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1 Perturbative treatment of pushed waves

Here we explain in detail how to perform the perturbative treatment in the pushed wave case introduced in
the main text. The starting point is the coupled FKPP and KPZ equations
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We can remove the first term in Eq. (2) by shifting to a comoving frame and making the substitution
h → h+ v0t. In this comoving frame, we are interested in travelling wave solutions which are fully described
in a comoving coordinate z = x − ut which moves with a speed u to be determined. For travelling wave
solutions, Eqs. (1) and (2) take the form

−uf ′(z) = s0(f − f0)f(1− f) +Dff
′′(z) + v0f

′(z)h′(z) (3)
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Further, we will consider the initial conditions h(x, t = 0) = 0 and f(x, t = 0) = θ(−x), corresponding to a
half-space where the region x < 0 is occupied by mutant and x > 0 is occupied by wildtype. We will also
analyze traveling waves for which the height field attains a constant slope σ as the mutant propagates into
the wildtype. Eq. (4) immediately implies

−uσ = α+
v0
2
σ2 , (5)

where we have used the fact f ≈ 1 in region occupied by mutant. Eq. (5) provides a key relation between u
and α and is exact.

We shall treat the nonlinear coupling v0f
′(z)h′(z) in Eq. (3) as as a perturbation. In the absence of this

term, the solution for f(z) is
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, (6)
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2 (1 − 2f0).Substituting this zeroth order result

in Eq. (4) leads to
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Substituting the resulting h(1) into Eq. (3) leads to

−uf (1)′(z) = s0(f
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Following the approach discussed in [4, 6, 5, 7], we expand the terms in Eq. (8) as f (1) = f (0) + δf and
u = u0 + δu and neglect terms of order O(δf2, δu2, δfδu). We will further neglect terms like h(1)′δf ′, which
are second order in a perturbation is h(1)′, corresponding to small slope.
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The RHS involves a linear operator L which has a left eigenvector L(z) with eigenvalue zero (that is,
L†L(z) = 0). The eigenvector L(z) is

L(z) = eu0z/Df f (0)′. (9)

Multiplying both sides of our expanded Eq. (3) by L(z) and integrating over all z, the RHS vanishes by the
eigenvector property of L, and we find a closed form expression for the correction to the invasion velocity
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∫∞
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. (10)

Given a result for h(1), as discussed next, the ratio of integrals can be evaluated numerically to give the
numerical value of κ.

2 The Cole-Hopf transformation

Eq. (7) can be solved exactly with the use of a Cole-Hopf transformation, w ≡ exp [(v0h/(2Dh)], where we
substitute h(1)′(z) = 2Dh

v0
w′(z)/w(z). Equation (7) then simplifies to
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This simplified equation has two solutions w1 and w2 given by
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where 2F1 is a hypergeometric function. The general solution to Eq. (11) is then a linear combination of w1

and w2. When mapping these solutions back onto the height field h, only w2 satisfies the essential boundary
condition that h(1)′ → 0 as α → 0. This is most immediately seen using the fact that the 2F1 function is
unity when its first argument vanishes. For this reason we throw out w1. The slope of the height field is
then
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The expression for h(1)′ is formally exact, and can be substituted into Eq. (10) to give a nonlinear equation
for u which can then be solved numerically. This is a complex numerical task which can be circumvented in
the limit α → 0 which is identified with a small slope expansion.

2.1 Linear approximation for small α

For small α, a direct expansion of Eq. (12) yields a simplified form of h(1)′,

h(1)′(z) = −α
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This expression is also obtainable by solving Eq. (7) while ignoring the quadratic term, which is anticipated
to be O(α2). Following the methodology of the expansion of Eq. (8), we decompose u = u0 + δu. As the
original equations are decoupled for α = 0, δu must be O(α) and thus can be neglected in Eq. (13). The

2



Figure 1: Sample showing the solution to the travelling wave problem in the geometric limit. (Top Left)
Plot showing the zeroth order mutant frequency wave form (6) as a function of the co-moving co-ordinate
z = x − ut. (Bottom Left) The solid line is the solution to Eq. (7) in the geometric limit and for small α
from Eq. (16). The dashed line is the solution with surface relaxation, again in the small α limit, as given
by Eq. (13). The right plot is the morphology generated in the geometric limit. The height field is found
by integrating Eq. (16). This surface expands along its unit normal, and the speed of invasion is given by
Eq. (17).

approximate form of h(1)′ is then further simplified with the use of Eq. (5) to replace α with σ (to leading
order). The final expression for h(1)′ is

h(1)′(z) ≈ σ 2F1

(
1,

au0

Dh
, 1 +

au0

Dh
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)
. (14)

This can now be immediately substituted into Eq. (10), and the integrals can be calculated numerically to
give a closed-form solution for the correction to the invasion veloctiy δu. This is the method used to calculate
the theoretical values of κ reported in Figs. (3) and (4) in the main text.

2.2 The geometric limit

A further limit can be taken, which provides the advantage of simplifying the result of integrating Eq. (10).
We call this limit the “geometric limit” which is achieved by setting Dh = 0. Physically, the geometric limit
corresponds to the case where the height field h no longer relaxes due to surface rearrangement and instead
only advances along the direction of the unit normal. The geometric limit also corresponds to the “equal

3



time” approach discussed in previous works [3, 2]. Such a limit allows for the case of cusps and sharp corners,
in the height field. It is simplest to proceed from Eq. (7), with Dh = 0. The resulting quadratic equation is
readily solved to give

h(1)′(z) =
−u±

√
u2 − 2αv0f (0)(z)

v0
. (15)

Upon substitution into Eq. (10), we again encountered a nonlinear equation for u. We further simplify it
again expanding in small α, where the height profile is now

h(1)′(z) ≈ σf (0)(z). (16)

We have again used Eq. (5) to remove α. Eq. (10) can now be integrated exactly, and we find

δu = −v0

(1
4
+
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2

)
σ, (17)

a rather simple expression for the correction to the invasion velocity.
The Dh = 0 limit is singular, and leads to jagged profiles that are smoothed for Dh > 0. However this

form of κ makes explicitly clear that the correction to the wave-speed should vanish as f0 → −1/2. This
value of f0 is known to correspond with the onset of pulled waves [1, 8]. This feature is general, the Dh > 0
correction also vanishes for f0 → −1/2 which can be verified by showing the denominator of Eq. (10) diverges
while the numerator remains finite.
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