansion speed by 5 fold51

over 50 years [33]. Yet, despite substantial empirical evidence across many systems [23–26, 28–32],52

it has been suggested that the simple intuition of “faster runner wins the race” does not always53

hold.54

Two theoretical studies have found that slower dispersal could evolve in populations with a strong55

Allee effect, i.e a negative growth rate at low population densities [34–36]. Slow mutants never-56

theless can take over the populations because they are less likely to disperse ahead of the front57

into regions with low densities and negative growth rates. In a different context, both theory and58

experiments have shown that slow cheaters could invade the growth front of fast cooperators [27,59

37]. In this system, the production of public goods allowed cooperators to expand faster, but made60

them vulnerable to the invasion by cheaters.61

The examples above show that slower expanders succeed in the presence of a tradeoff between local62

and global fitness. The global fitness is simply the expansion rate of a given species in isolation,63

which determines how quickly it can colonize an empty territory. When two species are well-64

separated in space, their competition is determined solely by the global fitness. In contrast, when65

the two species are present at the same location, their competition could involve differences in66

growth rates, production of public goods [38, 39], or secretion of toxins [40]. We refer to such local67

competitive abilities as local fitness. It is natural to assume that slow expanders can win only if68

they are superior local competitors, but it is not clear a priori if this is actually feasible or how to69

integrate local and global fitness under various scenarios of spatial competition.70

Our interest in the interplay between local and global competition was sparked by an unusual71
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spatial pattern in colonies of Raoutella planticola grown on agar plates. These colonies repeatedly72

developed depressions or dents along the edge. We found that dents were produced by a spontaneous73

mutant that expanded slower than the wildtype. Thus, we discovered a convenient platform to74

explore the fate of slower expanders in spatial competition and to elucidate the tension between75

local and global fitness.76

In our experiment, the slower expander took over the colony either by increasing in frequency77

homogeneously along the front or by forming pure, mutant-only, sectors. When mutant sectors78

formed, they had an unusual “dented” or “V” shape. To explain this spatial pattern, we developed a79

theory that describes all possible sector geometries. Our theory unifies local and global competitions80

without assuming any particular mechanism for growth and dispersal. Although mechanism-free,81

the theory makes quantitative predictions, which we confirmed experimentally. We also simulated82

multiple mechanistic models to demonstrate that the takeover by slower expanders is generic and83

could occur due to multiple ecological mechanisms. These simulations further confirmed that sector84

shape prediction from geometric theory is universal. Taken together, our results establish a new85

framework to understand evolutionary and ecological dynamics in expanding populations with86

arbitrary frequency- and density-dependent selection.87

Results88

Experimental observation of slow mutants taking over the front89

The strains used in our experiment were derived from a soil isolate of Raoultella planticola, a Gram-90

negative, facultatively anaerobic, non-motile bacterium that is found in soil and water and can91

occasionally lead to infections [41, 42]. We grew R. planticola on a hard LB agar plate (1.5% agar)92

and noticed the formation of V-shaped dents along the front. Such dents were reproducibly observed93

in biological replicates (Fig. S1). Suspecting that dents were caused by a mutation, we isolated94

cells from the smooth parts of the colony edge (wildtype) and from the dents (mutant) (Fig. 1A).95

We first characterized the expansion dynamics of the two strains in isolation by inoculating each96

culture at the center of a hard agar plate. Both strains formed smooth, round colonies, which97

expanded at a constant velocity (Fig. 1B, Fig. S2). The wildtype had about 50% larger expansion98

velocity compared to the mutant. Thus, the evolved strain was a slower expander.99

Our observations seemed paradoxical given numerous observations of invasion acceleration due to100

genetic changes that increase expansion velocities [33, 43]. However, range expansions are known to101

produce high genetic drift [44, 45] and, therefore, allow for the fixation of deleterious mutations [20,102

46–49]. So, we next investigated whether the mutant has a selective advantage in competition with103

the wildtype within the same colony.104

We competed the two strains by inoculating an agar plate with a drop containing a 99:1 mixture105

of the wildtype and the mutant. We used two wildtype strains (and their respective mutants) with106

different fluorescent labels and the spatial patterns were analyzed with fluorescence microscopy107

(see Methods). After about 48 hours of growth, a ring of mutant completely encircled the wild-108

type (Fig. 1C). Only the mutant ring continued to expand, while the expansion of the wildtype109
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ceased (Fig. S3). Thus the mutant not only localized to the front but also achieved a greater pop-110

ulation size. This is quite different from other microbial systems where a strain with poor motility111

localized to the front without suppressing the growth of faster strain and without producing a112

larger biomass [50, 51]. Thus, our experiments strongly suggest that the mutant has a competitive113

advantage despite its lower expansion velocity.114

Experimental observation of slow mutants invading by forming dented fronts115

Our initial competition experiments did not exhibit the dents that sparked our initial interest in116

the strains. The mutant took over uniformly across the expansion front, producing a rotationally117

invariant spatial pattern (Fig. 1C). In fact, one might even argue that the success of the mutant118

could have been entirely due to the transient growth dynamics, and the wildtype would prevail if119

allowed to somehow spatially segregate from the mutant. To address both of these concerns, we120

sought to alter the experiments so that the mutant and the wildtype grow as distinct sectors within121

the same colony.122

In microbial colonies, sectors emerge due to genetic drift at the growing edge. The magnitude123

of demographic fluctuations varies widely in different systems, depending on the organism, the124

growth conditions, and the duration of the experiment [52, 53]. To test for the effects of sectoring,125

we needed to increase stochasticity without altering other aspects of the competition. Reducing126

the cell density of the initial inoculant accomplished this goal. By lowering the inoculant density127

(from 10−1 OD600 to 10−3 OD600), we increased the separation between cells that localized to the128

colony edge following the drying of the inoculation drop. This in turn dramatically increased the129

formation of monoclonal sectors (Fig. 1D).130

Although sectoring spatially segregated the two strains and, thus, allowed the wildtype to expand131

with a higher velocity, the slower mutant still outcompeted the wildtype (Fig. 1D, Fig. 1E). The132

takeover of mutant was robust under different choices of initial density, initial mutant fraction, and133

fluorescent label (Fig. S4, Fig. S5). The takeover by the mutant also produced the characteristic134

V-shaped dents at the colony edge. These dents are the exact opposite of the bulges or protrusions135

that one usually observes for beneficial mutations [54]. Typically, the advantageous mutants have136

a greater expansion velocity and, therefore, outgrow the ancestors at the front. For our strains,137

however, the winning mutant had a lower expansion velocity, and this lower expansion velocity138

produced the opposite of the bulge—the dent.139

Mechanism-free theory of sector geometry140

Our experiments unambiguously demonstrated that a slower expander can indeed outcompete a141

faster expander with and without sectoring. Still, we need a careful theoretical description of the142

spatial dynamics to reconcile the apparent contradiction between the slow global expansion of the143

mutant and its superior performance in local competition. We could approach this question by144

simulating a specific ecological mechanism that could be responsible for the tradeoff between local145

and global fitness. However, it is much more useful to first ask what can be said about spatial146

competition generically and determine the range of possible sector shapes without relying on any147
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Figure 1: Slow mutant takes over the front with and without sector formation. (A) We found
that wildtype R. planticola colonies develop V-shaped indentations; a bright-field image is shown.
We sampled cells from the dents and non-dented regions and then developed strains descending
from a single cell (see Methods). (B) The mutant expanded more slowly than the wildtype. The
data points come from two technical replicates, and the line is a fit. (C, D) Despite its slower
expansion, the mutant wins in coculture. Fluorescence images show the spatial patterns 48 hours
after inoculation with a 99:1 mixture of the wildtype and mutant. A ring of mutant (cyan) outrun
and encircled wildtype (red) when the mixed inoculant had a high density (OD600 of 10−1). Mutant
sectors emerged and widened over the front when the mixed inoculant had a low density (OD600

of 10−3). Images are taken 48 hours after inoculation, and dotted lines represent initial inoculant
droplets. (E) A zoomed image of a V-shaped sector (from the bottom of D). Dotted circle is a fit
from wildtype expansion. The advantage of the mutant and its slower expansion is evident from
the lateral expansion of the cyan sector.
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specific mechanism.148

All possible sector shapes can be determined from simple geometric considerations (Fig. 2A, SI Ap-149

pendix) that rely on a few standard assumptions. The expansion velocities of the two strains (vw150

and vm) are assumed to be time-independent both to simplify the calculations and to reflect ex-151

perimental observation (Fig. 1B). We also assume, consistent with past studies [55–57], that there152

is little growth behind the front so that the spatial pattern remains once established as in our153

experiments. Finally, we neglect long-range interactions due to the diffusion of nutrients, toxins, or154

signalling molecules1 [58–60]. The outcome of the local competition between the strains then are155

captured by a single parameter: the velocity u with which the mutant invades laterally into the156

population of the wildtype.157

The knowledge of the three velocities (vw, vm, and u) is sufficient to simulate how the shape of the158

colony changes with time. In some situations, colony shapes can also be obtained analytically by159

comparing the position of the front at two times t and t+ ∆t. We derive the equations for sector160

shapes by requiring that all distances between the corresponding points of the two fronts are given161

by ∆t times the appropriate velocity (Fig. 2A). The details of these calculations are provided in162

the SI (Fig. S8).163

We found that all possible sector shapes fall into three classes. Without loss of generality, we take u164

to be positive by calling the mutant the strain that invades locally. The shape of the sector is then165

largely determined by vm/vw. When this ratio is less than one, sectors have a dented shape. In166

the opposite case, sectors bulge outwards. The exact shape of the front of course depends on all167

three velocities. Overall, there are the two broad classes discussed above and a special limiting case168

when u =
√
v2m − v2w which is discussed below. In all cases, we obtained sector shapes analytically169

for both circular and flat initial fronts (SI Fig. S9, Fig. S10). The latter are summarized in Fig. 2B170

and are used to test the theoretical predictions.171

The geometrical theory provides a concrete way to define local fitness advantage, u/vw, and global172

fitness advantage, vm/vw − 1. These two types of fitness can take arbitrary values, even with173

opposite signs. The only condition is that a positive u needs to be larger than
√
v2m − v2w when the174

mutant is faster than the wildtype. This constraint arises because, for large vm/vw, the gaining of175

new territory due to the large global fitness advantage outpaces the gain in the new territory due176

to a smaller local fitness advantage. The constraint on u is not relevant to dented fronts, so we177

relegate this discussion to the SI (Fig. S7).178

Experimental test of the geometric theory179

How can we test whether the theory of sector geometry described above indeed applies to our180

experiments? The theory utilizes three velocities vw, vm, and u to predict the shape of the sector181

boundary and the sector front. The absolute values of the velocities determine how quickly the182

colony grows overall and its shape depends only on two dimensionless parameters: vm/vw and u/vw.183

The first parameter can be obtained from the direct measurements of expansion velocities in mono-184

1The addition of long-range interactions would provide greater modelling flexibility and therefore make it easier to
observe novel spatial patterns such as a V-shaped sector. Our works shows that this extra flexibility is unnecessary
and dented fronts can appear in purely local models.
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Figure 2: Geometric theory predicts sector shapes as a function of local and global fitness. Flat-
front initial conditions are illustrated here, and the corresponding results for circular fronts are
shown in the SI. (A) The shape of the mutant sector can be derived from geometric considerations.
During a time interval ∆t, the boundary points Bl and Br move upward by vw∆t and laterally
outward by u∆t. The position of the dent D is obtained from the requirement that both DBl

and DBr shift by vm∆t; the directions of the shifts are perpendicular to DBl and DBr respectively.
Point I labels the origin of the sector. (B) The geometric theory predicts sector shapes as a function
of u/vw and vm/vw. When vm < vw and u > 0, the mutant forms a V-shaped dented front; note
that all boundaries are straight lines. When vm > vw and u >

√
v2m − v2w, the mutant forms a

bulged front. The shape of the bulge consists of two regions. It is an arc of a circle near the middle
and two straight lines near the two boundaries between the mutant and the wildtype. The circular
region grows and the linear region shrinks as vm/vw increases at constant u/vw. The bulge becomes
completely circular when vm/vw reaches its maximal value of

√
1 + u2/v2

w
on the boundary of the

accessible region. See SI for derivation and exact mathematical expressions of all sector shapes.
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cultures. The second parameter can be inferred by fitting the shape of the sector boundary to185

the theory. This leaves the shape of the sector front as an independent measurement that can be186

compared to the theoretical prediction.187

The linear expansion geometry greatly simplifies all the steps involved in testing the theory be-188

cause the shapes of both the sector boundary and the dent are determined by their opening angles.189

Qualitative agreement with this theoretical prediction is quite clear from the experimental im-190

ages (Fig. 3A), which indeed show that mutant sectors are bounded by straight lines on all sides.191

The opening angle of the sector boundary determines u/vw and the opening angle of the dent serves192

as a testable prediction (Fig. 3B).193

1mm

linear inoculation

B C

A

Figure 3: Empirical test of predicted sector shapes. (A) We used linear inoculations with low
density and low fraction of the mutant and grew the colonies for 48 hours. (B) Top: Zoom-in
image of one of the sectors. The shape of mutant sector is quantified by two opening angles: one
between the two sector boundaries 2φb and one between the two parts of the expansion front that
meet at the dent 2φd. Bottom: The theory predicts φb and φd as functions of the three velocities:
vw, vm, and u. We used φb to determine u/vw and predict φd; vm/vw is measured from monoculture
expansions. (C) The observed and predicted values of φd are very close to each other.

Our experiments proceeded as follows. We first measured expansion velocities in monocultures by194

tracking the colony radius as a function of time; see Fig. 1B. Then, the data on sector shapes were195

collected from plates inoculated along a straight line with a low-density (10−3 OD600) 99:1 mixture196

of the wildtype and the mutant. After two days of growth, five well-isolated sectors were analyzed to197

determine φb and φd (see Methods). Since each side of the angle can be used, we effectively obtained198

ten measurements. Figure 3C shows that observed φd is 73.93◦ (SD=3.81◦, SEM=1.21◦, n=10).199

Predicted φd is 70.39◦ (SD=1.02◦, SEM=0.32◦, n=10). This is an excellent agreement given other200

sources of variability in our experiment including variations in velocity between replicates and201

potential systematic errors in fitting sector shapes. Thus the geometric theory not only provides202
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an explanation of the novel sector shape, but also describes it quantitatively.203

Concrete mechanisms of fitness tradeoff204

The geometric theory integrates local and global competition and quantitatively predicts the shape205

of mutant sector in our experiment. Yet, the theory does not provide a tangible mechanism behind206

the takeover by a slower expander. To show that dented fronts emerge readily under different207

ecological scenarios we used the flexible framework of reaction-diffusion models, which are also208

known as generalized Fisher-Kolmogorov equations [61–63]. A general model can be written as:209

∂tnw =
(
∇2 (Dwnw) + rwnw

)
(1− nw − nm),

∂tnm =
(
∇2 (Dmnm) + rmnm

)
(1− nw − nm).

(1)

Here, nw and nm are the population densities of the wildtype and the mutant normalized by the210

shared carrying capacity; Dw, rw and Dm, rm are their respective dispersal and per capita growth211

rates. The shared carrying capacity ensures that there is no growth behind the front [54].212

The simplest model takes all four parameters to be density-independent constants. It is then easy213

to show that there is no difference between local and global fitness; see Fig. S6 and Ref. [54]. Most214

of the previous work focused on this special case of so-called “pulled” waves [64] and thus could215

not observe the takeover by the slower expander.216

Many organisms, however, exhibit some density dependence in their growth or dispersal dynam-217

ics [65–69], which can lead to a tradeoff between local and global fitness. One commonly-studied218

case is found in the interaction between cooperators and cheaters [27, 50, 70, 71]. To model this219

ecological scenario, we take220

Dw = Dm = D,

rw = r

(
1− α nm

nw + nm

)
, rm = r

(
1− s+ α

nw
nw + nm

)
.

(2)

The benefit of cooperation is specified by s, which is the difference in the growth rate of cooperators221

and cheaters when grown in isolation. The benefit of cheating is controlled by α; the growth rate of222

cheaters increases by up to α provided cooperators are locally abundant. For simplicity, we chose223

a symmetric linear dependence of the growth rates on the mutant frequency and assumed that the224

diffusion constants are equal.225

Numerical simulations of this model reproduced a V-shaped dented front (Fig. 4A). The dents226

flattened when there was no benefit to cooperate (s = 0) and were replaced by bulges when227

cooperators grew slower than cheaters (s < 0). We were also able to test whether these transitions228

in sector shape matched the predictions of the geometric theory. For this comparison between the229

theory and simulations, we need a mapping between the microscopic parameters of the model and230

the three velocities that enter our geometric theory. Fortunately, in this model, all three velocities231
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can be calculated analytically: vw = 2
√
rD(1 + s), vm = 2

√
rD, and u =

√
(α− s)rD. Therefore,232

we could overlay individual simulations on the phase diagram predicted by the geometric theory.233

The result, shown in Fig. 4A, shows the expected agreement and provides further validation for the234

geometric theory.235

The geometric description is generic and should transcend the specifics of the cooperator-cheater236

model discussed above. To further illustrate that different ecological interactions can produce237

identical spatial patterns, we simulated a completely different mechanism for the tradeoff between238

local and global fitness. This time, we assumed that the wildtype loses the local competition239

because it grows slower than the mutant, but this slower growth is more than compensated by a240

much higher dispersal rate. This growth-dispersal tradeoff may be common in nature [29, 72–74],241

and is captured by the following set of parameters:242

Dw = Dm = D0 −D1
nm

nw + nm
,

rw = r, rm = r (1 + s) .
(3)

Here, the growth rates are density-independent, but the dispersal rates change with the local243

community composition. We chose Dw = Dm both for analytical tractability and to reflect the244

collective nature of movement in colonies of non-motile microbes [75, 76], which are pushed outward245

by mechanical stressed generated within the colony.246

Our simulations again exhibited dented fronts and all shape transitions in full agreement with the247

geometric model (Fig. 4B). Thus, the geometric description is universal, i.e. a wide set of growth-248

dispersal dynamics converges to it. This universality, however, makes it impossible to determine249

the specifics of ecological interactions from spatial patterns alone. In other words, the observation250

of a dented front indicates the existence of a tradeoff between local and global fitness, but does not251

hint at any specific mechanism that is responsible for this tradeoff.252

Discussion253

This study used a simple and well-controlled laboratory microcosm to elucidate the factors that254

influence spatial competition. We found a stark contradiction to the intuitive expectation that the255

faster runner wins the race [32]. A mutant that expanded more slowly on its own nevertheless took256

over the expansion front when inoculated with the wildtype. This spatial takeover accompanied257

V-shaped sectors, which are a characteristic signature of the mismatch between local and global258

competition. To explain these observations, we developed a theory that integrates local and global259

competition and predicts all possible sector shapes. We then confirmed the validity of the theory260

using both further experiments and simulations.261

Our experimental results unequivocally demonstrate that a slow expander can win with and without262

sectoring. Under low genetic drift conditions, the slow expander took over the front uniformly across263

the colony. This outcome can be described by one-dimensional models because the competition264

occurs primarily along the radial direction. In contrast, stronger genetic drift resulted in sector265
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Figure 4: Sector shapes from microscopic simulations recapitulate phase diagram from the geometric
theory. (A) Simulation of cooperator-cheater model (Eq. 2) is compared with the geometric theory.
By varying s (benefit from cooperation) and α (strength of cheating), we explored sector shapes for
different values of vm/vw and u/vw. The locations of various sector shapes match the predictions
of the geometric theory. In particular, V-shaped dents are observed when a cheater expands more
slowly than a cooperator (s > 0), but has a sufficiently large advantage from cheating (α > s).
(B) Simulations of growth-dispersal tradeoff model (Eq. 3) also agree with the geometric theory.
Different sector shapes were obtained by varying the the growth advantage s and and the dispersal
disadvantage D1. See Methods for simulation parameters.
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formation and produced fully two-dimensional growth dynamics. Even under these less favorable266

conditions, the slower mutant still outcompeted the wildtype.267

Previously, slower expanders were found to be successful only in one-dimensional models [34, 36,268

37], and only buldged sectors of faster expanders were reported for two-dimensional growth [54].269

The latter was true even when there was a tradeoff between local and global fitness [77], presumably270

because local fitness advantage was not sufficiently large. Our experiments not only confirm the271

predictions of one-dimensional models, but also expand the set of conditions under which the272

unusual takeover by a slower mutant can be observed. In fact, the slower expanders could be273

successful in many settings not only because the theory and simulations strongly support this274

claim, but also because we relied on evolved mutants from natural isolates rather than genetic275

engineering to obtain the strains.276

The observation of dented fronts clearly shows that the existing theoretical understanding of sector277

growth is incomplete. Previously, it was assumed that the spatial pattern depends only on the278

ratio of the mutant and wildtype velocities [54]. This simple picture holds when the fast expander279

also has a moderate advantage in local competition. More generally, however, we found that the280

outcome of the competition also depends on the velocity u with which one of the strains invades281

locally. The sector shapes are completely determined by the three velocities (vm, vw, u) and can be282

used to make quantitative inferences from experimental data. Nevertheless, the main contribution283

of our theory is its ability to integrate local and global competition and predict how large scale284

spatial patterns emerge from species interactions.285

The geometric theory is not without limitations. This phenomenological theory cannot predict286

whether the fast or the slow mutant wins in a given system. To answer that question, one needs287

to consider a mechanistic model and derive how the invasion velocity u depends on microscopic288

parameters, which we have done for specific models. The universal nature of the geometric theory289

also precluded us from identifying the mechanism responsible for the growth dynamics observed in290

our experiments. We left this fascinating question for future works, and instead, focused on several291

common tradeoffs between local and global fitness. The simulations of these tradeoffs not only292

confirmed the validity of the geometric theory, but further highlighted that slower expanders could293

establish by a wide range of mechanisms.294

The geometric theory also relies on a few technical assumptions such as constant expansion ve-295

locities, negligible stochasticity, and the absence of long-range interaction due to chemotaxis or296

nutrient depletion. Relaxing these assumptions could lead to certain quantitative changes in sector297

shapes, but the existence of dented fronts or the possibility of a takeover by a slower expander298

should not be affected.299

Our work opens many directions for further investigation. We clearly showed that the expansion300

velocity cannot be the sole determinant of the spatial competition. Therefore, it will be important to301

examine how local interactions influence the eco-evolutionary dynamics during range expansions.302

Such future work would bring about a more detailed description of ecological and biophysical303

processes in growing populations. It would also greatly enhance our understanding of the tradeoffs304

among different life-history traits and shed light on the incredible diversity of successful strategies305

to navigate spatial environments [29, 72–74]. The geometric theory developed here provides a306

convenient way to integrate these various aspects of population dynamics. It abstracts the main307

features of spatial growth and should facilitate the analysis of both experiments and simulations.308
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Material and Method309

Strains310

Wildtype Raoultella planticola strains were isolated from a soil sample (MIT Killian Court, Cam-311

bridge, MA) [78] and were tagged with two different fluorescent proteins mScarlet-I (red) and312

mTurquois2 (cyan) by insertion of plasmids pMRE145 and pMRE141 respectively [79]. As we grew313

wildtype colonies on agar plates, they reproducibly developed dents after several days as shown in314

Fig. 1A and Fig. S1. We sampled the cells from either inside the dent or on the smooth edge using315

inoculation loops, streaked on small plates, and grown in 30◦C for two days. Then we sampled316

single colonies, grew them overnight in LB growth media, and stored as a −80◦C glycerol stock.317

Growth media preparation318

We prepared hard agar plates with 1X Luria-Bertani media (LB, 2.5% w/v; BD Biosciences-US)319

and 1.5% w/v of agar (BD Bioscience-US). We also added 1X Chloramphenicol (Cm, 15mg/L,320

prepared from 1000X solution) for constitutive expression of fluorescence. For each agar plate,321

4mL of media was pipetted into a petri dish (60X15mm, sterile, with vents; Greiner Bio-one), and322

was cooled overnight (15 hours) before inoculation.323

Expansion experiment324

For each strain, −80◦C glycerol stock was streaked on a separate plate and grown for 2 days. Then325

a colony from each strain was picked up and put into a 50mL Falcon Tube filled with 5 mL of326

liquid media (1X LB and 1X Cm). Bacterial cultures were grown overnight at 30◦C under constant327

shaking 1350 rpm (on Titramax shakers; Heidolph). We then diluted and mixed the cultures to328

desired total density and mutant fraction, measured in optical density (OD600) using a Varioskan329

Flash (Thermo Fisher Scientific) plate reader. For circular expansions, we gently placed a droplet330

of 1.5 µL inoculant at the center of an agar plate. For linear expansions, we dipped a long edge of331

a sterile cover glass (24X50mm; VWR) gently into the culture and touched the agar plate with the332

edge. After inoculation, each colony was grown at 30◦C for 48 hours.333

Imaging334

At fixed times after inoculation, each plate was put on a stage of Nikon Eclipse Ti inverted light335

microscope system. 10X magnification was used for whole-colony images, and 40X magnification336

was used for single sector images. Fluorescent images were taken using Chroma filter sets ET-337

dsRed (49005) and ET-CFP (49001) and a Pixis 1024 CCD camera.338

We used scikit-image [80] for image processing in Python. Images from different fluorescent chan-339

nels were integrated after background subtraction and normalization by respective maximum in-340

tensity. The sector boundaries were identified as the furthest points from inoculation plane where341

13



both strains’ FL intensities were above respective thresholds. The codes for image analysis will342

be available via GitHub (https://github.com/lachesis2520/dented_front_public.git) upon343

publication.344

Numerical simulation345

Numerical simulations were performed by solving the corresponding partial differential equations346

on a square grid using a forward-in-time finite difference scheme that is second order accurate in347

space and first order accurate in time [81]. Python codes will be available via GitHub (https:348

//github.com/lachesis2520/dented_front_public.git) upon publication.349

For cooperator-cheater model simulation, we used the following set of values for parameters (s, α):350

(−0.04, 0), (−0.36, 0), (−1, 0), (−0.173, 0.187), (−0.457, 0.543), (0.36, 0.4), (0.36, 0.72), and (0.36, 1.36).351

For growth-dispersal tradeoff model simulation, we used (s,D1) of (0.04, 0), (0.36, 0), (1, 0), (0.36, 0.147),352

(1, 0.271), (0.04, 0.385), (0.36, 0.529), and (1, 0.68).353
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I. Supplementary figures368

Figure S1: Emergence of dents in wildtype colonies was reproducible. Wildtype colonies were grown
for 48 hours. Top: wildtype strains constitutively expressing mScarlet-I. Bottom: wildtype strains
constitutively expressing mTurquois-2.

16



Figure S2: Mutant expands more slowly regardless of the choice of fluorescent labels. Wildtype
with mTurquoise-2 fluorescence protein expanded with vw = 30 µm/h while mutant with mScarlet-I
fluorescence protein expanded with vm = 22 µm/h.
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Wildtype

Mutant

Combined

Figure S3: In co-culture experiment, wildtype did not expand after a day while mutant kept
expanding. Top: Fluorescence images of wildtype cells during expansion. Middle: Fluorescence
images of mutant cells during expansion. Bottom: combined.
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Figure S4: Mutant outcompetes wildtype under a wide range of inoculant densities and initial
mutant fractions.
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Figure S5: Mutant outcompetes wildtype under a different choice of fluorescent labels of wildtype
and mutant.
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Figure S6: No dented fronts occur in simulations with density-independent growth and dispersal.
In each column, the growth advantage rm/rw − 1 is the same (Left: 0.04, Middle: 0.36, Right:1).
Simulations in top row have Dw = Dm, so that the ratio of the expansion velocities varies with the
growth rates (vm = vw

√
rm/rw). For the bottom row, we used Dm = 0.64rw

rm
Dw so that vm = 0.8vw.

We observed no expanding mutant sectors when its expansion velocity was less than that of the
wildtype.
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II. Geometric theory and sector shapes369

Introduction370

During spatial growth in microbial colonies or other cellular aggregates, mutants appear and com-371

pete with each other. Previous studies [54] and common intuition suggest that advantageous372

mutants should form a sector that bulges out of the expansion front. In the main text, we reported373

experiments showing that this is not always the case. Here, we identify all possible shapes that can374

result from competition between two types in a growing colony.375

To make progress, we make a number of approximations and work in the so-called geometrical376

optics limit. This limit assumes that the expansion front and the boundary between the types377

can be treated as thin lines. Neglecting sector and boundary widths is justified when these length378

scales are much smaller than the colony size. In small colonies, thin boundaries require strong379

genetic drift and slow motility. Furthermore, we assume that the expansion velocity of each type380

remains fixed. In particular, we neglect the effects of spatial variation in nutrient concentration381

due to protrusions of one type ahead of the other. This approximation is valid for high nutrient382

concentrations and when the size of the protrusions is small compared to the size of the mutant383

sector.384

Figure S7: Geometry of the competition.

In the geometric-optics limit, the competition between two types is described by three velocities:385

the velocity of mutant vm, the velocity of wildtype vw, and the velocity of the boundary vb, which386

are shown in Fig. S7. (Note vb 6= u) Previous work [54] focused on the regime when vb was387

determined by vm and vw; in contrast, we make no assumptions about the relative magnitude of388

these three velocities.389

In the close vicinity of the sector boundary, the two expansion fronts can be approximated as390

straight lines. Their position (Fig. S7) is determined by requiring that the expansion along the391

boundary with velocity vb results in the same displacement of the fronts as moving perpendicular392

to them with velocities vm and vw respectively:393
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vw = vb sinφw, (S1)

vm = vb sinφm. (S2)

For linear inoculations, the above equations are sufficient to completely specify sector shapes be-394

cause, as we show below, the expansion fronts are straight lines even away from the sector boundary.395

For circular initial conditions, Eqs. (S2) provide information only about the local orientation at396

the sector boundary, and further calculations are necessary. One way to obtain global shape is to397

write down partial differential equations that specify how the position of the front changes and use398

Eqs. (S2) as the boundary conditions. A much simpler approach is to use an equal time argument399

from Ref. [54].400

This method traces the ancestral lineage from each point along the front and requires that the time401

traveled on that lineage is equal to the current time t. The location of the ancestral lineage is such402

that it takes the shortest time to reach the initial population starting from a given point without403

entering the space occupied by the other type. The details of these calculations are provided below.404

Before proceeding, we note that, here and in the main text, we typically parameterize the problem405

with velocity u rather than vb. Since u is defined as the velocity of the boundary point along the406

front of wildtype, we can obtain it by projecting the boundary velocity on the expansion front of407

the wildtype:408

u = vb cosφw. (S3)

From this equation and Eq. (S2), it follows that409

vb =
√
v2w + u2. (S4)

In the following, we assume that mutant takes over the front, i.e. u > 0. Mutants with negative u410

immediately become extinct at least in the deterministic model considered here.411

Finally, we observe that Eqs. (S2) impose constraints on the values of the three velocities. In412

particular, since sines are always less than one, the boundary velocity vb must be greater or equal413

than both vm and vw. In terms of u, this implies that414

vm ≤
√
u2 + v2w. (S5)
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Figure S8: Sector shape for linear inoculation and vm < vw. Sectors of faster wildtype (red) and
slower mutant (cyan) meet at sector boundary IBl and IBr. It takes the shortest time for the
mutant to go from its initial location at I to a point on the front P by first following IP ′ and then
P ′P (blue path). The resulting geometry can be characterized by two opening angles: 2φb for the
sector boundary and 2φd for the expansion front.

Linear inoculation415

Sector boundary416

Linear expansion geometry, the simplest situation to consider, allows us to explain the essence of417

the equal time argument. This geometry is illustrated in Fig. S8. Initially (t = 0), the colony front418

is located at y = 0, and expansion proceeds in the upper half-plane. Mutant is only present at a419

single point, which we put at x = 0; the rest of the front is occupied by the wildtype.420

As the expansion proceeds, the region near x = 0 is affected by the competition between the types.421

From the definition of u, the extent of this region is given by x ∈ (−ut, ut). Regions further away422

are however unaffected and expand as if only wildtype is present. Thus, for |x| ≥ ut, the front is423

located at y = vwt. From these considerations, we can further conclude that the sector boundary424

is described by (ut, vwt). Note that, below, we consider only the right side of the expansion; the425

left side is described by the mirror image with respect to the y-axis. Thus,426

tanφb =
u

vw
. (S6)

Note that, φb = φw − π/2, which is clear from Figs. S7 and S8.427

The shape of the front for |x| < ut depends on the relative values of vm, vw, and u.428
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vm ≤ vw429

When mutant is slower than wildtype, we find that front has a V-shaped dent with an opening430

angle 2φd as shown in Fig. S8. To derive this result, we take a point P on the front with yet431

unknown coordinates (xp, yp). Note that xp ∈ (0, ut). Then, we should obtain the location of the432

ancestral lineage that connects this point to the initial location of the mutant: point I. Because433

the ancestral lineage is located so that to minimize the travel time, it must be a union of straight434

lines. Indeed, it is a well-known fact from geometrical optics that light rays travel on straight435

lines except where the value of the refraction index changes [82]. In our case, this means that the436

ancestral lineages of mutant can consist of straight lines within the mutant sector and regions of437

the boundary. Obviously, the ancestral lineage of the mutant cannot penetrate the region occupied438

by the wildtype.439

The equal time argument then offers us two possibilities: a direct connection IP and an indirect440

connection
_

IP ′P via a point P ′ on the sector boundary. The times to traverse these paths are441

TPI = |PI|/vm, (S7)

TPP ′I = |PP ′|/vm + |P ′I|/vb. (S8)

To complete the analysis, we need to choose the path with the lowest travel time and determine all442

locations of P for which the travel time equals t. For the direct connection, it is clear that P must443

lie on an arc of a circle with the radius of vmt centered at I. For the indirect connection, we first444

need to determine the location of P ′, which must minimize the travel time.445

Since P ′ lies on the sector boundary its coordinates are given by (ut′, vwt
′) with an unknown t′.446

The travel time is then given by447

TPP ′I =

√
(xp − ut′)2 + (yp − vwt′)2

vm
+

√
u2 + v2wt

′

vb
. (S9)

Upon minimizing TPP ′I with respect to t′, we find that448

t′ =
u
√
u2 + v2w − v2m + vmvw

(u2 + v2w)
√
u2 + v2w − v2m

(
xp +

uvw − vm
√
u2 + v2w − v2m

u2 − v2m
yp

)
, (S10)

and the travel time equals449

TPP ′I =
(uvm − vw

√
u2 + v2w − v2m)xp + (vmvw + u

√
u2 + v2w − v2m)yp

(u2 + v2w)vm
, (S11)
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which is smaller than TPI as long as vm < vw. Thus, the ancestral lineages takes an indirect path450

that first connects point P to the sector boundary and then follows the sector boundary until I.451

The shape of the front is determined by setting TPP ′I from Eq. (S11) equal to t. This results in a452

segment of a straight line, and a straightforward calculation shows that453

φd = arctan

(
u
√
v2w + u2 − v2m + vmvw

vw
√
v2w + u2 − v2m − uvm

)
. (S12)

Because the front and the sector boundaries are straight, the result above also directly follows from454

Eqs. (S7). Indeed, a simple geometric argument shows that φd = φm + φw − π/2.455

Note that, for vm = vw, the angle φd = π/2 and the whole front is flat as it should if the expansion456

rates of the strains are identical.457

vm =
√
v2w + u2458

In the limiting case of maximal allowed vm, the shape of the sector is also simple and immediately459

follows from the calculations above. Now, as we compare the two alternative paths, we find that TPI460

is always smaller than TPP ′I . Thus, the shape of the sector is an arc of a circle of radius vmt around I461

that connects to the flat front of the wild type at the sector boundary.462

Previous work that used the equal time argument to describe competition in microbial colonies463

only considered vm =
√
v2w + u2 and missed other possible front shapes [54]. While it might appear464

that vm =
√
v2w + u2 is a very special case, this relationship between the velocities holds across a465

wide set of conditions. Specifically, vm =
√
v2w + u2 whenever local competition between the types466

is not strong enough to alter the priority effects due to different expansion velocities.467

vw < vm <
√
v2w + u2468

The remaining possibility is the hybrid of the two cases considered so far. Depending on how far P469

is from the sector boundary, the quickest path from P to I may be either the direct or the indirect470

connection. We find that the front around x = 0 is a semicircle of radius vmt, but it is a straight471

line near the sector boundaries. The two segments joint smoothly. The angular half-width of the472

central arc, φtransition, and the slope of the linear segment (see Fig. S9) are given by473

φtransition = arctan

(
uvm − vw

√
v2w + u2 − v2m

vmvw + u
√
v2w + u2 − v2m

)
, (S13)

slope = −
uvm − vw

√
v2w + u2 − v2m

vmvw + u
√
v2w + u2 − v2m

. (S14)
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Figure S9: Possible sector shapes for linear inoculation. Left: vm < vw. The mutant sector emerging
from point I has a dented front. The front consists of two straight lines. The shortest-time path
follows the sector boundary and also enters the sector interior. Middle: vw < vm <

√
v2w + u2. The

mutant sector is a composite bulge. The front consists of two straight lines and an arc. To reach a
point Pouter on straight part of the expansion front, the shortest-time path first follows the sector
boundary before entering the sector interior. To reach a point Pinner on the arc, the shortest-time
path follows a straight line from I to Pinner. Right: vm >

√
v2w + u2. The front is an arc. To reach

a point P on the front, the shortest-time path follows a straight line from I to P .

Circular inoculation474

Figure S10: Circular colony with a dented front, vw > vm. The path of the shortest time follows
the sector boundary from I to P ′ and then a straight line connecting P ′ and P . Note that P ′P
and OP ′ always intersect at angle θ.
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We assume that the expansion starts at t = 0 when wildtype colony fills the circle with radius475

r ≤ r0, and the mutant is present only at I = (r0, 0) in polar coordinates.476

477

Sector boundary478

The boundary between the mutant and the wild type moves with linear velocity u along the front.In479

polar coordinates, the position of the sector boundary (rb, φb) then obeys the following equation480

dφb
dt

=
u

rb
. (S15)

We can eliminate time by using drb/dt = vw to obtain481

φb(rb) =
u

vw
ln(

rb
r0

). (S16)

We also find that the length of boundary at time t is
√
v2w + u2t, and thus482

vb =
√
v2w + u2 (S17)

just as in the linear case.483

vm < vw484

Let us consider a point P = (rp, φp) on a mutant patch with φp > 0 for simplicity.485

As described before, we first find TPP ′I by minimizing |PP ′|
vm

+ |
_

P ′I|
vw

over points P ′ on the sector486

boundary. The point P ′ = (rP ′ , φP ′) should satisfy two equations:487

488

φP ′(rP ′) =
u

vw
ln(

rP ′

r0
), (S18)

489

d

drP ′

(
rP ′ − r0
vw

+

√
(rp cosφp − rP ′ cosφP ′)2 + (rp sinφP ′ − rP ′ sinφP ′)2

vm

)
= 0. (S19)

Here, the first equation constrains P ′ to be on the sector boundary, and the second equation490

minimizes TPP ′I over P ′. Since there are two unknowns and two equations, we can solve for491

(rP ′ , φP ′). The solution is conveniently written in an implicit form:492

rP ′ sinφP ′ − rp sinφp
rP ′ cosφP ′ − rp cosφp

= − tan(θ − φP ′),

θ = arctan

(
uvm − vw

√
v2w + u2 − v2m

vmvw + u
√
v2w + u2 − v2m

)
.

(S20)

This tells that PP ′ is parallel to (1, θ − φP ′); the angle between PP ′ and P ′O is a constant θ493

independent of rp, φp. Note that θ > 0 for vm < vw, and thereby every point P on mutant front494
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with φp has its corresponding P ′ on sector boundary
_
IB.495

496

The next step toward identifying the front position at time T is to find all points P such that497

TPP ′I = T . Using the mapping between P and P ′ described above, we find P by first moving along498

sector boundary and then moving in a straight line parallel to (1, θ − φP ′). By varying the time499

t′ spent along the sector boundary while keeping the total time T fixed, we obtain a parametric500

expression for P (T ) = (xp(T ), yp(T )) in Cartesian coordinates:501

xp(T ; t′) = (vwt
′ + r0) sin(

u

vw
ln(

r0 + vwt
′

r0
)) + vm(T − t′) sin(

u

vw
ln(

r0 + vwt
′

r0
)− θ),

yp(T ; t′) = (vwt
′ + r0) cos(

u

vw
ln(

r0 + vwt
′

r0
)) + vm(T − t′) cos(

u

vw
ln(

r0 + vwt
′

r0
)− θ).

(S21)

It is also possible to get a non-parametric, explicit expression by solving an equivalent partial502

differential equation using the method of characteristics:503

φp(t, r) =
u

vw
ln

(
1 +

vwt

r0

)
+ F

(
r

r0 + vwt

)
− F (1), where

F (ρ) =
u

2vw
ln

(ρ2v2w − v2m)

√
ρ2 − v2m

v2w+u2 − uvm

vw
√

v2w+u2√
ρ2 − v2m

v2w+u2 + uvm

vw
√

v2w+u2


+ arctan

(√
v2w + u2

vm

√
ρ2 − v2m

v2w + u2

)
.

(S22)

vm > vw504

In this regime, θ < 0 and thereby some points P on the mutant front do not have a corresponding505

P ′ on the sector boundary. In other words, the straight path IP takes the shortest time. We find506

that, when P is near the top of the bulge, the minimal path is a straight line IP while, When P is507

further from the top, the minimal path is a straight line P ′P followed by a curved path
_

IP ′ along508

the sector boundary.509

Note that the straight path is tilted by a fixed angle θ from OP ′, pointing inwards to the cen-510

ter of the sector compared to the tangent line except when vm =
√
v2w + u2. In the latter case,511

θ = − arctan
(√

v2m
v2w
− 1
)

, and the straight path is tangent to the sector boundary, as described512

in [54].513

514

The boundary between the two regions of the front lies angle φtransition way from the center. This515

angle is given by516

φtransition = arctan

(
uvm − vw

√
v2w + u2 − v2m

vmvw + u
√
v2w + u2 − v2m

)
. (S23)
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Thus, the bulge is an arc of a circle near the center and is described by Eq. (S21) near the sector517

boundary.518
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