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Abstract In classical and quantum frustrated magnets the interactions in combination with
the lattice structure impede the spins to order in optimal configurations at zero temperature.
The theoretical interest in their classical realisations has been boosted by the artificial man-
ufacture of materials with these properties, that are of flexible design. This note summarises
work on the use of vertex models to study bidimensional spin-ices samples, done in collab-
oration with R. A. Borzi, M. V. Ferreyra, L. Foini, G. Gonnella, S. A. Grigera, P. Guruciaga,
D. Levis, A. Pelizzola and M. Tarzia, in recent years. It is an invited contribution to a J. Stat.
Mech. special issue dedicated to the memory of Leo P. Kadanoff.
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1 Introduction

Vertex models were introduced to describe phase transitions in ferro-electric systems. Their
analysis needed the use of sophisticated tools of mathematical physics and motivated the
development of many fancy methods since the 1970s [1–3].

Very recently, vertex models have been used to model the statics and dynamics of 2D
artificial spin samples [4]. This is the aspect of these models that I will dwell upon in this
note, that is organised as follows. After an introduction to vertex models, and their mapping
to a model with multi-spin interactions introduced by L. Kadanoff and others, I will explain
what artificial spin-ice samples are. I will then give some guidelines on the approach adopted
and the results found in a number of works devoted to the use of vertex model to better
understand the behaviour of these artificial magnets [5–11]. The paper ends with a short
conclusion.

B Leticia F. Cugliandolo
leticia@lpthe.jussieu.fr

1 Laboratoire de Physique Théorique et Hautes Energies, Sorbonne Universités, Université Pierre et
Marie Curie, Tour 13, 5ème étage, 4 Place Jussieu, 75005 Paris, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-016-1710-x&domain=pdf


500 L. F. Cugliandolo

2 Vertex Models

We start by recalling the definition, and a number of very well-known properties, of vertex
models in two dimensions.

2.1 The Six Vertex Model

The six vertex model [1–3] was introduced as a model of ferroelectricity. It is commonly
defined on a square lattice with N × N vertices. Arrows with two possible orientations are
placed along the links. For a lattice with coordination four, there are four edges joining each
vertex, see Fig. 1. The six vertex rule imposes that two arrows point in and two arrows
point out each vertex. Depending on the relative orientation of the arrows the vertices can
have local ferroelectric or anti-ferroelectric order. Energies, εα , and, consequently, statistical
weights, ωα ∝ e−βεα with α = 1, . . . , 6, are assigned to each vertex. β = 1/(kBT ) with
T temperature and kB the Boltzmann factor. Assuming complete arrow reversal symmetry
only three parameters, a ≡ ω1 = ω2, b ≡ ω3 = ω4, and c ≡ ω5 = ω6, are needed to
characterise these weights. a and b are associated to ferro-electric order and c to anti-ferro-
electric order. Under applied fields the arrow reversal symmetry is broken and the statistical
identity between some of these weights is no longer justified. Clearly, as each arrow is shared
by two neighbouring vertices correlations can be induced in the systems configurations. The
partition function is Z = ∑

C e−β
∑

α nαεα where the sum runs over all allowed configurations
and nα is the number of vertices of type α in the configuration.

Lieb solved the six vertex model using the transfer matrix for parameters taking equal
values a = b = c [12], the so-called spin-ice point in parameter space, the choice a/c = b/c
or F-model [13], and the case b/c = 1 and 0 < a/c < 1 or KDP model [14]. In particular,
he computed exactly the macroscopic entropy at the spin-ice point. The method was then
extended and applied by Sutherland to solve the general case and the full phase diagram
was elucidated, presenting ferroelectric and anti-ferroelectric phases on top of the disordered
(critical) one with power-law decaying correlation functions [15] (also called a spin-liquid).
The full phase diagram is shown in Fig. 2. The ferroelectric phase is frozen (no fluctuations
are permitted) and the anti-ferroelectric one is not. The transition lines were found to be of
first order between disordered and ferroelectric phases and Kosterlitz–Thouless-like between
disordered and anti-ferroelectric phases.

The six vertex model is an example of the general field of frustrated magnetism [16–18].
These are classical and quantum systems in which the interactions in combination with the
lattice structure impede the spins to order in an optimal configuration at zero temperature.

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

ω9 ω10 ω11 ω12 ω13 ω14 ω15 ω16

Fig. 1 The sixteen vertices with their weights ωα , α = 1, . . . , 16, attached to them. The first six vertices
constitute the six vertex model with just two-in two-out vertices (the first four with ferro-electric or ferro-
magnetic FM order and the next two with anti ferroelectric or antiferromagnetic AF order). Adding the next
two vertices, with four-out and four-in legs, the eight vertex model is built. Finally, the remaining eight vertices
with three-in and one-out or three-out and one-in arrows drawn in the second row complete the sixteen vertex
model
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Fig. 2 (Colour figure online)
The phase diagram of the
eight-vertex model. The red solid
line marks the boundary between
different phases in the six vertex
model limit. The dotted inclined
(colour) lines are the projections
on the a/c − b/c plane of the
boundaries for various values of
d. The dashed black line shows
the parameters for the F and KDP
models. Figure taken from Ref.
[7]
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In classical instances, the local minimisation of the interaction energy on a frustrated unit
gives rise to an exponentially large degeneracy of the ground state and, consequently, a
macroscopic residual entropy. This occurs in the pyrochlore spin-ice Dy2Ti2O7 [19] in which
the spin interactions are frustrated, similarly to what happens with the proton positions in
water ice [20]. Specific heat measurements using the same sample [21,22], and the ones
performed in water-ice [23], find an zero-point excess entropy that is very close to the value
that Pauling foundwith a simple counting argument [24], and even closer to Lieb’s exact result
for the six vertex model [12]. Given this magnetic connection, in the rest of this manuscript
I will use the magnetic terminology with the two ordered phases being called ferromagnetic
and anti-ferromagnetic.

Boundary conditions do not usually affect the bulk behaviour of macroscopic samples.
Frustrated models can provide exceptions to this rule and the six vertex model is indeed one
such example. Special border rules used in the six vertex case are the so-called domain-wall
boundary conditions in which all arrows on the bottom and top boundaries enter the lattice
while all arrowson the left and right boundaries exit the lattice. Thepartition function of the six
vertex model under these conditions satisfies a recurrence relation that leads to a determinant
formula used to derive the free-energy densities in all phases [25–27]. Interestingly enough,
although the phase diagram remains unchanged, the order of the disordered-ferroelectric
transition becomes continuous. Moreover, the free-energy densities in the disordered and
antiferromagnetic phases, are different from the ones for periodic boundary conditions, even
in the thermodynamic limit. This difference is intimately linked to a macroscopic phase
separation in real space induced by the boundary conditions. For example, for bulk parameters
in the disordered phase an arctic curve separates an external frozen domain from an internal
temperate one, both with finite spatial density. Such an arctic curve first appeared in the study
of domino tilings of Aztec diamonds [28–31], then in lozenge tilings of large hexagons [32,
33], and later in more general dimer [34] and vertex models [30,31,35–38]. In these systems
phase separation exists for a wide choice of fixed boundary conditions and parameter values
in the model definition.

2.2 The Eight Vertex Model

The strict two-in two-out condition can be partially lifted to allow for vertices with four-in or
four-out arrows and thus define the eight vertex model, with vertices drawn in the first line in
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Fig. 1. This case is less constrained but also solvable analytically. The phase diagram still has
ordered and disordered phases although the latter is no longer critical and the transition lines
towards the ferromagnetically ordered phases are now continuous [1] (see Fig. 2 where the
projection on thea/c−b/c plane is shown for different values of the parameterd = ω7 = ω8).
The peculiarity of this problem is that the critical exponents are continuous functions of a
particular combination of the vertex weights ωα . At first, this fact seemed to contradict the
universality hypothesis. Kadanoff and Wegner introduced a mapping to a spin-model with
multi-spin interactions that shed light on the apparent violation of universality [39]. I will
briefly explain it below.

The six and eight vertex models admit a large number of mappings to other also very
interesting statistical and quantumphysical systems: three-coloring problems, random tilings,
interacting dimer coverings, surface growth, alternating sign matrices and quantum spin
chains (with the equilibrium properties of the six vertex model being equivalent to the ones
of the XXZ spin chain, and the ones of the eight vertexmodel corresponding to the ones of the
XYZ spin chain) [1]. The Coulomb gas method and conformal-field theory techniques have
added significant insight into the phase transition and critical properties of these systems.

2.3 The Sixteen Vertex Model

The sixteen vertex model treats on an equal footing, although with different probability
weights ωα , all possible four leg vertices on a square lattice. All these vertices are depicted
in Fig. 1. Under no external applied field the model is assumed to be spin-reversal symmetric
and only eight such parameters exist, ω2k+1 = ω2k with k = 0, . . . , 7. On the contrary,
when fields are applied the degeneracy between certain energies is lifted and the probability
weights can differ.

Quite naturally, much less is known about the equilibrium properties of a generic vertex
model that breaks integrability. Indeed, as soon as the integrability conditions are lifted, the
exact techniques are no longer useful and the mappings to other solvable problems also break
down.

2.4 Mapping to a Classical Spin Model with Multi-spin Interactions

Kadanoff andWegner [39], and simultaneously Wu [40], showed that the eight-vertex model
on a square lattice is equivalent to a classical Ising model on its (also square) dual lattice. The
equivalence goes as follows. First, we note that there are eight different vertices in the eight
vertex model. With four spins, located at the centres of the adjacent plaquettes to a vertex
that are sites of the dual lattice, one has 24 = 16 different configurations. There will then be
a degeneracy in the mapping, such that two spin configurations will correspond to one vertex
configuration. The criterium for the mapping is indicated in Fig. 3 on four examples:

– an arrow pointing up (down) on a vertical link is equivalent to two parallel (antiparallel)
spins located at the centre of the adjacent plaquettes, that is to say, on the closest sites on
the dual lattice.

– an arrow pointing right (left) on a horizontal edge is equivalent to two parallel (antipar-
allel) spins located at interstitial sites of the lattice.

The more general eight vertex model has eight independent parameters, ω1, ω2, ω3, ω4,
ω5, ω6, ω7, ω8. Under periodic boundary conditions the global number of outgoing and
incoming arrows must be the same. Indeed, there cannot be sources or sinks of arrows and,
as the antiferromagnetic (c) and four-in or four-out vertices do act as local sources or sinks,
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Fig. 3 The mapping between vertex and spin configurations on the dual lattice [39]. Only four vertices out
of the eight vertices in the eight vertex model are shown and only one spin configuration for each vertex is
drawn. The other possibilities are straightforward

the conditions ω5 = ω6 and ω7 = ω8 must hold. The simplest Hamiltonian with local
interactions on a square plaquette and six parameters is

H8v({si })=−J0N −
∑

i j

(
J xn σi, jσi, j+1 + J y

n σi, jσi+1, j + Jnnσi, j+1σi+1, j

+J ′
nnσi, jσi+1, j+1 + J4σi, jσi, j+1σi+1, jσi+1, j+1

)
. (1)

This model has anisotropic nearest-neighbour interactions mediated by J xn and J y
n ; diagonal,

next-nearest-neighbour interactions, with coupling strengths Jnn and J ′
nn depending on the

direction of the diagonal; and plaquette four-spin interactions with exchange J4. The relation
between the vertex weights ωα and the coupling constants J s are given by the evaluation of
ωα = e−βH8v({si }) for the spin configurations corresponding to each vertex (the normalisation
Z can be absorbed in the parameter J0).

In the particular case ω1 = ω2 = a, ω3 = ω4 = b the first-neighbour couplings
vanish, J xn = J y

n = 0. The model is then a pair of Ising models on two square lat-
tices coupled by the four-spin interaction. The critical exponents are parametrized by
tan(μ/2) = [cd/(ab)]1/2 = e−2J4 and it is clear that the four body interaction is responsible
for their parameter dependence. For example, the specific heat behaves as [39]

Cv � ε−α , ε ∼ (b + c + d − a)/a , sin
πα

4(1 − 1
2α)

= tanh 2J4 (2)

close to one of the transition lines.
Themapping can be taken one step further and be extended to the sixteen vertexmodelwith

a, b, c, d and equal weight for all three-in one-out and three-out one-in vertices parametrized
by e [2]. Place now an Ising variable on the middle point of each edge between two vertices.
In this way, there are as many spins as links on the original square lattice. Each vertex has an
up, σu , a down, σd , a right, σr , and a left, σl , spin attached to it. If each of these spins interacts
with its nearest-neighbour, its next-nearest neighbour and over the plaquette that they form,
the energy of the signalled vertex is

H (v)
16v({si })=−J0 − J xn (σlσu + σdσr ) − J y

n (σlσd + σuσr )

−Jnnσuσl − J ′
nnσlσr + J4σuσdσlσr . (3)

There is a special relation between the parameters, e4 = abcd , such that J4 = 0 and only
two-body interactions remain. Some exact results for the equilibrium of this case are known.

Ising spin models with plaquette interactions acquired an interest per se after the work of
Kadanoff and Wegner, and Wu, and many papers were devoted to the study of their phase
diagram and critical properties with different techniques, including finite-size scaling [41],
perturbation theory, low- and high-temperature expansions, field theoretical tools [42], and
Monte Carlo simulations [43–45]. The cluster variation method was also used to study
this problem [46,47]. Plaquette spin models were used to mimic glassy behaviour within
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the description provided by kinetically constrained models, especially by Jack and co-
workers [48–52].

3 Artificial Spin-Ice

Two-dimensional Ising-like icemodels found anice experimental counterpart recentlywhen it
becamepossible tomanufacture artificial sampleswith arrays of single-domain ferromagnetic
nano-islands frustrated by dipolar interactions [53,54]. In their simplest setting artificial
spin-ice (ASI) are 2D arrays of elongated single-domain permalloy islands whose shape
anisotropy defines Ising-like spins arranged along the edges of a regular square lattice. Other
lattice geometries can be drawn in the laboratory as well. Spins interact through dipolar
exchanges and the dominant contributions are the ones between neighbouring islands across
a given vertex. No configuration of the surrounding spins can minimize all pairwise dipole-
dipole interactions on a vertex. The interaction parameters can be precisely engineered – by
tuning the distance between islands, i.e., the lattice constant, the height between layers or by
applying external fields. In this way one can select the phase into which the system should
settle in [55–57]. One of the main goals of the research on artificial spin-ice is to develop new
materials that could improve the performance of data storage and data processing devices.

In samples with no height offset, the 2D square symmetry defines five relevant vertex
types of increasing energy, where the c vertices take the lowest value, leading to a ground
state with staggered c-AFM order [58]. However, the relative energies of the different vertex
configurations could be tuned differently in such a way that the ground state displayed other
types of order or be even disordered.

In the experiments in [57,58] the thickness of the magnetic islands grows by deposition
(while temperature and all other external parameters are kept constant within experimental
accuracy). The Ising spins flip by thermal fluctuations during the growth process. As the
energy barrier for single spin flips increases with the size of the islands, once a certain thick-
ness is reached the barrier crosses-over the energy provided by the bath, kBT , and the spins
freeze (experiments are usually performed at room temperature). At the end of the growth
process, the frozen spin configurations are imaged with magnetic force microscopy [55], or
other techniques [59–65] and the number of vertices of each kind are counted. A statistical
analysis of the microscopic configurations is carried out and averaged values (with statistical
errors) are evaluated. The configurations thus sampled are not necessarily the ones of thermal
Boltzmann equilibrium at the working temperature and several groups have tried to find an
effective statistical measure to describe them [58,66].

One can model 2D ASI by taking into account dipolar interactions [19,22,67,68] or by
using a simpler vertex model. If the latter choice is made, the complete vertex model on a
square lattice, where all kinds of vertices are allowed, should be used. The latter route was
the one that I followed in recent years, and I summarise some of the results that we found in
the next Section.

4 Results

In this Section we present some recent results on the use of vertex models to describe bidi-
mensional spin-ice samples.
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4.1 Equilibrium Properties of the Sixteen Vertex Model

Approximatemethods, such as the Bethe-Peierls approximation [69] and itsmodern versions,
like the cavity method and the belief propagation algorithm [70–73], turned out to be of
great help to obtain the equilibrium properties of generic vertex models [6,7,74,75]. In [6,
7] we introduced a suitable Bethe-Peierls approximation, defined on a well-chosen tree of
plaquettes, and we derived self-consistent equations on such a tree, the fixed points of which
yield the exact solution of the model in this approximation. Surprisingly enough, the method
gave very accurate, sometimes even exact, results when applied to the integrable six and eight
vertex cases. For instance, the location in parameter space of the transition lines is captured
exactly in the six and eight vertex models. The first order character of the transition between
disordered and ferromagnetic phases in the six vertex model is also found. However, the
disordered phase, named PM for paramagnetic in Fig. 2, is not critical but just a conventional
high temperature phase. Consequently, theKosterlitz-Thouless transition between disordered
and ferromagnetic phases in the samemodel ismistaken by a second order one. The projection
of the phase diagram for the eight vertex model on the plane a/c − b/c is shown in Fig. 2
that is extracted from [7].

For the sixteen vertex model the method allowed us to describe all expected phases and to
unveil some of their properties, such as the presence of anisotropic equilibrium fluctuations
in the symmetry broken phases. The predictions of the Bethe-Peierls approximation were
confronted to Monte Carlo (MC) simulations of the finite-dimensional system with very
good agreement.

For small values of the probability weight of the defects, that is to say, d � e � a, b, c,
the ordered anti-ferromagnetic and ferromagnetic phases survive as well as the disordered
phase. The latter loses its critical properties and the ferromagnetic phase is no longer frozen.
This is the parameter regime that is relevant for most experiments performed with artificial
spin-ice samples, as we explain below.

4.2 Artificial Spin-Ice

In [6] we made contact with experiments by choosing parameters in the sixteen vertex model
close to the ones of artificial spin-ice samples [53,54] obtained by gradual deposition of
magnetic material on square patterns with different lattice constant and varying under-layer
disorder. The single vertex energies can be estimated to be εc = (−2

√
2 + 1)/�, εa = εb =

−1/�, εe = 0, εd = (4
√
2 + 2)/� with � the length of the individual magnets (edges on

the lattice). These expressions were obtained by Nisoli et al. modelling the arrows with two
opposite charges and taking into account the electrostatic energy between them [66]. The
local energies are then ordered as εc < εa,b < εe < εd , leading to d < e < a, b < c.
For these parameters, the six vertex model predicts a second-order phase transition from a
conventional high temperature (or large lattice constant, strong disorder) disordered phase
to a low temperature (or small lattice constant, weak disorder) staggered antiferromagnetic
phase that was not taken into account in previous analysis of the experimental data. In the
upper panel in Fig. 4 we should the dependence of the vertex densities as a function of inverse
temperature times a reference vertex energy, ε0 ≡ εc. Temperature is fixed in the experiments
but samples with different � or substrate are studied changing therefore the reference (and
other) vertex energy parameters. We include in the figure the experimental data (with full
symbols), equilibrium Monte Carlo data (with open symbols joined with dotted lines), and
the analytic solution of the sixteen vertex model (with solid lines). The agreement between
experimental data and the model results is very good away from the critical point, implying
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Fig. 4 (Colour figure online) Upper panel figure extracted from [6]. The average densities of vertices of
different type as a function of βε0 with β the inverse temperature and ε0 a reference vertex energy, see the
text. Full symbols with error bars are experimental data [57]. Empty symbols with dotted lines correspond to
the equilibrium CTMC (Continuous Time Monte Carlo) data. The cluster variational Bethe-Peierls analytic
solution of the sixteen-vertex model is shown with solid lines. In the lower panels we show a typical exper-
imental configuration, figure taken from [76] (©IOP Publishing & Deutsche Physikalische Gesellschaft, CC
BY-NC-SA), and two numerical configurations taken from [6]. The snapshot in the central panel the first one
is out of equilibrium and the one in the third panel is in equilibrium. All these snapshots are for parameters in
the anti-ferromagnetic phase.

that the experimental samples of [57,58] are at–or at least very close to—ermal equilibrium
for such parameters. However, deviations are een close to criticality were, most probably, the
samples have not had enough time to equilibrate during preparation. This interpretation does
not require a fitting parameter, such as the effective temperature introduced in Ref. [58,66].
The lower panels in the same figure show experimental and numerical snapshots. The left
picture is taken from [58]. The homogenous-looking part corresponds to antiferromagnetic
order and the domain-walls and lines of defects are darker. The other two pictures are taken
from [6]. The uniform looking regions are anti-ferromagnetically ordered and the defects
and vertices of other kind are shown with different colours. The central picture is out of
equilibrium. The number of defects is larger and they are mostly organised in domain walls.
The spatial arrangement of vertices in near-critical artificial spin-ice should be studied in
more detail and confronted to the correlations expected in equilibrium or after quenches to
understand how far form equilibrium the samples are.
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Fig. 5 (Colour figure online)
Polarization of the horizontal
edges at the so-called
free-fermion case,
	 ≡ (a2 + b2 − c2)/(2ab) = 0,
with a = b, on a square lattice
with 1024 × 1024 lattice vertices,
computed with the Bethe-Peierls
approximation. The white line is
the exact arctic circle. This figure
is taken from Ref. [10]

4.3 Domain Wall Boundary Conditions

The effect of fixed boundary conditions of the domain-wall typewere studied inRef. [10]with
the Bethe-Peierls or cluster variational method. Interestingly enough, this method allows one
to obtain the arctic curves with the same degree of difficulty for all values of the parameters
in the model, be them in the disordered or in the antiferromagnetic phase. Moreover, the
method can be adapted to deal with lattices with rectangular shape. The curves found with
this admittedly only approximate method are remarkably close to the exact ones when these
are known. It is quite surprising indeed that a ‘mean-field’ method can capture real-space
phase separation with such a degree of precision (Fig. 5).

4.4 Order by Disorder

Order-by-disorder (ObD) is themechanismwhereby a systemwith a non-trivially degenerate
ground state develops long-range order by the effect of classical or quantum fluctuations [77].
More precisely, a huge disproportion in the density of low-energy excitations associated with
particular ground states that are ordered suffices to select them as soon as an infinitesimal
temperature is switched on. From a theoretical point of view, the ObD mechanism was first
exhibited in the classical fully frustrated domino model [78] but it is a relatively common
occurrence in geometrically frustrated spinmodels. However, there is still no definitive exper-
imental evidence for it. The difficulty lies in establishing whether the selection of order is
due to the ObD mechanism, or whether the reason for ordering is the contribution of terms
not taken into account in the Hamiltonian model that actually lift the ground state degener-
acy. In a recent Letter we argued that it should be possible to observe thermal ObD in 2D
spin-ice samples with parameters such that the preferred anti-ferromagnetic staggered order
is inhibited by a magnetic field [11].

Take the sixteen vertex model. Under no applied magnetic field there is spin reversal
symmetry, ω1 = ω2, ω3 = ω4, ω5 = ω6, ω7 = ω8, ω9 = ω10, ω11 = ω12, ω13 = ω14,
ω15 = ω16. Assume that the vertex energies are ordered according to εc < εe < εa = εb <

εd , a quite unusual hierarchy since the vertices with three-in one-out and three-out one-in
arrows are usually considered to be defects with relative high energy. (However, there should
be tricks to realise this ordering in the laboratory.) As the anti-ferroelectric vertices are the
ones with the lowest energy, the ground state has staggered order of c vertices. The magnetic
field lifts the degeneracy between the energies of the vertices that have two vertical arrows
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�B

Fig. 6 The magnetic field 	B orders the spins on all columns. The rows have staggered antiferromagnetic
order but their first spin is free to chose among the two possible orientations. There is a residual entropy
Sres ∝ ln Ncolumns. There is staggered two-in two-out order on each row but no special order between rows

pointing in the same direction, that is to say, the vertices labeled 1 and 2, 2 and 3 and between
some of the e vertices, see Fig. 1. For a sufficiently strong magnetic field, one can in this way
render the energy of the e vertices with the two vertical arrows aligned along the magnetic
field the lowest one (vertices labeled 14 and 15 in Fig. 1). In Fig. 6 we show one of the ground
states among the 2L with L the number of lines, possible ones under these conditions. While
all arrows on vertical edges are aligned with the magnetic field, perpendicular arrows are
free to point in any of the two directions, leading to these degeneracy. One notices that
among all these possible ground states, two of them are completely anti-ferromagnetically
ordered along rows and between rows and are shown in Fig. 7. For magnetic fields that are
just above the threshold value at which the energy hierarchy is modified to εe < εc, these
are the ground states with the largest number of low-energy excitations. They correspond to
flipping alternating vertical arrows against the magnetic field, but with low energetic cost.
This feature produces an effective anti-ferromagnetic interaction between the lines that fully
orders the system antiferromagnetically at low temperatures. The careful analysis of the finite
size effects shows that the low-temperature and large system size limits do not commute.
This is intimately related to the fact that ordering at infinitesimal temperature appears as a
first order phase transition. The non-trivial dependence on system size could be exploited to
detect ObD experimentally, as explained in Ref. [11].

4.5 Dynamics

Several kinds of stochastic dynamic rules have been proposed to study different aspects of
the dynamics and statics of vertex models.

In the pure vertex model context, the main interest has been to study the Kosterlitz–
Thouless phase transition between disordered and anti-ferromagnetic phases in the six vertex
model with numerical methods. The elementary moves can not violate the strict two-in two-
out rule, that is equivalent to a ‘divergence free’ condition in an analogy of the sequence
of arrows with magnetic lines, that should form, therefore, closed loops. Loop algorithms,
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�B

Fig. 7 Two special ground states under the field

in which the orientation of closed loops is reversed using a local stochastic decision that
respects detailed balance, were specifically developed to beat critical slowing down [79].
Improvements of this method to study other features of vertex models and their quantum
spin-chain equivalents are still now being proposed.

As soon as the strict ice rule is broken, other algorithms can be used tomimic the dynamics
of these systems and at long times sample their asymptotic states.

If the aim is to use the vertexmodels to describe the behaviour of real or artificial materials,
details on their actual dynamics have to be taken into account when defining the microscopic
updates. In their final state the magnetic dots in artificial spin-ice are small enough to be
single-domain, but large enough to be athermal. In consequence, the blocked configurations
reached, for example, with rotating magnetic field protocols, are the result of athermal non-
equilibrium dynamics with some similarity to the shaking of granular materials. In several
works emphasis was put on the study of the statistical properties of the steady state reached
with these and other athermal evolutions [66,80].

In other experimental protocols, the evolution of the spin-ice configuration is thermal [55,
57] since the magnetic elements can flip during their formation by deposition before a critical
size is reached. The domain structure and formation under thermal fluctuations was studied
in [76] using the iteration of a mean-field equation for the local magnetizations based on a
point dipole approximation, andMonte Carlo simulations at the same level of approximation.

In a couple of papers we studied the dynamics after thermal quenches in the 2d square
lattice spin-ice model built as a stochastic extension of the vertex models [8,9].Wemimicked
the effect of thermal fluctuations in spin-ice samples by coupling themodel to an environment
and allowing for local single spin flips determined by the heat-bath rule. Local moves that
break the spin-ice rule are not forbidden and we therefore allow for thermally activated
creation of defects in the form of three-in one-out, four-in none-out and their spin-reversed
configurations. These dynamics do not conserve any of the various order parameters and
are ergodic for both fixed and periodic boundary conditions. With these ingredients we
established a Monte Carlo algorithm and we defined the unit of time as a Monte Carlo sweep
(MCs). In systems with frustration, computer time is wasted by the large rejection of blindly
proposed updates. To avoid this problem we used a rejection-free continuous-time Monte
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Fig. 8 (Colour figure online) Progressive ferromagnetic ordering after a quench from a disordered state at
t = 0. The time-evolution of the density of vertices for a = 5, b = 1, and d = e2 = 10−10, in a system
with linear size L = 100. The data are averaged over 300 samples. The snapshots are typical configurations
at the instants indicated by the arrows. Black and white points are vertices 1 and 2. This figure is taken from
Ref. [9]. The four regimes labeled I, II, III, IV, and V in the figure are discussed in this reference

Carlo (CTMC) algorithm that allows for thermally activated creation of defects. The longest
time reached with this method, once translated in terms of usual MC sweeps, is of the order
of 1025 MCs, a scale practically unreachable with usual algorithms.

The CTMC dynamics allowed us to identify the equilibrium phase diagram and to analyse
different dynamic regimes. Our dynamic results are manifold [8,9]. We reproduced known
facts of the dynamics of spin-ice samples and we derived a large number of new results that
should be realized experimentally. After a quench to sets of parameters in the disordered
phase the system eventually equilibrates but it does in several different time-scales since the
systems get blocked in long-lived metastable states with a large density of defects. Reaction-
diffusion arguments [81] were used to understand why these long-lived states exist, although
in ourmodel there are no long-range interactions.After quenches into the two kinds of ordered
phases the interactions between the spins, mediated by the choice of vertex weights, create
ordered domains of ferromagnetic or anti-ferromagnetic kind. We proved that the ordering
dynamics conforms to the domain-growth scaling picture. The quantitative characterization
of order-growth is given by two growing lengths extracted from correlation functions along
orthogonal directions, �‖(t) and �⊥(t) that, numerically, are both compatible with t1/2 though
with different pre-factors. In Fig. 8we show an initial configurationwith random choice of the
vertices and two subsequent snapshots after havingquenched the system into its ferromagnetic
phase (a = 5, b = 1, c = 1, d = e2 = 10−1). The plots are self-explanatory, with stripes of
ferromagnetic domains of reversed type shown in black and white. The upper panel displays
the time dependence of the density of vertices of different type in the course of time. The
four arrows indicate the instants at which the snapshots were taken. For more details see
Refs. [8,9].

123



Artificial Spin-Ice and Vertex Models 511

5 Conclusions

We have visited the phase space and real space properties of 2D artificial spin-ice samples
as uncovered by their study using vertex models. Curiously enough, the analysis of these
models with an a priori crude approximation as the one accessed with cluster variational or
Bethe-Peierls methods provides many interesting results.

Dipolar interactions are definitely present in experimental samples and they may alter
some of the results presented in this paper. How they may do is definitely a very interesting
question that deserves to be studied carefully. For instance, one could imagine that the sharp
arctic curves may become smoother crossovers or that the order-by-disorder phenomenon
will have to be searched in samples in which the dipolar interactions are subdominant.

We close by insisting upon the fact that, although vertexmodels avoid all the complications
of (long-range) dipolar interactions, they are a very convenient schematic framework to study
artificial spin-ice samples from a theoretic perspective, and they are sufficiently rich to have
attired and continue to attract the attention of a large number of theoreticians including
myself.
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