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Abstract. We study the interplay between surface roughening and phase separation during the growth of
binary films. Renormalization group calculations are performed on a pair of equations coupling the interface
height and order parameter fluctuations. We find a larger roughness exponent at the critical point of the
order parameter compared to the disordered phase, and an increase in the upper critical dimension for
the surface roughening transition from two to four. Numerical simulations performed on a solid-on-solid
model with two types of deposited particles corroborate some of these findings. However, for a range of
parameters not accessible to perturbative analysis, we find non-universal behavior with a continuously
varying dynamic exponent.

PACS. 68.35.Rh Phase transitions and critical phenomena – 05.70.Jk Critical point phenomena – 05.70.Ln
Nonequilibrium and irreversible thermodynamics – 64.60.Cn Order-disorder transformations; statistical
mechanics of model systems

1 Introduction

Thin solid films are grown for a variety of technological
applications, using molecular beam epitaxy (MBE) or va-
por deposition. In order to create materials with specific
electronic, optical, or mechanical properties, often more
than one type of particle is deposited. When the particle
mobility in the bulk is small, surface configurations be-
come frozen in the bulk, leading to anisotropic structures
that reflect the growth history, and are different from bulk
equilibrium phases. If, for instance, a combination of par-
ticles are deposited that tend to phase separate at the sur-
face, the grown films have lamellae or columns of the two
phases that extend parallel to the growth direction [1,2].
This process of phase separation, as well as other ordering
phenomena, can be affected by elastic forces, by the ori-
entation of the growing crystal, by properties of the sub-
strate, and by surface roughness. The range of possible
scenarios is very rich and far from understood. There are
a variety of analytical and computer models which try to
shed light on some of these phenomena, but a systematic
study and understanding of the possible phase transitions
does not yet exist.

In this paper, we focus on the interplay between phase
separation and surface roughening, neglecting the possible
influence of elastic forces, substrate properties, and ori-
entation dependencies due to the crystal structure. There

a e-mail: barbara.drossel@physik.tu-darmstadt.de

exist several theoretical studies of phase separation during
growth that neglect also the effect of surface roughness.
In all these models it is assumed that the mobility of the
atoms in the bulk is zero, such that all of the dynamics
occurs at the surface. A model in which the probability
that an incoming atom sticks to a given surface site de-
pends on the state of the neighboring sites in the layer
below [3], leads to a phase separation transition in the
universality class of ordinary Ising models, if the model
is symmetric with respect to the two phases. The same
conclusion applies a model in which the top layer is fully
thermally equilibrated before the next layer is added [4]. A
model for spinodal decomposition during growth was in-
troduced in reference [5]. In this model, phase separation
is due to surface diffusion, and is limited due to the cur-
rent of incoming particles, leading to a characteristic scale
for the thickness of lamellae or columns, as confirmed by
Monte-Carlo simulations [6].

However, the layer by layer growth mode underlying
these models is unstable, and growing surfaces generally
are rough. Several studies exist that investigate growth
models that contain both phase separation and surface
roughness. Simulations of an Eden model with two types of
particles suggest that the surface roughness increases due
to the phase separation [7]. A solid-on-solid growth model
where the adsorption probabilities for the two types of par-
ticles depend on the local neighborhood in the layer below
leads also to an increased surface roughness [8]. The rea-
son is that particles are more likely to be adsorbed within
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domains than at domain boundaries. On length scales
much larger than the domain size, a crossover to the
scaling behavior of the Kardar-Parisi-Zhang (KPZ) equa-
tion [9] is found. Another computer model where parti-
cles are adsorbed randomly and subsequently diffuse along
the surface leads to domains whose thickness is a non-
monotonous function of the deposition rate and the tem-
perature, and for a certain range of parameter values, the
height profile has steep steps at domain boundaries [10].
A set of coupled Langvin equations for this model is sug-
gested in reference [11] and studied using stability analysis
and Fourier decomposition.

These studies are rather incomplete, and in particular
lacking a discussion of the possible effects of the height
profile on the phase separation dynamics. A first attempt
to a systematic study of the possible phases and scaling be-
haviors of coupled phase separation and roughening dur-
ing growth was presented in a recent letter by us [12]. A
set of two coupled Langevin equations was suggested, and
computer simulations in 1+1 dimensions were performed,
revealing a rich phase diagram. It is the purpose of this
paper to extend and deepen this short study by present-
ing a renormalization group (RG) analysis, and further
simulation results. While the RG analysis gives informa-
tion about the behavior of the system in dimensions close
to 4+1 and higher, computer simulations are particularly
efficient in low dimensions. The general results obtained
by the two approaches are compatible with each other.
In addition, the computer simulations in 1+1 dimension
reveal interesting nonuniversal behavior for a range of pa-
rameters that cannot be studied using perturbative RG.

The outline of the paper is as follows: In Section 2, we
introduce and discuss the coupled set of Langevin equa-
tions used in this paper. Scaling laws and critical expo-
nents will also be defined. Section 3 presents results of the
RG analysis of these equations. One of the main findings
is that the lower critical dimension for the surface rough-
ening transition is increased from 2 to 4 dimensions due to
the coupling to the critical phase ordering dynamics. Sec-
tion 4 presents results of computer simulations. Section 5
analyses the connection of our model with the advection
of a passive scalar in a velocity field, and with directed
polymers drifting through a random medium. Section 6
contains a summary and discussion of our results.

2 Equations of motion and scaling laws

We consider the growth of a binary alloy on a d-
dimensional substrate. Let x be the coordinate perpen-
dicular to the growth direction, and t the time. Since we
assume that all dynamics occurs at the surface of the grow-
ing material, the equations of motion can be expressed in
terms of x and t alone. In order to characterize surface
roughness and phase ordering, we introduce the height
variable h(x, t), which is the surface profile at position x
at time t, and an order parameter m(x, t), which is the
difference in the densities of the two particle types at the
surface at position x and time t. The interplay between

the fluctuations in m, and the height h is captured phe-
nomenologically by the coupled Langevin equations,

∂th =ν∇2h +
λ

2
(∇h)2 +

α

2
m2 + ζh, (1)

∂tm =K(∇2m − rm − um3) + a∇h · ∇m + bm∇2h

+
c

2
m(∇h)2 + ζm, (2)

with

〈ζh(x, t)ζh(x′, t′)〉 = 2Dhδd(x − x′)δ(t − t′),

〈ζm(x, t)ζm(x′, t′)〉 = 2Dmδd(x − x′)δ(t − t′).

Since we are interested in the critical behavior of
the model, we have assumed that it has the symmetry
m → −m, and included all potentially relevant terms com-
patible with this symmetry. In experiments or computer
simulations, this symmetry can be achieved by tuning the
ratio between the two types of adsorbed particles to the
appropriate value. In the absence of such an order parame-
ter symmetry, the system may undergo a first-order phase
transition which is not considered here. Equation (1) is
the Kardar-Parisi-Zhang (KPZ) equation [9] for surface
growth, plus the leading coupling to the order parame-
ter. Equation (2) is the time dependent Landau–Ginzburg
equation for a (non-conserved) Ising model, with three dif-
ferent couplings to the height fluctuations. The Gaussian,
delta-correlated noise terms, ζh and ζm, mimic the effects
of faster degrees of freedom.

These equations apply to growth by vapor deposition,
with particles sticking at surface sites with a probabil-
ity that depends on the local environment in the growing
film. The coupling terms in the Langevin equations (1)
and (2) have obvious meaning in this context: The term
proportional to α implies that particles are more likely
to be absorbed within domains where they feel a stronger
attractive force (if α > 0). A negative α can also be mean-
ingful: if the adsorption rate within domains is limited by
the availability of particles of the correct type, this can
slow down growth. However, if this is due to the vapor
phase not being well stirred, additional equations for the
particle concentrations in the vapor phase will be needed.
Such equations are not included in this paper. The con-
tribution from a (with a > 0) implies that domain walls
tend to be driven downhill; e.g. if the identity of a newly
adsorbed particle is more likely to be affected by its uphill
neighbors than by the downhill ones. A positive b indi-
cates that new domains are more likely to be formed in
hilltops where there are less neighbors that could influence
the type of particle to be adsorbed. The term proportional
to c is similar in character to the KPZ nonlinearity λ, and
means that susceptibility to phase separation depends on
the slope.

Models for MBE typically assume that particle depo-
sition at the surface is random, and that no desorption of
particles takes place. In this case, the height profile and
the order parameter dynamics are shaped by diffusion of
particles along the surface. This physical situation leads
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to a different set of Langevin equations,

∂th = ν∇2h +
β

2
∇2m2 + ζh, (3)

∂tm = K∇2m − vm + ζm, (4)

where we have again imposed the symmetry m → −m.
The noise terms ζm and ζh have the same nonconserved
correlations as for the vapor-deposition model above, due
to the incoming particle current. Because of the conserva-
tion of volume during surface diffusion, the deterministic
terms on the right-hand side of equation (3) must be the
divergence of a current, disallowing the terms proportional
to λ and α in equation (1). A negative value of β means
that particles are more likely to be adsorbed within do-
mains if they are not needed to the same extent in the
neighborhood. The equation for the order parameter has
also the form of the divergence of a current (we have only
included the lowest-order term), plus a nonconserved con-
tribution −vm due to the incoming current of particles
that tends to reduce the value of the order parameter.
The lowest order coupling to the height variable in equa-
tion (4) is of the form ∇2(m∇2h), which is irrelevant. In
contrast to the vapor deposition case, the parameter v can
never become negative, making a term in m3 unnecessary.
Instead, the tendency towards phase separation is locally
captured by K < 0, which is the main focus of the work
by Léonard and Desai [10,11], and of Atzmon et al. [5]
(the latter study does not include the height profile). A
change in the sign of K marks the onset of phase separa-
tion in models of conserved dynamics. Higher order terms,
such ∇4m or ∇2m3 which are included by other authors,
are then needed for the stability of short wavelength fluc-
tuations, and may also affect the precise shape of the order
parameter profile within domains. Such terms are irrele-
vant to considerations of the long wavelength behavior of
equation (4), since in this case instabilities can only per-
sists up to a length scale of the order

√
K/v, set by the

current of incoming particles. Since higher temperatures
and deposition rates favor mixing, it is likely that K even-
tually becomes positive as these parameters are increased.
If the substrate dimension is d = 1 (or is effectively d = 1
because diffusion proceeds along a preferred direction) the
coarse-grained value of K must be positive, as the dynam-
ics are then similar to a 1-dimensional Ising model, which
cannot have an ordered phase. For this reason, the choice
of K < 0 in [10,11] does not capture the long wavelength
behavior of the system.

The main focus of the next two sections is on the model
for vapor deposition, equations (1, 2), and we discuss equa-
tions (3, 4) only briefly in connection with the RG calcu-
lation. Our analysis of the models will concentrate on the
scaling behavior of the height profile and of the order pa-
rameter. On sufficiently large length scales, height profiles
of growing interfaces are usually characterized by a scaling
form

〈[h(x, t) − h(x′, t′)]2〉 ∼ |x − x′|2χg

( |t − t′|
|x − x′|zh

)
, (5)

where χ is the roughness exponent, and zh is a dynamical
scaling exponent. The values of the exponents depend on
the underlying growth model, and one of our objectives is
to find out how they are affected by the coupling to the
order parameter dynamics.

The scaling of the order parameter is different along
the growth direction and perpendicular to it. In contrast
to the height variable, the order parameter is unlikely to
be exactly at a fixed point, and for this reason we include
a correlation length ξ. We also have to allow for the pos-
sibility that the height and the order parameter dynamics
have different dynamical critical exponents zh and zm. The
scaling laws for the order parameter then read

G(x)
m (x − x′) ≡ 〈m(x, t)m(x′, t)〉 − 〈m〉2

= |x − x′|η−1g⊥m(|x − x′|/ξ)

G(t)
m (t − t′) ≡ 〈m(x, t)m(x, t′)〉 − 〈m〉2

= |t − t′|(η−1)/zmg‖m(|t − t′|/ξzm) . (6)

3 Renormalization group analysis

Let us now renormalize the equations of motion, equa-
tions (1, 2), and search for fixed points that are accessible
by perturbation theory. Inserting the equations of motion
in the Gaussian probability distribution of the noise

W [ζh, ζm] ∝ exp
{
−

∫
ddx dt

[
ζh(x, t)2

4Dh
+

ζm(x, t)2

4Dm

]}
,

(7)
and introducing auxiliary fields m̃ and h̃, we ob-
tain the weight of a given space-time configuration
[h(x, t), m(x, t)] [13]

W [h, m] ∝
∫

D[ih̃]
∫

D[im̃] exp
{
J [h̃, h, m̃, m]

}
,

with the dynamical functional

J
[
h̃, h, m̃, m

]
=

∫
ddx

∫
dt

{
Dhh̃h̃ − h̃

×
[
∂h

∂t
− ν∇2h − λ

2
(∇h)2 − α

2
m2

]
+ Dmm̃m̃ − m̃ (8)

×
[∂m

∂t
− K(∇2m − rm − um3)

− a∇h · ∇m − bm∇2h − c

2
m(∇h)2

]}
.

(9)

The dynamical functional J plays the same role in dy-
namical RG as the Hamiltonian in statics. The bare
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Table 1. Bare dimensions d0, scaling dimensions dg at the
Gaussian fixed point, and scaling dimensions dα between 4 and
6 dimensions of all the couplings.

coupling d0 dg dα

Dm z − d − 2ζ 0 0

K z − 2 0 0

r 2 2 2

u 2 + 2ζ 4 − d 4 − d

a z − 2 + χ (2 − d)/2 4 − d

b z − 2 + χ (2 − d)/2 4 − d

c z − 2 + 2χ 2 − d 2(4 − d)

Dh z − d − 2χ 0 d − 6

ν z − 2 0 0

λ z − 2 + χ (2 − d)/2 4 − d

α 2ζ − χ + z (6 − d)/2 0

β 2ζ − χ + z − 2 (2 − d)/2

propagators of this model are

Gh
0 (k, t) ≡ 〈h̃(−k, t)h(k, t)〉0 = θ(t)e−νk2t, (10)

Ch
0 (k, t) ≡ 〈h(−k, t)h(k, t)〉0 =

Dhe−νk2|t|

νk2
, (11)

Gm
0 (k, t) ≡ 〈m̃(−k, t)m(k, t)〉0 = θ(t)e−K(r+k2)t, (12)

Cm
0 (k, t) ≡ 〈m(−k, t)m(k, t)〉0 =

Dme−K(r+k2)|t|

K(r + k2)
, (13)

and the interaction vertices are obtained from the higher-
order terms in J . In the diagrams below, h and h̃ are repre-
sented by straight and wiggly lines respectively. Lines for
the order parameter m are represented the same way, with
an additional short dash perpendicular to the propagator.

The bare dimensions d0 of the couplings are obtained
by rescaling space, time, height, and order parameter ac-
cording to x = bx′, t = bzt′, h = bχh′, h̃ = bχ̃h̃′, m =
bζm′, m̃ = bζ̃m̃′, and by requiring invariance of the
Gaussian part of J under such rescaling. (The scaling di-
mension ζ of the order parameter is related to the expo-
nent η defined in Eq. (6) via ζ = (η − 1)/2.) The results
are listed in Table 1. In the following, we analyze the scal-
ing behavior resulting from an RG analysis as function of
the spatial dimension d.

3.1 Dimensions d > 6

In sufficiently high dimensions, the Gaussian fixed point,
which is characterized by uncoupled, linear Langevin
equations is stable with respect to the higher-order terms.
The condition of scale invariance of the linear Langevin
equations leads to z = 2 and χ = ζ = (2 − d)/2, and
to the scaling dimensions dg listed in the third column of
Table 1. In dimensions d > 6, all nonlinear couplings are
irrelevant. The surface is smooth, and the order parameter
goes through a classical phase transition.

k -k

Fig. 1. The diagram renormalizing Dh. The lines with a small
bar represent the order parameter propagators, while lines
without this bar belong to the height variable. Wiggled lines
stand for h̃ and m̃, and smooth lines for h and m.

3.2 Dimensions 4 < d < 6

Below d = 6, the coupling α becomes relevant. The
Gaussian fixed point still exists, but becomes unstable. A
new stable fixed point with a nonzero value of α emerges.
Whenever nonlinear terms cannot be neglected, the cou-
plings change under rescaling not only according to their
bare dimensions, but also according to those contributions
that are generated under renormalization. Renormaliza-
tion of this model is done by first integrating over the
large wave vectors Λ/b < k < Λ, where Λ is the wave vec-
tor cutoff, and the scaling factor b is larger than 1. Next,
the system is rescaled to the original size by introducing
new variables k′ = bk, t′ = t/bz. This procedure involves
an expansion of eJ in the couplings. In this way, the cou-
pling α generates a contribution to Dh, which is graphi-
cally represented by the diagram in Figure 1. Evaluation
of this diagram gives a contribution to Dh of

B =
α2D2

m

2K2

∫
Λ/b<|k|<Λ

ddk

∞∫
0

dt
e−2K(r+k2)|t|

(r + k2)2

=
α2D2

mKdΛ
d−6(1 − b6−d)

4K3(d − 6)
,

where Kd is the surface of the d-dimensional unit sphere,
divided by (2π)d. We have also set r = 0, assuming that
the order parameter is exactly at its critical point. The
renormalized value of this parameter is thus

D′
h = bz−d−2χ[Dh + B].

Setting b = 1 + dl, we obtain the flow equation

dDh

dl
= −Dh(d + 2χ − z) +

α2D2
mKdΛ

d−6

4K3
. (14)

The exponents z and ζ are fixed at the values z = 2
and ζ = (2−d)/2, since the renormalization of the param-
eters ν, K, Dm does not obtain any anomalous contribu-
tions from diagrams. The condition that α has a nonzero
fixed point leads to χ = 4−d. With these values of the ex-
ponents, the condition that Dh is invariant under rescaling
leads to the fixed point value of Dh

Dh =
α2D2

mKdΛ
d−6

4K3(6 − d)
. (15)

This fixed point, where α is the only nonzero coupling is
stable between 4 and 6 dimensions. The scaling dimensions
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Fig. 2. The diagrams to be considered near d = 4 dimensions.

of the other couplings are given in the right-hand column
of Table 1.

Note that for 4 < d < 6, the term αm2 can be regarded
as a correlated noise acting on the surface height. This
correlated noise is more relevant than the white noise,
and increases the value of the roughness exponent χ from
(2−d)/2 to 4−d. As this value is still negative, the surface
is flat at this fixed point.

3.3 Dimensions d � 4

Below d = 4 dimensions, the flat phase becomes unstable,
because the roughness exponent becomes positive, and the
coupling λ obtains a positive scaling dimension. In d =
4 + ε dimensions (with |ε| small), we can therefore expect
a fixed point where λ (or a power of λ) is of the order
of ε. In order to find this fixed point, let us first assume
that there is no feedback from the height to the order
parameter (a = b = c = 0), and then take into account all
terms of the lowest order in λ.

As shown in Figures 2a and b, there are two diagrams
that contain one λ vertex. Diagram (a) makes a contribu-
tion to α/2 equal to

A =α2λ

∫
Λ/b<|k|<Λ

ddk

∞∫
0

dt1

∞∫
t1

dt2

× k2Dme−νk2(2t2−t1)−K(r+k2)t1

K(r + k2)

=
α2λDmK4Λ

εdl

2Kν(K + ν)
,

which is a correction of order λα2. Figure 2b is a correction
to Dh of order λα3. Since it modifies the flow equation (14)
for Dh only to order ε, it need not be evaluated. Further-
more, equation (2) describes for a = b = c = 0 the relax-
ational dynamics of an order parameter in the universality
class of the Ising model, which is known to have a non-
trivial stable fixed point for Dmu/K = −K4ε/9 + O(ε2)

below 4 dimensions, and with r of the order of ε [14]. This
means that we have to take into account additionally di-
agram 2c, which makes for d < 4 a contribution

C = −3αuK

∫
Λ/b<|k|<Λ

ddk

∞∫
0

dt
Dme−2K(r+k2)t

K(r + k2)
=

εαdl

6

to α/2, which is of order ε. In evaluating this expression,
we have inserted the above-mentioned fixed point value of
Dmu/K and have set r = 0, considering only the leading
contribution in an expansion in ε.

Taking all these results together, we obtain the follow-
ing set of flow equations to order ε:

dDm

dl
= Dm(z − d − 2ζ) ;

dK

dl
= K(z − 2) ;

dν

dl
= ν(z − 2) ;

dλ

dl
= λ(z − 2 + χ) ;

dDh

dl
= −Dh(d + 2χ − z) +

α2D2
mKdΛ

d−6

4K3
+ O(ε) ;

dα

dl
= α

[
2ζ − χ + z +

θ(−ε)ε
3

+
αλDmK4

Kν(K + ν)

]
. (16)

From the flow equations for K, ν and Dm, we obtain
again the fixed point condition z = 2 and ζ = (2 − d)/2.
For ε > 0, the fixed point λ = 0 is stable, and we have
a negative roughness exponent χ = 4 − d, as before. For
ε < 0, the fixed point λ = 0 is unstable, with the roughness
exponent χ modified due to diagram (c) in Figure 2. For
λ = 0 and ε < 0, equation (16) reduces to

dα

dl
= α

(
−ε − χ +

ε

3

)
= α

(
−χ − 2ε

3

)

leading to χ = 2(4 − d)/3.
Let us next discuss the fixed point with λ �= 0. A

nonzero λ requires χ = 0. The combination αλ then acts as
an effective coupling, and equation (16) has a non-trivial
fixed point at

αλ = ε
Kν(K + ν)

DmK4
+ O(ε2), (17)

for ε > 0 and a fixed point

λα = ε
2Kν(K + ν)

3DmK4
+ O(ε2), (18)

for ε < 0. The couplings a, b, and c have scaling dimension
zero (to order ε) and are thus marginal at this fixed point.
Determination of their marginal relevance or irrelevance
requires evaluation of higher order terms in ε, which was
not attempted in this paper. For ε < 0, the fixed point
is stable as indicated by the flows sketched in Figure 3.
We expect it to correspond to a rough phase, with the
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0
4 5 6 d

λα

Fig. 3. The flow of the coupling λα near d = 4 dimensions. The
arrows indicate the direction of the RG flow of λα. The dashed
line marks unstable fixed points, and the solid line stable fixed
points.

roughness exponent χ = 0, possibly receiving corrections
in higher order in ε. For ε > 0, the fixed point can be in-
terpreted as describing a roughening transition. The fixed
point is unstable (see Fig. 3), with flows to either a flat
phase (if the initial λ value is smaller than the fixed point
value) or to a rough phase, which is not accessible by per-
turbation theory. Compared to a system that is described
by the height variable alone, without a coupling to critical
order parameter fluctuations [9], the lower critical dimen-
sion for the roughening transition is increased, at criti-
cality of order parameter fluctuations, from 2 to 4. We
thus have found that the coupling to the critical order pa-
rameter fluctuations changes the scaling behavior of the
height variable below 6 dimensions, and that it increases
the lower critical dimension for the roughening transition
from 2 to 4. Studying the influence of the surface rough-
ness on the critical order parameter fluctuations near 4 di-
mensions was not possible to us within perturbation the-
ory. To order ε, the parameters a, b, c are marginal, and to
higher orders in ε the number of diagrams becomes large.
Furthermore, it is not clear whether further fixed points
except those discussed by us are at all accessible by per-
turbation theory.

In the case of the conserved Langevin equations (3, 4)
proposed for MBE growth, the mutual effects between
height and order parameter are much weaker. The
Gaussian fixed point is stable above d = 2 dimensions. Be-
low d = 2, the coupling β becomes relevant. If K > 0 and
v is small (v 	 Λ2/K), the diffusion of the order param-
eter on the surface affects the height profile. Performing
an analysis analogous to the one above near 6 dimensions
(where α was the relevant coupling), we find a stable fixed
point in d = 2 − ε with β2 = Dhκ3πε/2D2

m + O(ε2) and
χ = 2 − d. (Without coupling to the order parameter,
there is a smaller roughness exponent of χ = (2 − d)/2.)
For negative K, there can be other interesting (non criti-
cal) effects, as mentioned before.

4 Computer simulations

While the RG gives information about scaling behavior
in high dimensions (4 and higher), computer simulations
are particularly efficient in low dimensions. In this sec-
tion, we present results from simulations in 1+1 dimen-
sion. Rather than discretizing equations (1–2) and inte-

Fig. 4. The “brick wall” model used in the simulations.

grating them numerically, we perform numerical studies of
a “brick wall” restricted solid-on-solid model (see Fig. 4).
Since this model shares the same symmetries and conser-
vation laws as the Langevin equations, it should share the
same universality properties.

Starting from a flat surface, particles are added such
that no overhangs are formed, and with the center of each
particle atop the edge of two particles in the layer below.
We use two types of particles, A and B (black and grey in
the figure). The probability for adding a particle to a given
surface site, and the rule for choosing its color, depend on
the local neighborhood. Since growth is slower on slopes,
these growth rules correspond to λ < 0 [16,17].

When A (B) particles are more likely to be added to A
dominated regions (B), the particles tend to phase sepa-
rate and form domains. In this case, the order parameter
correlation length ξ is of the order of the average domain
width. By changing the growth rules, it is possible to study
cases in which some (or all) of the couplings a, b, c, and α
vanish, and thus to gain a more complete picture of the
different ways in which the height and the order parameter
influence each other.

When all the couplings between the order parameter
and the height vanish (a = b = c = α = 0), the well-
known critical exponents zh = 3/2 and χ = 1/2 of the
KPZ equation [9,15], and zm = 2 and η = 1 of the Glauber
model [18] are recovered. This situation is implemented in
the following way: A surface site is chosen at random, and
a particle is added if it does not generate overhangs. Its
color is then chosen depending on the colors of its two
neighbors in the layer below. If both neighbors have the
same color, the newly added particle takes this color with
probability 1 − p, and the other color with probability p
(where p is much smaller than 1). If the two neighbors have
different colors, the new particle takes either color with
probability 1/2. Neighbors within the same layer are not
considered. As discussed in reference [12], these growth
rules lead to an order parameter correlation length ξ ∼
1/

√
p as p → 0.

Here, we want to focus on the more interesting situa-
tions where either α or a, b, c (or all of them) are nonzero.
In the first case presented below, the order parameter af-
fects the height variable, but is not influenced by it. In the
second case, the height profile affects the order parame-
ter dynamics, but not vice versa. One would expect that
in the first case the order parameter imposes its dynami-
cal exponent z = 2 on the dynamics of the height profile,
and that in the second case the height profile imposes its
exponent z = 3/2 on the order parameter. This latter is,
however, not the case for a/λ < 0, and we shall see that zm

is nonuniversal in this case. In the fully coupled case with
α, a, b, and c not equal to zero, we find z = 2 or z = 3/2,
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Fig. 5. Snapshot of the last 400 layer of simulations, for L =
200 sites and p = 1/90. Top left: The decoupled case α = a =
b = c = 0. Top right: The case α > 0 and a = b = c = 0 for
r = 1/15. Bottom left: The case α = 0 and a > 0. Bottom
right: The case α > 0 and a > 0 for r = 1/15. Note that the
profiles in the left figures are the same since we used the same
random numbers.

depending on the sign of (λα). Some of these results were
already reported in reference [12].

4.1 Growth influenced by independent phase ordering
(α �= 0, a, b, c = 0)

The situation α > 0 (α < 0) is implemented by updat-
ing sites on top of particles of different colors less (more)
often by a factor r < 1 (r > 1) compared to sites above
particles of the same color. If the color of the new particle
depends only on the neighbors in the layer below, the or-
der parameter is not affected by the height variable, and
its dynamics is still the same as that of an Ising model,
with zm = 2.

We first discuss the case α > 0: Because growth is
slower at domain boundaries than within domains, the
domain boundaries sit preferentially at the local minima
of the height profile, with a mound over each domain. (see
Fig. 5). This implies that the surface roughness exponent
is χ = 1 on length scales up to ξ. Changes in the height
profile on this scale result from domain wall diffusion, and
the dynamical exponent is therefore zh = 2. On length
scales much larger than ξ, the average order parameter
is zero, implying that KPZ exponents of χ = 1/2 and
zh = 3/2 are regained. The crossover in the roughness is
described by a scaling form

〈[h(x, t) − h(x′, t)]2〉 = |x − x′|2g
( |x − x′|

ξ

)
,

1 10 100
y

1

g(
y)

Fig. 6. The scaling function g(y), obtained for L = 2048 by
collapsing data for p−1 = 320, 640, 1280, and 2560. For r, the
values 0.05 and 0.025 were used. The dashed line is a power
law ∝ 1/y.

with a constant g(y) for y 	 1, and g(y) ∼ 1/y for y � 1.
Figure 6 shows our simulation results for g(y), obtained by
the data collapse of 〈[h(x, t) − h(x′, t)]2〉/|x − x′|2 versus
|x − x′|√p, for different values of p. The curves for the
two different values of r differed only slightly, and were
collapsed by multiplying the curves for r = 0.05 by a factor
of 1.06. The scaling collapse is compatible with g(y) ∼ 1/y
for large y, and g(y) →constant, for small y.

For α < 0, growth occurs with a larger probability
at domain boundaries. Therefore, domain boundaries sit
at local maxima. However, further away from the domain
boundaries, their effect is not felt, and we find χ = 1/2
and zh = 3/2, just as in the case α = 0.

A simplified version of the situation discussed in this
subsection was investigated by Wolf and Tang [20], who
considered a growing surface with growth slowed down or
accelerated at equally spaced fixed positions. The surface
can respond on larger scales to the inhomogeneity at these
positions only when λα < 0. Furthermore, the situation
of one single domain wall with decelerated or accelerated
growth can be mapped on the asymmetric exclusion pro-
cess with one second-class particle that moves slower or
faster than the other particles [21].

4.2 Phase ordering influenced by independent growth
(α = 0; a, b, c �= 0)

The situation α = 0 is implemented by choosing r = 1,
i.e., adding a particle at each possible site with the same
probability, irrespective of the color of its neighbors. To
mimic the influence of surface roughness on the order pa-
rameter (nonzero a, b, or c in Eqs. (2)), the color of a newly
added particle is made dependent not only on those of its
two neighbors in the layer below, but also on the colors of
its two nearest neighbors on the same layer, if these sites
are already occupied. With probability 1 − p, the newly
added particle takes the color of the majority of its 2,
3, or 4 neighbors, and with probability p it assumes the
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Fig. 7. Scaling collapse of the correlation functions G
(x)
m for

q = 0.25 and different values of p.

opposite color. If there is a tie, the color is chosen at ran-
dom with equal probability. Since the neighbor on the hill-
side of a site is more likely to be occupied than the one
on the valley side, with this rule domain walls are driven
downhill, corresponding to a > 0 in equation (2). Also,
domains on hilltops can expand more easily than those on
slopes or in valleys, suggesting a value of b > 0.

We reported already in reference [12] that the dynami-
cal critical exponent zm associated with the order param-
eter has a nontrivial dynamic exponent of zm � 1.85, and
not the value zm = 1.5, which may be expected if the
walls follow the surface fluctuations. A potential explana-
tion was provided in reference [19] in connection with the
dynamics of a single domain wall riding on a growing sur-
face. The growth rules for the surface imply that sequences
of brick addition usually proceed from local minima in the
uphill direction, since the addition of a brick generates a
potential growth site (where a brick can be added without
generating overhangs) at the nearest uphill position. The
walls that try to slide downhill are therefore faced with
an upward avalanche of growth mounds of different sizes
that hamper their downhill motion.

The exponent zm is not only nontrivial, but also
nonuniversal and depends on the value of a. A change
in a can be implemented in the computer simulations by
taking into account neighbors within the same layer as the
site being updated with a probability q smaller than 1. Us-
ing the above-mentioned rules and values of q = 1, 0.25,
0.125, 0, we find zm = 1.8, 1.89, 1.96, 2.0. The difference
from the value for q = 1 reported in reference [12] stems
from the fact that in that paper we had inadvertently as-
signed to neighbors within the same layer a double weight
– thus illustrating once more the nonuniversality of the
value of zm. Each of these values was evaluated in two in-
dependent ways, in order to confirm its stability and pa-
rameter dependence. The first was a collapse of the cor-
relation function G

(x)
m (x), as shown in Figure 7. Since p

sets the inverse time scale, the scaling variable is xp1/zm ,
yielding the value of zm. The second method was a domain
coarsening simulation, following a quench from p = 0.5 to
p = 0. Figure 8 shows the number of domains, divided by

Fig. 8. Domain density (i.e., number of domains, divided by
the system size) as a function of time for L = 16384, averaged
over 100 samples, for 4 different values of q. The curves are well
fitted by power laws of the form t−1/zm with the exponents
zm=1.8, 1.89, 1.96, 2.0.

the system size, as function of time for different values of q.
Both methods yield the same values for the exponent zm,
thus supporting the conjecture that the exponent is in-
deed nonuniversal. The alternative scenario, a very slow
crossover, would most likely not yield the same values of
the apparent exponents for both methods.

Equations (1–2) allow also for the possibility of a < 0.
This would imply that domain walls move uphill and that
identical neighbors in the same layer have a positive inter-
action energy, in contrast to neighbors in different layers.
Although this is an implausible physical situation, it is
nevertheless of some theoretical interest. For a = λ and
c = 0, the invariance under the transformation x′ = x−λεt
and h′ = h + εx (with a small ε) of the KPZ equation
holds also for equation (2). This invariance corresponds
to the Galilean invariance of Burger’s equation. It implies
that the order parameter dynamics are governed by the
same time scale as the height variable, i.e., zm = zh. Im-
plementing the case a < 0 in our simulations, we indeed
find zm = 1.5, suggesting that the Galilean invariant fixed
point is the only attractive fixed point in this domain of
parameters.

4.3 Mutual couplings (α, a, b, c �= 0)

When all couplings are different from zero, the probabil-
ity for adding a particle at a given site and the choice
of the particle color depend on the local neighborhood.
The simulation parameter q is positive, and r is different
from 1.

For α > 0, we find zm = 2 irrespective of the values of
a, b, and c. As particles are added to domain boundaries
with a smaller probability than within domains, domain
boundaries sit at local minima most of the time. There-
fore they perform a random walk even when a �= 0. Over
each domain there is a mound, implying that χ = 1 on
length scales up to ξ. Changes in the height profile on this
scale result from domain wall diffusion, and the dynamic
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Fig. 9. Domain density (i.e., number of domains, divided by
the system size) as a function of time for aλ < 0 and L = 16384,
averaged over 100 samples, for q = 1 and r = 5 (solid line). The
dashed line is a power law with an exponent −2/3, correspond-
ing to zm = 1.5. The dotted curve shows the corresponding
simulation result with positive aλ.

exponent is therefore zh = 2. On length scales much larger
than ξ, the average order parameter is zero, and KPZ ex-
ponents of χ = 1/2 and zh = 3/2 are regained.

For α < 0, particles are added rapidly on do-
main boundaries, and domain walls can therefore not be
trapped in local height minima. For the case aλ > 0, where
domain walls tend to move uphill, we therefore expect that
the situation α < 0 is similar to the case α = 0, for which
we found zm = zh = 3/2. This means that the above-
mentioned Galilean-invariant fixed point remains applica-
ble to α < 0. The simulation results shown in Figure 9
confirm this expectation. For the case aλ < 0 and α = 0,
we have argued above that the downhill motion of do-
main walls is hampered by an upward avalanche of growth
mounds, which cause the walls to be temporarily stuck
in local minima, leading to a nonuniversal exponent zm.
Now, for α < 0 and aλ < 0, we find in our simulations that
the dynamical critical exponent zm is identical to zh = 1.5,
implying that the downhill motion of the domain walls is
not hampered any more but that the domain walls can fol-
low the height fluctuations. Figure 9 shows the results of
a domain coarsening simulation for the parameters q = 1
and r = 5. For comparison, simulation results for pos-
itive aλ (and otherwise the same parameter values) are
also shown. One can see that the exponent zm is indeed
the same in both situations. To summarize, we find that
for α < 0 the height profile imposes its critical behavior
on the order parameter fluctuations, while in the opposite
case, α > 0, the domain wall diffusion imposes a dynami-
cal exponent z = 2 on the system.

4.4 Comparison to analytical results

It is interesting to compare the results of the computer
simulations with the admittedly limited results of the RG
analysis presented in the previous section.

Let us start from our last result that for αλ > 0 the
height profile imposes its critical behavior on the order
parameter, while the reverse is true for αλ < 0. The RG
up to order ε = 4 − d showed that for αλ < 0 the fixed
point is accessible perturbatively, with z = 2 to order ε. It
is striking that this result holds also in 1 + 1 dimension.
For αλ > 0, the RG flow runs away to infinity, suggesting
the existence of a strong coupling fixed point. The critical
behavior corresponding to this fixed point was found in
our simulations in 1+1 dimension to be the same as that
of the KPZ equation, with z = 3/2. If this result is not
particular to 1+1 dimension, it suggests that a positive
αλ > 0 might be irrelevant at the KPZ strong coupling
fixed point. However, this conclusion can not be tested via
by perturbative RG analysis.

Up to order ε of the RG analysis, the parameters a, b,
c are marginal. It appears from our simulations that these
three coupling indeed do not modify the critical behavior
as long as α �= 0, suggesting that these parameters are
marginally irrelevant.

For α = 0, the critical behavior of the height profile is
given by the KPZ equation, and it has a stable fixed point
at λ = 0 in which the dimension of h is (2 − d)/2 < 0.
Thus at the weak coupling fixed point, a, b, and c are
irrelevant in four dimensions and the Ising fixed point is
not modified by coupling to the height parameter. How-
ever, the RG analysis cannot predict the critical behavior
of the coupled system in the rough phase, which is char-
acterized by a strong coupling fixed point. Nevertheless,
we could argue that there exists a Galilean-invariant fixed
point when aλ > 0, where the height profile imposes its
dynamical critical exponent on the order parameter. The
result zm = 2 in 1+1 dimensions was confirmed by our
computer simulations, suggesting a larger domain of pa-
rameter space where such scalings apply.

The only case for which we have no analytical predic-
tion is when α = 0, and λa < 0, where the computer
simulations reveal nonuniversal behavior.

5 Relation to passive scalar advection
and drifting polymers

There is a close connection between the model studied
in this paper and other coupled nonequilibrium systems.
One such system is obtained when we regard domain walls
as “particles” that ride on the growing surface. With the
substitution ∇m = ρ, we obtain for u = b = c = 0 the
following equation for ρ:

∂ρ

∂t
= κ∇2ρ + a∇(ρ∇h) + ζρ(x, t), (19)

with a conserved noise ζρ. Without the noise term this
equation is the Fokker Planck equation corresponding to
the Langevin equation

dx
dt

= a∇h + ζx(t) . (20)
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If we assume that the particles do not interact with each
other, the Fokker Planck equation, combined with a noise
term, describes the time evolution of the particle density.

If we require additionally that there is no effect of the
particles on the growing interface, the coupling α van-
ishes, too. The substitution ∇h = v then turns the KPZ
equation into a randomly stirred Burger’s equation, and
equation (20) becomes the equation of motion of a parti-
cle advected by the flow. This model was studied in de-
tail in reference [19]. Just as for the model described in
this paper, the scaling behavior of the advected particles
is fundamentally different in the two cases a/λ > 0 and
a/λ < 0. In the first case, the system has a Galilean invari-
ant fixed point, and particle diffusion is characterized by
a dynamical critical exponent zρ = 3/2 in one dimension,
while this exponent is larger than 3/2 and nonuniversal in
the other case.

Finally, equations (1–2) with a = b and c = r = u = 0,
but with α �= 0, can be mapped on the equations used
to describe the dynamics of a stretched string moving in
a random medium [22]. If the string is stretched in the
x-direction, and if it moves in the h-direction, the con-
figuration of a string embedded in 3 dimensions can be
characterized by the coordinates h(x) and h⊥(x). Assum-
ing that the evolution of the line is dissipative and local,
the equations of motion then are our equations (1–2) with
the replacement m = ∂xh⊥ and with ζm replaced with a
conserved noise ∂xζm. Apart from the Galilean-invariant
fixed point, this set of equations has a fixed point where
a fluctuation-dissipation relation is satisfied (i.e. where a
stationary solution of the Fokker-Planck-equation can be
written down). This fixed point corresponds in our nota-
tion to the situation α = Ka/ν. (For a general discussion
of equations the stationary solutions of which can be cal-
culated, see Ref. [24]).

6 Conclusions

In summary, the interplay between surface roughening and
phase separation leads to a variety of novel critical scaling
behaviors. At one extreme, the height profile adapts to
the dynamics of critical domain ordering. At the other ex-
treme, the dynamics of the domain walls follow the height
fluctuations. For a third range of parameter values, the dy-
namics of domain wall motion is influenced by the rough-
ness, but exhibits nontrivial and nonuniversal scaling be-
haviors.

Several generalizations of the model presented in this
paper are possible. For example, as discussed in ref-
erence [23], one can consider the situation where the
symmetry breaking involves a continuous, rather than an
Ising-like order parameter. Such a situation applies to the
deposition of spins that can realign on the surface but are
frozen in the bulk, or to orientational symmetry breaking
in the plane during crystal growth. Another generaliza-
tion would be the inclusion of elastic forces, which are
often present during the growth of composite films (see
Ref. [24]). Furthermore, one could consider phase transi-

tions where the different types of molecules order on sub-
lattices instead of phase separating.

Finally, there exist growth situations where one type
of particles is magnetic. In addition to a ordering or phase
separation transition which occurs at the surfaces, there
is in this case also a magnetic phase transition, which oc-
curs in the bulk. This combination of two-dimensional and
three-dimensional phase transitions is particularly chal-
lenging for a theoretical analysis, and it leads to interest-
ing experimental results [25].
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