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The statistical mechanics of interfaces subject to quenched impurities is studied in two 
dimensions. The presence of randomness changes the scaling of domain wall fluctuations, and 
modifies critical behavior at interface-driven depinning (wetting), and commensurate-to-incom- 
mensurate phase transitions. All these problems are examined by combining the replica method 
with Bethe ansatz calculations. Results include expressions for quench-averaged free energies, 
their cumulants, expectation values, distribution functions, in addition to a number of new critical 
exponents. The intermediate results include some novel Bethe ansatz solutions, such as the ground 
state energy of a system of n attracting fermion species. 

1. Introduction and summary 

One of the most challenging topics of current research is the physics of disordered 
systems [1]. It was recognized early on that the statistical mechanics, and critical 
behavior, of random systems is in general different from the corresponding pure 
ones [2]. However, understanding this behavior, for example in the contexts of 
random fields [3, 4], spin glasses [5, 6], or polymers in random media [7], has almost 
always proved controversial. In this paper I examine the behavior of interfaces in 
two-dimensional disordered systems. This is a non-trivial example that can be 
solved exactly, and sheds some light into the complex behavior of random materials. 

An important tool for examining properties of quenched random systems is the 
replica method [5]. In principle all quantities of interest can be obtained from the 
n ---, 0 limit of an n times replicated version of the original problem, with interac- 
tions between the replicas. In practice this method is hampered by the difficulties 
associated with solving the interacting problem, and taking the n ~ 0 limit. The 
complexity of the mean field solution to the spin-glass problem [6], with its broken 
replica symmetry, attests to these difficulties. These problems are circumvented for 
the 2d interface problem, where the interacting system can be solved exactly for all 
n, and the limit straightforwardly taken. Yet another recent exact solution is that of 
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the two-dimensional random bond Ising model [8]. This solution, obtained by a 
renormalization group treatment of the replicated model is somewhat unsatisfac- 
tory, as it can not be easily extended beyond an analysis of the critical regime. By 
contrast in the interface problem, having exact analytic expressions for all n, allows 
the full power of the replica formalism to be utilized. 

Exact solutions for the replicated interface problems are obtained by using Bethe 
ansatz methods [9,10]. This is indeed a common tool for solving statistical me- 
chanics of pure two-dimensional models, and is here extended to random systems. 
Brief reports of the results for commensurate-to-incommensurate [11], and depin- 
ning transitions [12] have already appeared. But the complexity of the calculations, 
and the intricacy of the n ~ 0 limit, can only be appreciated from a fuller account. 
This paper presents the details of these calculations, along with a number of new 
results, and suggestions for further studies. The organization of the paper is as 
follows: 

The general philosophy of this technique is outlined in sect. 2 which deals with 
the properties of a single interface in the random bond Ising model. After obtaining 
a continuum version of this system, a transfer matrix method is used to reduce the 
problem to the quantum mechanics of a single particle. The free energy of the 
replicated interface is then related to the ground state energy of a collection of 
interacting bosons. The Bethe ansatz solution of this problem is actually very 
simple, and requires no more than rudimentary quantum mechanics. However, even 
this simple solution contains many non-trivial results for the random interface 
problem, such as the complete distribution function for the quench-averaged free 
energy [f] .  In particular fluctuations in I f ]  are found to scale with the length T of 
the interface as T 1/3, implying a scaling of T 2/3 for transverse fluctuations [13}. 

The depinning transition, which describes the delocalization of an interface from 
an attractive surface [12], is examined in sect. 3. In the absence of randomness the 
transfer matrix formalism reduces this problem to the quantum mechanics of a 
particle in an attractive potential with hard core. With randomness, the replicated 
model corresponds to n mutually attracting particles in such a potential. Guided by 
simple ideas, it is possible to write down an exact wave function for the ground state 
of these particles. The n ~ 0 limit of the ground state energy provides an expression 
for the interface free energy, and its singularities at the depinning transition. Higher 
order cumulants of the free energy can also be obtained, and are found to have 
distinct singularities at the transition. This interesting result is probably an example 
of a more general phenomenon in random systems. The quench-averaged local- 
ization length is also calculated, and diverges at the transition with an exponent of 
2. This exponent is different from the non-random result, and indicates the 
relevance of impurities at the transition. 

The most technically complex calculation arises in the context of the com- 
mensurate-to-incommensurate [11] transition (CIT), as described in sect. 4. This 
transition occurs for a system of many non-crossing interfaces. The non-crossing 
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constraint is most easily implemented in the transfer matrix by regarding the 
interfaces as world lines of one-dimensional fermions. In the replica formalism, we 
have to find the ground state energy of n attracting fermion species. 

The behavior of interacting fermions has considerable intrinsic interest. In 
principle it can be solved by the Bethe ansatz method [10], as formulated by Yang 
[14] and Sutherland [15]. In practice, however, their solution involving coupled 
integral equations, obscures most of the interesting physics of the problem. For 
random interfaces, the number of fermions is the same in all replicas. This leads to 
considerable simplifications, and in some cases, closed form expressions for the 
energy. Ground state solutions for attractive interactions are given in sect. 4. Taking 
the n ~ 0 limit in this case is non-trivial, and again leads to modified exponents at 
the CIT. 

2. A single interface 

2.1. MODEL AND REPLICAS 

To describe the behavior of an interface interacting with impurities, we start with 
the two-dimensional random-bond Ising model. A domain wall is introduced by the 
choice of ( + )  and ( - )  boundary conditions at opposite edges of the system. This 
interface is treated by a series of approximations, the first of which is the restriction 
to solid-on-solid configurations, which exclude islands and overhangs [13]. This is 
formally exact in the extreme anisotropic limit (strong bonds parallel to the 
interface, and weak bonds perpendicular to it). Each interface configuration is now 
described by a single-vahied function {x(t)} ,  where t is the coordinate parallel to 
the wall, and x measures its transverse fluctuations. For simplicity the bonds 
perpendicular to the interface are taken to be uniform (all equal to K),  while the 
bonds /~(x, t) parallel to the interface are assumed to be independent random 
variables. The partition function for the domain wall can be obtained from a 
product of transfer matrices J-( t) ,  evaluated at step t, where 

{xlJ-(  t )lx' ) = exp[- I~(x ,  t) - KIx - x'l] . (2.1) 

For large K, transverse steps are infrequent, and J ( t )  can be expanded in 
- -  K ,  ~,--e 

( x l J - ( t ) l x ' )  = e -"(x'') [Sx, x, + ,/(8~,~,+j + 8~,~,_a) + O(-¢2)] 

- ~ e x p [ - i z ( x , t )  + 2-/ +'~oZ/Ox 2] = e x p [ - W ( t ) ] ,  (2.2) 

where the last step involves going to a continuum limit in the x direction. The 
overall weight of paths connecting (0,0) to ( x , t )  is calculated using transfer 
matrices as W(x,  t) = (01J ' (0)3-(1) . . . ,Y-( t -  1)Ix ). After taking a continuum 
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limit in the t direction, this weight is found to evolve according to a t-dependent 
hamiltonian ~ ( t ) ,  as 

[ OW 
J~(t)W, w i t h J t ' ( t ) =  / * ( x , t ) - 2 " ~ - ' / ~ x  2 . (2.3) Ot 

This is a non-markovian diffusion equation, with dynamically random sources and 
sinks. In the absence of impurities, W(x, t) behaves asymptotically as e x p { - f i -  
x2/4yt}, where f = / ~ -  27 is the interface free energy, and (x 2} = 23,t measures 
interface fluctuations in the transverse direction. The interface free energy vanishes 
linearly at the pure Ising transition temperature (/~ = 27), indicating a Widom 
interracial tension exponent [16] of unity. Similarly, with randomness present, 
W(x, t ) -exp{-[ f] t -g(x / t~)} ,  where [ f ]  is the quench-averaged free energy, 
and the exponent u describes the scaling of transverse fluctuations. 

The important quench averaged quantities, such as If] ,  appear in the exponent. 
Hence the logarithm of the partition function Z = W(x, 0), and not Z itself, has to 
be averaged over the distribution of random impurities. In the replica method this is 
accomplished by using the simple identity 

[ln Z]  = limo([Z"]-l)/n, (2.4) 

where [ . . .  ] denotes impurity averaging. In the original lattice problem, Z" is the 
partition function of n copies of the original interface. The averaging over random- 
ness is done by noting that each bond/ , (x ,  t) is an independent random variable. In 
any given configuration of interfaces, the bond /*(x, t) contributes a factor of 
e -mt~(x't) to Z n, where m is the number of interfaces crossing that bond (m = 
0,1,2 . . . .  , n). Assuming a gaussian distribution of mean [#] and variance o 2 for 
each bond leads to 

[exp(-mlx)]=exp{-([Ixl-½o2)m+~o2m(m-1)}. (2.5) 

This important result is interpreted as follows. The averaging over random bonds 
results in (i) a uniform effective value of [/,] - ~o'1 2 for each bond and (ii) a pairwise 
attraction of magnitude o 2 between interfaces on contact. (Note that m interfaces 
through a bond correspond to ~m(m- 1) pairs.) Thus the replicated model de- 
scribes a collection of n attracting interfaces on a uniform two-dimensional lattice. 

To calculate the partition function [Z n] for these attracting interfaces, the steps 
taken previously for a single interface are repeated. In the solid on solid limit the 
interface configurations are described by the world-lines {Xl(t), x2( t ) , . . . ,  xn(t)} , 
and treated by the n-body transfer matrix ({x}l~l(x'}}. As in eq. (2.2) after 
taking a continuum limit (also assuming "y << 1), the transfer matrix can be written 
as ~ = e x p [ - ~ ] .  The n-body hamiltonian ~,,, is now t-independent, and takes 
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. 02 
~ n  = ( [~ ]  1 2 ~ - -  -- 02 Z ~ ( X . - -  X,8 ).  7 o  - 2 r ) , ,  - r 

=1 c~< fi 
(2.6) 

The last term represents the attractive interaction between interfaces on contact. 
The replica method thus converts a product of random, t-dependent transfer 
matrices to that of uniform, t-independent ones, at the expense of introducing 
interactions between the different replicas. 

2.2. THE BETHE ANSATZ 

As usual, the partition function is related only to the largest eigenvalue of the 
transfer matrix. Thus, for a system of length T, [Z ' ]  = e x p ( - E , T ) ,  where E,  is the 
ground-state energy of the hamiltonian ave', in (2.6). In almost all replica formula- 
tions of random systems, the interacting problem cannot be solved exactly, and 
various approximations have to be made. In this case however, finding the ground 
state energy of J¢'. is reasonably straightforward. For n = 2, the ground state wave 
function is clearly q'0 - e x p ( - x l x  1 - x 2[). This is easily generalized to an n-particle 
bound state of the form 

a</? 

To ensure that 't' 0 is an eigenstate of i f , ,  the discontinuity in the wave function as 
two particles cross has to be matched to the strength of the attractive potential. This 
requires 43'~ = o 2, and introduces a new length scale 

ld = ~ 1 = 4,//O 2 (2.8) 

into the problem. The crossover from pure to random behavior for interfaces occurs 
at length scales larger than l d. For the continuum approximation to be valid l d must 
be much larger than the lattice spacing. This condition breaks down at very low 
temperatures. Since g'0 is an eigenstate of ~ with no zeros, it must be the 
(non-degenerate) ground state of this hamiltonian. 

The above solution represents the simplest example of a Bethe ansatz. The general 
idea is quite simple: For particles interacting in one dimension via a contact 
potential the phase space is divided into segments depending on their ordering. In 
each segment the particles are "free", and the wave function is written as a product 
of plane waves. The allowed "momenta"  are then determined by requiring different 
segments to match, and by using appropriate boundary conditions. In the above 
example there are n! permutations (orderings) of particles. For each permutation P, 
the absolute values I x , -  xCL in eq. (2.7) can be expanded as + or - ( x ~ -  x/~), 
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resulting in the wave function q'0 - Fl~exp( - x,,xv,,), which is an explicit product of 
exponentials. The "momenta"  x,~ = (n + 1 - 2a)x (for a = 1 ,2 , . . . ,  n) form an 
n-string along the imaginary k-axis [10] (using the notation of exp(ikx) for plane 
waves). The different segments are matched, as '/'0 is continuous and its derivatives 
have the discontinuity required by the attractive interaction. As two particles go 
through each other, they simply exchange their momenta (an elastic scattering 
process), and hence the kinetic energy "yE~K, 2 is the same in all segments. The total 
energy, obtained from ~f~,,,t, = E,q,0, follows from (2.6) as 

E . _ ( [ , ]  1 2_  3o 2 ,)n-13yx2n(n2-1). (2.9) 

2.3. T H E  n ---, 0 L I M I T  

From eqs. (2.4) and (2.9), the quench averaged free energy is obtained as the 
n --, 0 limit of E,,/n, and hence 

[ f ] /T= [ ~ ] - 2 y -  ½02-o4 /48V.  (2.10) 

Setting [ f ]  to zero leads to the transition temperature of this random bond Ising 
model. Since "~ plays the role of temperature, eq. (2.10) suggests a reentrant 
disordered phase at low temperatures. (Note that [ f ]  is a non-monotonic function 
of y, and is negative for both small and large "y.) Although this is probably correct 
for a range of parameters, it should be noted that l a - y implies the breakdown of 
the underlying continuum approximation at very low temperatures. It would be 
interesting to repeat this analysis in the original lattice problem. The surface tension 
[ f ]  again vanishes linearly at the transition, indicating a Widom exponent of unity 
[16]. For  the pure 2d Ising problem, the correlation length exponent (v = 1) equals 
the Widom exponent from a hyperscaling identity [16]. Since such rules are not valid 
in random systems, I f ]  contains no information about the random bond value of p. 

Note that although taking the n ~ 0 limit of eq. (2.9) is straightforward, the n 3 
dependence of E,  implies that Carlson's theorem cannot be invoked to deduce the 
uniqueness of this limit. A different approach is to realize that [Z n] = [e n~n z] is the 
characteristic function for the random variable In Z, and as such contains much 
additional information beyond the quench-averaged free energy. In fact [Z"] can be 
expanded as 

) [Z"]  = exp -~-, @(ln Z )  , (2.11) 

where ~ is the j t h  cumulant of In Z. (The first three cumulants a r e  C 1 = [In Z] = 
- [ f ] ,  C 2 = [ln Z ~] - [ln Z] 2, and C 3 = [ln Z 3] - 3[ln Z2][ln Z] + 2[ln Z]3.) Since E n 
in eq. (2.9) only contains terms of order n and n 3, the distribution function for In Z 
is completely characterized by its first and third cumulants. C a is given in eq. (2.10), 
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the second cumulant of In Z is zero to order of T, and the third cumulant is 

C3(ln Z)  = 2y~2T = o4T/87.  (2.12) 

2.4. DISCUSSION A N D  INTERPRETATION 

The vanishing of the second cumulant of In Z is very significant as it implies from 
eq. (2.12) that typical fluctuations in the interface free energy scale as A f -  T1/3, 
and not as T 1/2, which is the naive expectation [17,18] since each interface 
encounters T independent random bonds along its path. The interface also fluctu- 
ates in the transverse direction, mostly to take advantage of favorable weak bonds. 
In a continuum elastic description of the interface, a transverse fluctuation x results 
in an energy change proportional to x 2 / T  (this is simply the increase in a coarse 
grained length). Equating this to typical z~f leads to a scaling form x - T 2/3. This 
non-trivial scaling has been observed numerically both at zero [13], and finite 
temperatures [19]. The exponent of ~ can also be obtained by a mapping of eq. (2.3) 
onto the randomly stirred Burger's equation [20,21]. The above calculation is 
probably the simplest derivation of this result. However, the exponent that is 
obtained directly describes the scaling of free energy fluctuations, and to obtain the 
scaling of transverse fluctuations the additional assumption of continuum elasticity 
[13] ( A f - x 2 / T )  is used. I have not verified this assumption in the replica 
framework, but as in the pure system, it is probably related to the existence of 
low-lying excitations in the transfer matrix spectrum. (Due to translational symme- 
try g ' ( k ) -  q'oexp(ikE~x~) is also an eigenstate of the hamiltonian J'Y n for all k, 
with an energy E, ( k )  = En(O ) + n,/k2.) 

3. The depinning transition 

3.1. M O D E L  A N D  REPLICAS 

The critical wetting (or depinning) transition involves the delocalization of an 
interface from an attractive potential at a surface or a wall [22]. At low temperatures 
the interface is pinned to the attractive potential from energy considerations, while 
at high temperatures it moves into the bulk due to entropy effects. The depinning 
transition has been studied extensively in pure systems [22-24], and more recently 
in the presence of impurities [12, 25, 26]. The simplest two-dimensional system that 
exhibits this transition is a semi-infinite Ising model with weak bonds on the surface 
[23]. In the "solid-on-solid" picture, the interface profile { x(t)} is limited to x > 0. 
The new transfer matrix J - '  is the same as the free interface Y in eq. (2.2) for 
x > 1, while at the surface (x = 1) it is modified to 

(1 [~Y-'(t)lx') = exp(--I~s)(~l,x,-~- ]"~2, x ' )  " (3.1) 

The weaker surface bonds/& are assumed to be uniform for simplicity. 
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Without bulk randomness [24] the lowest energy eigenstate of J "  is a bound 
state ~/'0 - exp( -} tx ) ,  with )t = [(/~ -/~s) - 7]/Y- The inverse localization length 
lp = 1/X represents the competition between the pinning energy (~t - /xs) ,  and the 
entropy loss due to elimination of paths to x < 1 by the surface. The entropy term 
dominates at high temperatures, leading to a depinning transition at y = (/~-/~s), 
with the pinning length diverging a s  l p  - ( y  - yc) - l ,  i.e. with an exponent vz = 1. 
The free energy (obtained from the largest eigenvalue of 5r ' ) ,  is f ' / T = l ~ -  2 - / -  
,/2, 2. It describes a second order depinning transition (as)t  ~ 0) with a discontinuous 
interface specific heat. At high temperatures (7 > 7c) the attractive potential has no 
bound state, and the free energy is identical to that of the free interface. 

With bulk randomness, the replication procedure and the subsequent random 
averaging is performed [12] as in the previous chapter. The replicated problem 
describes n attracting interfaces, each in turn attracted to weak bonds on the 
surface. The partition function is again calculated via a transfer matrix, which in the 
continuum limit can be written as .Y-'= exp[-gf ' , ' ] ,  with 

~ , =  ( [~]  _1~o2 _ 23,)n + -3 '  ~--25 ~- Vs(xet) -- 02 E ~ ( X a  -- X f l ) .  (3.2) 
Ox~ 

a=l a<fl 

The weak surface bonds result in an external potential V~(x) on the particles. This 
potential has an attractive part and an impenetrable core, and causes the wave 
function of a particle immediately next to it to fall off as e x p ( -  X x). The possibility 
of more than one particle in the potential will be ignored. This assumption, and the 
continuum limit, are valid if both the disorder length l d and the pinning length Ip 
are larger than the lattice spacing. 

3.2. THE BETHE ANSATZ 

There is no precedent for a Bethe ansatz solution of interacting particles in an 
external potential. However, guided by intuition gained from basic quantum me- 
chanics, guessing the wave function is not difficult in this case. For each permuta- 
tion P of particles (i.e. with 0 < x m < xpz  < • • • < x p , )  the wave function is written 
as a product  of exponentials, i.e. 

r E KmXpa . (3.3) 

The choice of r ,  -- X + 2(a - 1)x ensures the proper derivative discontinuities when 
two particles are exchanged. Also for the particle closest to the surface, the wave 
function has the required exp(-XXp1 ) fall-off. Again as this eigenfunction has no 
nodes, it represents the ground state of the hamiltonian .Xe". The set of "momenta"  
( x , }  is the same for all orderings, and the kinetic energy is ,fE~:] as before. The 
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total energy of this n-particle bound state is then easily evaluated as 

, _ _ -2K2]n + 2 ~ ( X -  x)n 2 + %2n3].  E . = ( [ / , ] - ½  °2 23')n 3'[(X 2 - 2 x x + 3  , (3.4) 

3.3. T H E  n ~ 0 L I M I T  

The quench-averaged free energy [ f  '] of the pinned interface is obtained from the 
n ~ 0 limit of E[/n in eq. (3.4). More relevant is the difference between this free 
energy, and that of the unbound interface is eq. (2.10). This pinning free energy 
equals 

( [ f ' ]  - [f ]) /T= lim ( E ' -  E,)/n = -3 , (~ -  x) 2, 
n ~ 0  

(3.5) 

and decreases with introduction of bulk randomness. It vanishes for ?t = ~ = o 2/43,, 
indicating a depinning transition. This transition can thus be induced by increasing 
bond randomness, as well as by raising temperature. 

The pinning free energy in (3.5) goes to zero quadratically as ?, --, x, indicating a 
discontinuous interface specific heat (a = 0) as in the case of thermal depinning [23]. 
The second and third cumulants of the free energy in the pinned state can also be 
read off from eq. (3.4) as 

Ce( lnZ ' )=47x(X-x )T ,  

C3(ln Z ' )  = 83,xZT. (3.6) 

For  the pinned interface, unlike the free one, the second cumulant is non-zero and 
typical fluctuations scale as T 1/2, with a coefficient however, that vanishes as X --* x. 
Thus (from eqs. (3.5) and (3.6)) the depinning transition is characterized by a 
quadratic singularity in the quench-averaged free energy, a linear one in its second 
cumulant, and a discontinuity of 6~,x2T in the third cumulant. This hierarchy of 
singularities is reminiscent of the multitude of exponents observed in recent dynami- 
cal studies of random systems [27] and is probably symptomatic of a more common 
underlying characteristic. 

Another  quantity that can be calculated exactly is the quench-averaged local- 
ization length [lp] = [(x)]  where ( . - .  ) denotes thermal expectation values. In the 
replica formalism this is evaluated from 

= E x . / .  
n ~ O  n ~ O  \ c, 

(3.7) 

(Note the equivalence of replicas.) The expectation value in the n-body problem is 
calculated from the wave function if'd, which determines the asymptotic distribution 
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probabilities of interfaces, as 

Z x o  ' X) (3.8) ( ~ x ~ )  = f o lrfl dx"(  ~ )g~d({x~})/N( . 

The normalization factor N()t) is the sum of nt equal contributions from the 
different orderings. Therefore, 

N()t)=n!£~dxtexp[-Xxl]£~dx2exp[-(X + 2K)x2] ... 
l 

f ~  d x , , e x p [ -  (X + 2 ( n -  1)~)x,,] , (3.9) 
X n 1 

where the region of integration reflects the ordering 0 < x 1 < x 2 < - • • < x,.  The 
exponential integrals are now performed sequentially, starting from the outer one, 
leading to 

N(X)=n! (-] { ~ x +  [ 2 ~ n - ~ ( ~  + 1)IK}  
a = l  

= e x p { -  ~ l n [ X  + ( 2 n -  a -  1)~]} . 
O~ 

(3.10) 

Since for all particle orderings a factor of X ~ x ~  appears in the exponent for ,pd, 
the expectation value in (3.8) can be calculated from 

xo  = - 0--~ln N ( X )  = F~ X + (2n  - ,~ - 1 )~  
Ot 

= ~ d y e x p { - [ ~ . +  ( 2 n -  a -  1)K]y} 

exp(n~y)  - 1 (3.11) =£ dyexp{-[X + 2(n-1)~]y) e x p ( ~ y ) - I  

The purpose of the above manipulations is to bring (32 x~) into a form that can be 
analytically continued in n. Indeed this limit is taken straightforwardly from the 
final expression, and using eq. (3.7) 

e x p [ -  ( X -  ~)Yl [,p] rjfdy y (3.12) 

For ~ << X, [ / p ]  = 1/X as before [24], while close to the depinning transition it 
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diverges as I / p ] -  ~¢/()t- •)2. Therefore, the exponent for the divergence of the 
localization length changes from 1 in the pure system to 2 in the presence of 
r andomness -  yet another manifestation of the relevance of randomness in 2d 
interface systems. 

3.4. I N T E R P R E T A T I O N  AND DISCUSSION 

The full power of the replica method is utilized in the example of the depinning 
transition. It provides the singularities not only of the quench averaged free energy, 
but also of its higher order cumulants. There are so far no systematic studies of the 
singular (universal?) behavior of cumulants at a phase transition. The quench-aver- 
aged localization length is also calculated and diverges with a new exponent of 
p± = 2. Lipowsky and Fisher [25] have provided a justification for this exponent 
using the scaling of fluctuations for a single interface subject to randomness. 

The above impurity induced transition can be tested numerically [12]. I have also 
used numerical simulations to study two similar problems that are not amenable to 
analytic treatment. One is the pinning to a strip of weak bonds in the bulk (instead 
of on the surface), corresponding to a delta function attractive potential in eq. (3.2). 
In the absence of randomness the ground state wave function is always localized, 
and there is no thermally induced depinning transition [24]. However, simulations 
[12] indicate that such a transition does occur on increasing bond randomness. This 
is because the driving force for the transition is now energy gain and not entropy. 
The second problem concerns attracting interfaces, where simulations again show an 
unpairing transition for strong randomness. This example has a physical realization 
in steps on crystalline surfaces [24], whose fluctuations and separations may be 
probed by scanning microscopy. Although at first it appears that Bethe ansatz 
solutions similar to (3.3) should also be possible in these two cases, I have not 
succeeded in finding a set of "momenta" that satisfies all boundary conditions. 

4. The commensurate-to-incommensurate transition 

4.1. M O D E L  A N D  REPLICAS 

The commensurate-to-incommensurate transition (CIT) occurs in adsorbed layers 
when there is a slight mismatch between the periodicity of the substrate and the 
natural spacing of the adsorbate [28]. Near the transition the incommensurate phase 
(IC) is composed of large commensurate (C) domains separated by domain walls. At 
finite temperatures, the statistical mechanics of these domain walls regulates the 
critical behavior at the CIT. In many adsorbed systems the domain walls form 
honeycomb networks, as the lattice symmetry results in three easy directions for 
domain walls [29]. There are also uniaxial systems in which the interfaces are 
primarily aligned to a single lattice direction, with small transverse fluctuations [30]. 
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The latter are amenable to transfer matrix treatment and form the subject of this 
section. The most important microscopic property of these domain walls is the high 
energy cost associated with their overlap, and henceforth they will be treated as 
noncrossing. 

Approaching the transition from the C side, the IC phase first appears when the 
free energy f of a single interface vanishes. In the IC phase, the noncrossing 
condition leads to a long-range repulsion between interfaces that determines the 
average domain size 1. In the absence of impurities, each interface executes a 
random walk in between collisions with its neighbors. If the domain size is l, the 
average distance between collisions in the t direction is proportional to l 2. Balancing 
the free energy gain of f for each interface, with the entropy loss of order 1/12 due 
to collisions [31], leads to a divergence of the domain size with an exponent of } as 
f--* 0 at the CIT [32,33]. This predicted "pure"  exponent of ~ has indeed been 
observed experimentally for bromine intercalated in graphite [34]. There are several 
other experimental and theoretical realizations of systems of non-crossing interfaces. 
Steps on the surface of three-dimensional crystals do not cross, leading to a singular 
signature in equilibrium crystal shapes [35]. The characteristic exponent of ~ also 
describes the ferroelectric transition in the six-vertex model [36], and appears in 
certain dimer problems [37], and in models of 2d polymer crystalization [38]. 

Here we examine the effects of quenched impurities on the transition. There are 
two forms of randomness that can occur in adsorbed layers. Defects in the substrate 
act as local random fields coupling to the order parameter in the domains. This type 
of randomness has been studied by Villain [39], and leads to a destruction of 
ordered phases. There can also be impurity atoms that are free to move with the 
adsorbate film without exchanging positions with their neighbors. Such impurities 
are sources of local dilations and compressions that attract or repel the interface 
without coupling to the order parameter. They lead to reentrant melting at suffi- 
ciently low temperatures on a smooth substrate [40, 41]. On a smooth substrate there 
is a long-range strain field (u,j ~ 1 /r  2) associated with an impurity. Close to a CIT 
on the IC side, however, the large regions of registered adsorbate lead to a strain 
field that falls off exponentially. Consequently, the assumption of short-range 
interactions between impurities and domain walls is justified. Similar approx- 
imations apply to the steps on a crystal surface. The defects in this case are either 
impurities, or dislocations terminating on the surface. Bond randomness in the 
six-vertex model of ferroelectrics leads to similar effects. 

Subject to these assumptions the IC phase is modeled as a collection of many 
interfaces in the random bond model introduced in sect. 2. It is sometimes 
convenient to switch between a grand canonical description of domain walls with a 
"chemical potential" f per interface, and a canonical ensemble of N interfaces. 
Again the partition function Z~v is calculated from a transfer matrix "Y[N for the N 
interfaces. YN must incorporate the important non-crossing restriction: x~(t)< 
x 2 ( t  ) < " "  • < XN(t ) for all t. As originally pointed out by Pokrovski and Talapov 



594 M. Kardar / Random impurities 

[32], and extended by several other authors [33, 42-44], this condition is most easily 
enforced by regarding the configurations of domain walls as world lines of N 
one-dimensional fermions. The Pauli exclusion principle then automatically pre- 
vents crossings. In the continuum limit .Y-N(t) = exp[--OFN(t)], with 

J~,v ( t )  = fdx{[~(x,t)-23,lct(x)c(x)-Tct(x)O2c(x)/Ox2}, (4.1) 

where c(x) and c*(x) are fermion fields. The hamiltonian Jt#N(t) is the natural 
extension of the one particle OF(t) in eq. (2.3) to a field theory. For a uniform # the 
free energy fN = - I n  Z N is easily obtained from the ground-state energy of this 
hamiltonian. Let L and T denote the extent of the system in the x and t directions 
respectively. Then for a density r = 1/l of domain walls 

1 2 3 U(r)/LT= (tz- 2 v ) r  + 5~,~r r . (4.2) 

(This result is obtained by filling the energy band e(k) -- (~t - 2~,) + 7k 2 up to the 
Fermi level of k F = ~rr.) The grand canonical description is obtained by minimizing 

1 f(r) with respect to r. For y < 7c = ~#, f(r) is minimized for r = 0 describing the C 
phase with no interfaces. In the IC phase (y > 3'~), r vanishes as (3 ' -3 'c)  1/2, 
indicating a divergence of the domain size [32] with the previously mentioned 
exponent of ½. 

With quenched impurities, the hamiltonian (4.1) becomes t-dependent, and de- 
scribes fermions subject to a chemical potential that is random in both space and 
time. (A potential that is random in space only is familiar in the context of 
localization. It corresponds to strips of correlated randomness in 2d, which if the 
distribution is gaussian destroys the CIT.) Replicating the problem results in n 
species of interfaces. While the N interfaces in each replica do not cross, the bond 
averaging procedure results in an attractive interaction on contact between any two 
interfaces belonging to different replicas. In the transfer matrix formalism the 
non-crossing condition is incorporated by regarding the interfaces in each replica as 
world lines of a set of fermions (one of n species or colors). The replicated transfer 
matrix is t-independent, and the continuum limit can be expressed as Jr,,N= 

exp(--~'Pn N) with 

~.N = f d x  [ ( [ . ] -  1 0 2 - -  27)C*~C~-- yc*~ Oq2Ca/OgX 2] -- 0 .2 Z CaCaC~ ~ , 

a<,8 

where the fields c*, and c a are anticommuting for each color. The hamiltonian ~¢~nN 
is now the generalization of (2.6) to n fermionic species. 
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4.2. THE BETHE ANSATZ 

The problem of interacting particles in one dimension has a long history: It was 
solved for a system of bosons with repulsive interactions by Lieb and Liniger [45]. 
For two species of fermions the ground state was obtained for repulsive interactions 
by Yang [14], and for attractive interactions by Gaudin [46]. (The relationship 
between the two cases has been explored by Takahashi [47].) Finally, Sutherland 
[15] has laid down the framework for finding ground state wave functions of any 
symmetry. These solutions have found numerous applications in many branches of 
physics, but since it is not the purpose of this article to review the Bethe ansatz, the 
interested reader is referred to a review article by Thacker [10] for further details. 

We would like to calculate the ground state energy of the hamiltonian (4.3) for n 
species of interacting fermions, N particles in each species. There are (nN)! 
permutations Q, of the (nN) particles along a line. Since they interact only on 
contact, for each arrangement of particles the wave function can be written as a 
product of plane waves, i.e. 

'kft(O < XQ1 < XQ2 < ' ' '  < XQn N < L )  = ~ [Q,  P]exp[i(kelXQt + " "  + kp.uXQ.N) ] 
P 

(4.4) 

where Q and P are permutations of (nN) particles and [Q, P] are a set of [(nN)!] 2 
coefficients. To conserve energy the same set of (nN) momenta (k  s } has to be used 
for all orderings Q. For (4.4) to be an eigenfunction of the hamiltonian ~nN, the 
following conditions have to be satisfied: 

(i) As two neighboring particles x~ and x/3 are exchanged, the wave function 
must remain continuous and have the appropriate derivative discontinuity at 
x~ = xt~. Given [Q, P], this condition completely determines [Q', P] where the permu- 
tations Q and Q'  are related by the interchange of x~ and x/3. Therefore, only one 
set of coefficients, say [I, P] = ~p is left undetermined. (The action Q~p =- [Q, P], thus 
generates an [(nN)!]2 representation of the permutation group.) 

(ii) The wave function must have the appropriate symmetry, i.e. it must be 
antisymmetric if two fermions of the same species are interchanged, and symmetric 
otherwise. This restricts the choice of ~v to one that leads to an irreducible 
representation with the proper symmetry. 

(iii) Finally the requirements imposed by periodic boundary conditions deter- 
mine the allowed values of the momenta { k s ). 

Sutherland [15] has demonstrated how a wave function subject to these conditions 
can be constructed. The procedure, involving a nested series of Bethe ans~itze, is 
quite ingenious but not particularly illuminating. Again the interested reader is 
referred to the original papers [14,15,10]. (Sutherland is mainly concerned with 
repulsive interactions, but the same set of equations applies to attractive interac- 
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tions.) The final result is a series of coupled integral equations for the density of 
allowed momenta.  At this stage I resort to physical insight to guess the structure of 
these momenta .  

As discussed in sect. 2 the momenta  of the n-boson bound state (representing the 
replication of a single interface) are equally spaced along the imaginary k axis; i.e. 
k ,  = ix(n + 1 - 2a)  for a = 1 . . . . .  n form an "n-string" [10]. For N interfaces in the 
absence of impurities (the "free-fermion" picture) the momenta  kj ( j  = 1 , . . . ,  N )  

are equally spaced along the real axis from - k  F to k F. It is therefore reasonable to 
assume that the ( n N )  momenta  for ~nU are arranged in n bands as in 

ka ,  j = k j  + i ( n  + 1 - 2o~)t¢ ( a  = 1 , . . . ,  n and j = 1 . . . . .  N ) .  ( 4 . 5 )  

A crude representation of this ground state is a set of N repelling molecules, each 
molecule being a bound state of n particles of different species. Of course because 
of the complex nature of interactions between these molecules, the spacing of the N 
momenta  kj along the real axis is no longer uniform as in the case of free fermions. 

A certain amount  of algebra confirms that the ansatz (4.5) is consistent with the 
coupled equations of Sutherland [15]. (Sutherland in fact introduces n sets of 
auxiliary momenta:  the first set is given by (4.5), while the subsequent sets have 
similar structure [11] with n replaced by n - 1, n - 2 . . . . .  1.) There is only one set of 
equations left, determining the allowed kj in a periodic box of size L from 

N 
einkjL ~ l--I 

1 ~-j 

ik~ - ikj -t- 2K 

ikl - i k / -  2x 

ik I -- ikj + 4~ 1 

ik~ ikj----~ ) "'" 

ik 1 - ikj + 2(n - 1)x t 

ik 1 i k j -  2(n 1)~ ] "  
(4.6) 

We are interested in the limit L ~ o~ and N ~ oo with the wall density r = N I L  
finite. To take this limit, first the differences between logarithms of (4.6) are 
calculated for all adjacent momenta  kj and k9+ 1, after including a factor of 
exp(2 7r/j) = 1 on the right-hand side. The quantity [ L (kj  + 1 - k j)] - 1 approaches a 
continuous function o(k )  in the L - ~  oe limit, and the sum E I . j  is replaced by 
f d k  p ( k )  in this limit. The density of momenta  along the real axis then satisfies the 
integral equation 

2~rp(k) = n -  f k v  dk'p(k')F.(k-k'), 
• ,' --kF 

(4.7) 

with a kernel 

n 1 4 ~ x  

F~(k)  = Y'~ k2 + 4a2x 2 . (4.8) 
o~=1 
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The Fermi wave number k v is related to the wall density r by 
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f f  ;Fdk p( k ) = N / L  = r. (4.9) 

2 Finally the kinetic energy is calculated from 3,Y'.k~.j, with the momenta given by eq. 
(4.5). The total energy for the hamiltonian O~nU then equals 

E n ( r ) / L  = n{ ([l~] -1250 - 2y - ! ( n 2 - 1 ) y K 2 ) r  + Y Lk2Fdkp( k )k2 } (4.10) 

Equations (4.7)-(4.10) represent the complete solution for the ground state at all 
values of n and N. Similar results have appeared in a number of different contexts: 
by Schlottmann in a study of impurities in the Anderson model [48], and by Koltun 
and Toso in a model of nuclear matter [49]. The solution depends only on one 
dimensionless parameter ~/r = l / l  d. For strong attractions, or low densities, from 
(4.7) 

p = ~  n - -  . (4.11) 
/ £ a = I  

The lowest order result describes "molecules" of n tightly bound particles. This 
result is modified as the density of particles is increased, and breaks down for 
r ~ xn/f, , ,  where 

,,- 1 1 n large 
f~= E -  - l n ( n ) .  (4.12) 

a = l  O/ 

The kinetic energy per unit length in this limit behaves as 

K E / L  = rr2yr3(1 + 2 r f . / x n ) / 3 n .  (4.13) 

In the high density limit (r >> x) the effects of confinement become pronounced, 
and p approaches the free particle value of 1/2~r. The asymptotic kinetic energy 
density is then _~w2-/r 3, as in eq. (4.2). 

4.3.  T H E  n ~ 0 L I M I T  

The central result of the Bethe ansatz solution in the integral equation (4.7), 
which can be rewritten as 

*v d k '  # ( k ' ) G , ( k  - k ' )  = 1, (4.14) 
kF 
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with a kernel 
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dyexp  n-1 = (iky) E exp(-2aK[Yl)  
n - o e  a = 0  

I a - e-2n fYf 

J d y exp( iky ) (4.15) 
n _~  1 - -  e - 2 ~ I y l  " 

These manipulations are reminiscent of those used in calculating [lp] in sect. 3. The 
final expression can now be continued to n ~ 0, resulting in 

2rIYl 
Go(k ) = lim G,,(k) = "j~ dyexp(iky) 

n'-'~O - ~  1 - -  e 2~IY{ 

Ok[ k +~rc°th ~ £  . (4.16) 

The above kernel has a - 4 K / k  2 singularity as k -~  0 which arises from Fourier 
transforming 2xly I. Insertion of a convergence factor of e x p ( - f l l y l )  shows how to 
get around this singularity in a manner similar to taking principal parts. The n ~ 0 
momentum density now satisfies the integral equation 

Z k-k'-- + rcoth = 1 .  (4.17) 

The origin of the principal part in eq. (4.17) can be traced back to the H a ,  y in (4.6). 
It is hard to analytically invert the above kernel in general, but the limiting 

behaviors of p(k) can be calculated. In the large density limit ( r / r=  l / l  d << 1), 
Go(k ) = 2~rS(k), and the noninteracting results p = 1/2~r and the free energy (4.2) 
are recovered. In the low density limit, or close to the CIT with l > >  l d ,  eq. (4.17) 
simplifies to 

P fkv d k '  , 0 / 4x 
-kF o(k ) - J - k - / ~ - ~ S ) =  1. (4.18) ) 

This is a variant of Carleman's equation, and arises in the study of the lift of 
aerofoils. The kernel can be inverted by a Hilbert transform. However, it is easier to 
quote the result, and check that it satisfies (4.18). The momentum density function 
in this limit is 

p( k ) = ( k~ - k2)l/2/4~rx. (4.19) 
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A proof of this result is given in the appendix. The Fermi wave number k v is related 

to the wall density through 

r= f k ; v d k p ( k ) =  f?~ d k ( k ~ - ~ : ~ ) ' / ~ / 4 ~ = k ~ / 8 ~ , , ~ k ~ = ( 8 ~ r )  ~/2. 

(4.20) 

Similarly the kinetic energy density is 

vfa~  d~ k 20 (k) = vfk~ -k~ dkk2(k2-k2)1/2/4~rK=yk4/32rrx= 2 ~r Yxr 2" (4.21) 

(In evaluating the integrals in (4.20) and (4.21), a change of variables to k = kvsin 0 
is helpful.) Putting these results together, the quench-averaged free energy obtained 
from the n ~ 0 limit of En/n, is given by 

[ f ( r ) ] / L T =  ([/~] - 27 - ~o 2 - o 4 / 4 8 y ) r  + ~o2r  2 . (4.22) 

This is to be compared with eq. (4.2) for the non-random case, where the kinetic 
energy scales as r 3. In the grand canonical description, minimizing [ f ( r ) ]  with 
respect to r results in a wall spacing l =  1/r in the IC phase that diverges as 
(7 - T~) -~ close to the CIT (i.e. there is a crossover from the pure exponent of ½ to 
the random exponent of 1). 

4.4. INTERPRETATION AND DISCUSSION 

In nonrandom systems the exponent of ~ for the divergence of domain size l at 
the CIT was related to the loss of entropy due to collisions between interfaces. A 
similar interpretation is possible for the exponent of 1 in random systems, and it 
turns out that the most important influence is the loss of energy due to the blocking 
of favorable paths by neighboring walls. Since typical transverse fluctuations of an 
interface subject to random bonds scale as [Ax] - t 2/3, the characteristic distance t c 
between collisions scales as  l 3/2 with the domain size. Each collision is accompanied 
by a free energy loss scaling as t~¢/3, and as there are T/ t  c such collisions, the overall 
free energy loss for a single interface behaves as 

AA(I) - Tt£ 2/3- TZ - ~ -  Tr. (4.23) 

(This scaling law also holds for an interface confined to a strip of width l, and has 
been numerically verified [11].) After multiplying (4.23) by the number of interfaces 
(N  = rL), the r 2 dependence of (4.22) is regained, thus providing an independent 
confirmation of this result. 

As discussed in connection with the depinning transition, cumulants of the free 
energy are also singular at a critical point. To calculate these cumulants, the 
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complete n dependence of the free energy fn(r) is needed. However, to study the 
singular parts of the cumulants, it is sufficient to examine the r dependence of 
various powers of n in fn(r). Indeed from eq. (4.15) we find that in the dilute limit 
the kernel behaves as 

a.( k ) gl(n /k (4.24) 

(Here gi(x) are used to denote regular functions of their argument.) From eq. (4.14) 
it then follows that the momentum density scales as 

o . (k )  ~ g 2 ( n ~ / k ) k / x .  (4.25) 

The r dependence of the wave number is now calculated from (4.9) as 

r - g3(n~ /k )k~ /K  = k F - (xr) l /2g4(nxl / ' r -1 /2)  . (4.26) 

The kinetic energy density scales as nyk~r, and hence the non-trivial scaling of f ,  
takes the form 

L(r)/LT- gl'~l~r2g(nKI/2F-1/2). (4.27) 

Therefore, the p th  cumulant (the coefficient of n p) scales as yx(P+l)/2r(S p)/2. 
Close to the transition r scales as ( 7 -  7c); and the quench-averaged free energy 
behaves as ( , / -  ,&)2. The second and third cumulants of the free energy have 
(~ - ~c) 3/2 and (y - ,&) singularities respectively. Other cumulants may accidentally 
be absent as in the case of the depinning transition. This complex behavior of 
random systems close to a critical point clearly deserves further study. 

This investigation was started a few years ago at Harvard University, and the 
guidance of D.R. Nelson and B.I. Halperin in the initial stages is gratefully 
acknowledged. This research was supported by the NSF through the MIT Center for 
Materials Science and Engineering and through grant number DMR 84-18718. 

Appendix 

SOLUTION OF THE INTEGRAL EQUATION 

In sect. 4 it was stated that the momentum density function 0 ( k ) =  
(k  2 -  k2)i/2/4~rx satisfies the integral equation (4.18). A proof of this result is 
presented here by substitution, 

dk' 0[ ] 
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O n e  of  the  s ingular i t ies  is s imply removed  in the in tegra t ion  by  par ts ,  and  

Ilk) = kU~-k'~ ]*~ + r,f,~ dk' k'l k'_ ~'/*'-*) ~ ~ _,~ -k  ~ ,,~ 

P f k v  d k '  P kv d k '  (A.2)  

The  first  in tegra l  in (A.2) is equal  to 1, as can be seen easily by  a change of var iables  

to  k ' = k F s i n O .  To evaluate  the second integral ,  change var iables  to k ' =  

kF(1  -- t 2 ) / ( 1  + t2). Then 

~_f, dk' I'~k)= ~/k,  ~ ) ~ _ k ,  ~ 
2P o~ d t  

---f0 'B" ( k  F - k )  - ( k  F ~- k ) t  2" ( A . 3 )  

Since we are  in teres ted  in - k v < k < k F, the integral  has poles  on the real  axis at  

t = _+((k F - k ) / ( k  F + k) )  1/~, and 

I ' ( k )  = -- 
~r k - )/ k F + k t 

+ 
1 1 

(A.4)  

The  p r inc ipa l  pa r t  allows in tegrat ing over  the s ingular i ty  for t > 0 resul t ing in 

I ' ( k )  ~ r ~  n ~ = - ~ - -  kF~-~kt = 0 .  (A.5) 

N o t e  that  for  k outs ide  the in terval  [ - k  F, kF] , I ' ( k )  is non-zero,  and  a fur ther  

change  of  var iab les  to ( k  F + k ) t  2 = ( k  - k v ) r  2 leads to I ' ( k )  = - 1 / f k  5 -  k 2 in 

this  range.  Pu t t ing  these results  together,  we get I ( k )  = 1 for - k  F < k < kF; and 

hence  p ( k )  satisfies eq. (4.18) as required.  
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