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We examine probability distributions for thermodynamic quantities in finite-sized random systems
close to criticality. Guided by available exact results, a general ansatz is proposed for replicated free
energies, which leads to scaling forms for cumulants of various macroscopic observables. For the specific
example of a planar flux line lattice in a two-dimensional superconducting film near H.;, we provide
detailed scaling results for the statistics of the magnetic flux density, susceptibility, heat capacity, and
their cross correlations, which can be tested in a recently used experimental setup [Bolle et al., Nature

(London) 399, 43 (1999)].

PACS numbers: 74.60.Ge, 73.23.—b, 75.10.Nr

Impurities in a sample are expected to modify vari-
ous measurements, making it desirable to characterize the
probability distribution functions (PDFs) for the outcomes.
These PDFs may provide important insight about the un-
derlying physics, as in the case of universal conductance
fluctuations in mesoscopic circuits, a subject of much re-
cent investigation [1]. Here we consider the signature of
impurities in thermodynamic systems at equilibrium. At
one extreme, microscopic quantities such as two-point cor-
relation functions are quite sensitive to disorder; in some
cases their PDFs exhibit complicated multiscaling behav-
ior [2]. On the other hand, the free energy and other
macroscopic properties are expected to be self-averaging,
converging to fixed values in an infinite system. If all
correlation lengths in the system are finite, the PDFs for
a mesoscopic (finite-sized) sample should be governed by
the central limit theorem. We thus focus on systems with
long-range correlations, such as those close to a critical
point, or in a flux line (FL) lattice.

In the most interesting cases, disorder is relevant, lead-
ing to novel correlations distinct from the pure system.
However, due the difficulty of characterizing collective be-
havior in such glassy disordered systems [3], little is known
about their PDFs. Aharony and Harris [4] studied the
PDFs of thermodynamic observables near critical points
with relevant randomness, in finite-sized random systems.
Their findings of a lack of self-averaging, and universal
non-Gaussian PDFs, were in part confirmed by numerical
simulations of a site diluted Ising model [S]. There are
also some results for elastic manifolds pinned by impuri-
ties: Using replicas, Mezard and Parisi relate the scaling
of the PDF for susceptibility with size of a manifold to its
roughness exponent [6]. Exact results on PDFs have been
obtained for a directed polymer on a disordered Cayley tree
by Derrida and Spohn, using a mapping to a deterministic
differential equation [7].

An important example of pinned elastic media is pro-
vided by FLs in a superconductor with point impurities.
Indeed, our study was motivated by the experiment of
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Bolle et al. [8] on a 2D FL lattice oriented parallel to a
thin micrometer-sized film of 2H-NbSe,. Magnetic re-
sponse measurements show interesting sample-dependent
fine structure in B(H), a fingerprint of the underlying
pinning landscape. Interestingly, the problem of 2D lines
with impurities is amenable to an exact solution using
replicas, which gives not only the quenched average
but also cumulants of the free energy [9]. We shall use
this exact solution to motivate an ansatz for the scaling
of PDFs in general disorder-dominated thermodynamic
systems.

In what follows, we first present a general ansatz for
the scaling of the replicated free energy. The key as-
sumption is treating the number of replicas as a scal-
ing field. Consequences of this ansatz for the scaling of
moments of the PDFs of thermodynamic observables in
mesoscopic samples are then enumerated. We then re-
examine the example of FLs in a 2D layer in more de-
tail, proposing specific experimental tests of the theoretical
picture.

The lack of translational symmetry in the presence of
impurities is the main impediment to analytic studies. In
the replica approach, this difficulty is circumvented by ex-
amining disorder averaged moments, [Z"], of the parti-
tion function Z. These moments then provide information
about PDFs of the free energy, magnetization, or suscep-
tibility. We thus focus on the scaling of F, = —T In[Z"],
the free energy of n replicas of the system. In fact F,, can
be obtained exactly for a lattice of noncrossing lines in 2D
with point impurities [9], the standard model for the FL
experiment [8].

The exact results motivate a more general scaling
ansatz for random systems. Consider nr replicas of a
system of size LﬁflL 1, with r groups of n replicas at
the same reduced temperature 7; and scaling field ¢;, for
j=1,...,r. The set of scaling fields ¥ can consist of
say external magnetic fields or chemical potentials. Our
scaling ansatz gives a singular part of the free energy

density f,(n,7,4) = —=TLy*"'LT In[[T}=, Z"(7;, )],
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SO 7, ) = b b b, gpM)
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To include FL systems, we have allowed for anisotropic
scaling, with a “roughness exponent” ¢ relating the
(d — 1)-dimensional longitudinal (/j), and the 1D
transversal (/) scales, by [, ~ lﬁ. (For isotropic sys-
tems, we can set { = 1.) Compared to the standard scaling
hypothesis for pure systems, the replica structure intro-
duces n as an additional scaling field with dimension 6 =
{6, . The exponent 8 appears in the modified hyper-
scaling relation 2 — a = vy (d — 1 + { — 6)), which
follows readily from Eq. (1) by looking at the term linear
in n. Besides its agreement with available exact results,
a mean-field analysis of the ¢* model with Gaussian
random fluctuations in 7, also supports our ansatz.

Scaling of disorder averaged cumulants of the thermo-
dynamic observables can now be extracted from the above
ansatz for In[[[;_; Z"(7;,;)]. Here we enumerate the
main results (details to appear elsewhere):

(1) Cumulants of the free energy F(7): With r = 1,

wg N (on) [FA(n)]
In[Z"(7)] = Zl T 2
j

where [---]. denotes the disorder averaged cumulant.
Choosing b ~ &) ~ 7" in Eq. (1) gives [FP(7)]. ~
7d=1+{=p0) for the pth cumulant of F(7). For meso-
scopic systems of size L, ~ Lﬁ, close to criticality
(&) > L) we must set b ~ Lj, resulting in [FP]. ~
Lﬁa”. The exponent 6| thus characterizes all sample-to-
sample fluctuations in the free energy.

(2) Thermal averages, such as the magnetization or the
number of “particles,” are first order derivatives of the
free energy, which we will denote generally by (X) =
—dF/9yly—o. For a specific realization of disorder, the
partition function can be expanded as

Z@p) = z(0) > (‘”j—,ﬂl (x7y, 3)
j=0

where (---) denotes the thermal average. Using this rep-
resentation, one can show that the pth coefficient of the
expansion of In[Z" (¢)] with respect to ny is the pth cumu-
lant [(X)?].T~?/p!. Applying the scaling hypothesis of
Eq. (1), we obtain with 8 = 2 — a — B the critical scal-
ing behavior [(X)?]. ~ 7P, with B8, = pB — v(d —
1+ ¢)(p — 1), and B defined by [(X)] ~ 75.

(3) Response functions: To obtain the pth cumulant
of the susceptibility, y = ((X?) — (X)?)/T, consider
r = p sets of n replicas, each with the same scaling
field ¢;, for j = 1,...,r. The coefficient of the term
nP (i -+~ ,)* of the expansion of the generating func-
tion ln[]_[;=1 Z"(;)] is given by the cumulant average
(2T)~P[x?].. This gives a critical scaling of the form
[xPle ~ 777, with y, =py +y(d—-1+¢) X
(p— 1.

(4) Cross correlations, such as I'yy = (XY) — (X)(Y),
where Y is a derivative of the free energy with respect to
another scaling field ¢, are also of interest. For example,
the cross correlation, I'gy, of magnetization M and energy
E, has been measured in numerical simulations, since
it allows for a more accurate estimate of the exponent
ratio a/v then a direct method [10]. The generator of
the pth cumulant of Ixy is In[[T}_, Z"(¢;, ;)] with
r = p. The cumulant T2’[T'%y]. is the coefficient of
the term n? i - - - /. l:b,, of this generator. Our scaling
ansatz yields [[hy e ~ 7PB~D=n@d=1+0(p=1  There
are also correlations between different susceptibilities.
Along the lines presented above, it is possible to show
that these cross correlations can be generated from the
expansion of In[[];_, Z"(¢;)Z"(;)] and that the pth
cumulant (27) ??[(x )?]. is the coefficient of the term
n?r zplef ‘e zp; zzlz, in the generator with » = p. Choosing
for y and y the magnetic susceptibility and the heat capac-
ity ¢, respectively, we get [(yc)?]. ~ 7 2¥»—1d=1+0),

Finally, we compare the results of Aharony and Har-
ris [4], on the relative pth cumulant R, x = [X?]./[X]?,
in a ¢* model with random T.. By a perturbative renor-
malization group (RG), in which they assume a Gaussian
distribution for randomness on all length scales, they ob-
tain R, , = p!2? *3R§, ;l, for the magnetic susceptibility
x- Indeed, for all observables (including susceptibilities)
we find R, x ~ Rg, ;_(1, but the exact coefficient cannot be
obtained from the scaling ansatz. However, even for an
originally Gaussian random 7, higher then second cumu-
lants are generated by RG transformations and yield addi-
tional (universal) contributions to the above coefficient [4].

We now apply these results to the experimental study by
Bolle et al. of a planar, randomly pinned vortex array pene-
trating a mesoscopic quasi-2-dimensional thin single crys-
tal of 2H-NbSe, with weak pinning [8]. The crystal was
glued onto a silicon micromachined mechanical resonator.
By measuring jumps in the resonant frequency caused by
magnetic FLs entering the sample, the number N of lines
was determined very accurately as a function of the applied
magnetic field H. Close to the lower critical field H,, the
jumps were irreversible, indicative of the difficulty of FLs
finding optimal pinning configurations. At higher fields,
the increased line density should result in a smaller pinning
length, enabling the FL lattice to find its optimal pinning
state. Indeed, reversible behavior is observed experimen-
tally in this case. In both regimes, the response depends
on the detailed configuration of pinning sites, the sample
geometry, and the vortex interactions. Therefore, the ob-
served discrete jumps in the constitutive relation, B(H),
provide a fingerprint of the disorder in a specific sample.

Previous theoretical and experimental work concen-
trated mainly on the determination of the relation B(H)
near H,., for different kinds of disorder [11]. Fluctuations
in B(H) are also of interest, characterizing more clearly
the nontrivial effects of randomness in this mesoscopic
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system. Therefore, we study entire PDFs for observables
like B, magnetic susceptibility y, heat capacity c¢, and
correlations between them. To introduce the basic nota-
tions, let us first consider a single FL of length L. The
transversal wandering of such a line is described by a
trajectory x(y), which has an energy [12]

9 = ]OL dy[%(j—;)z + V(x(y),y)] 4)

Here, g = ¢oH.1/47 is the elastic stiffness of the FL car-
rying a flux quantum ¢,. The random potential V(x,y)
mimics pointlike pinning and is characterized by the disor-
der average [V (x,y)V(x',y")] = Ad:(x — x)6(y — y'),
with strength A and a short range function, &¢, of width
of the in-plane coherence length £. The dimensions of the
sample are taken to be L along the field direction § and W
in the transverse direction X.

A single FL can wander freely in the transverse direction
to take advantage of the randomly distributed pinning cen-
ters. This leads to an anomalous growth of its displacement
by 6x(L) ~ L?/3 [13]. In contrast, in a lattice of lines, the
noncrossing condition is a strong restriction for the pos-
sible configurations of each line. The results of Ref. [9] for
such a lattice, apply only to FLs at temperatures 7 larger
than 7" = (g&A)'/3, the height of the smallest energy bar-
rier due to the random potential [14]. Recently, Korshunov
and Dotsenko [15] generalized the results for a single line
to the low temperature limit, T << T*, by using a replica
interaction potential with a small but finite curvature, in-
stead of the rectangular well which works in the high-T
limit. The generalization of their solution to an array of
lines is straightforward. The nontrivial part of the free en-
ergy of n replicas of the system, with a fixed number of
N = W/ay of lines at mean separation ag, can be summa-
rized in both limits as [9]

F, L A A
ﬂ = —In[Z"] = nkN*> — = G| n keAW ,
T W T? NT3

&)

with the parameter k = 1 for T > T* and k = T /T" for
T < T*. Here we have neglected the trivial contribution
to the free energy which is linear in N, and G is an analytic
function [16].

To study the fluctuations in the number of FLs near H,1,
we use a grand canonical description with a chemical po-
tential u = ghL, where h = (H — H.1)/H. is the re-
duced magnetic field. The PDF of the number N of flux
lines is characterized by the pth disorder averaged cumu-
lant [N?]., which is given by T” times the coefficient of
the terms (nu)? in the expansion of In[Z"(u)], leading to

T\
[N?]. ~ WLl—P(i—A) n=2, ©)

The moments of the magnetic flux density follow from
B = ¢oN/dW, where d is the thickness of the sample. We
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predict a variance [N2], ~ (W/L)h~'/2, which is univer-
sal, independent of temperature and disorder strength, in
both the high and low temperature regimes. For T < T,
all cumulants are independent of 7' but do depend on the
disorder strength. In the thermodynamic limit WL — oo,
all cumulants [ B? ], approach zero for p > 1. On the other
hand, for mesoscopic systems, the divergence of [B? ], for
h — 0 is stopped if the average distance ay between the
FLs approaches the system size W. Deep in the glassy low
density phase near H., we obtain from Eq. (5) for the pth
cumulant of the free energy

R S s ™
¢ 8 kA .
This agrees with our scaling ansatz in Eq. (1) with expo-
nents { = 2/3,0, = 1/3, vy =3/2,and 6 = 1.

Now consider the response of the FL lattice to changes
in the external magnetic field, measured by the susceptibil-
ity y. This is related to thermal fluctuations in the number
of FLs by y = (L/W) ({N?) — (N)*)/T, for a fixed real-
ization of disorder. The disorder averaged pth cumulant
of the number fluctuations can be obtained from the gen-
erating function ln[]_[f: 1 Z"(u;)] for p different chemical
potentials u;, giving the susceptibility cumulants

x"le ~ (VVL)“’QgZ‘z"(i)2 ez g)

kA
This result deserves a few comments: First, the dis-
order averaged susceptibility [y] is nonsingular at the
transition & — 0, since the exponent vanishes for p =
1. 1In fact, due to a statistical tilt symmetry [17] the
susceptibility is simply related to the compression and
tilt elastic moduli (cy1, c44) of the FL lattice, by [x] =
(27 /ao)*(c11cas) /2. This is in agreement with our re-
sult [y] ~ T/kA, as can be seen by using cqy = g/ayo,
rewriting ¢ in terms of the steric repulsion between the
lines, and estimating ap = W /N from Eq. (6) with p = 1
and a value for & of order one. Again, the variance is the
only moment of the susceptibility, which shows universal-

ity, [x*]c ~ (WLg*)"'h™/> [18].

Next, consider the response of a fixed number of FLs
to changes in temperature. Keeping the number N of FLs
constant by adjusting the magnetic field, but changing the
temperature, allows us to study thermal fluctuations around
the global ground state. Physically, the response of the FL.
lattice to changes in magnetic field H, or temperature 7,
are quite different: A change in H (or N) usually leads to
a complete rearrangement of the whole ensemble of lines.
Increasing 7', however, causes stronger entropic repulsions
between the N lines, which now fluctuate around their state
of optimal pinning. The response to a change in T also de-
pends on the detailed pinning landscape, producing a heat
capacity ¢ which is sample specific. Therefore, the statis-
tics of ¢ are also of interest; its pth cumulant can be ob-
tained from the generating function In[[[;_; Z"(B;)] with
r = p different temperatures 7; = 1/;, as (for fixed N)
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[cP].~ LW(p—3)/2(kA)(p+1)/2g(p—1)/2
x NG—p)/2p-Gpt+1)/2. )

In the high temperature limit (7 > T*), the moments
[cP], ~ T~GP*D/2 decay faster with temperature than in
the low temperature limit (T << T*), where [¢”]. ~ T 7.

‘We may also examine cross correlations between the dif-
ferent susceptibilities such as the heat capacity ¢ and the
magnetic susceptibility y. In the thermodynamic limit,
i.e., beyond a characteristic system size, different suscep-
tibilities are expected to be statistically independent. For
example, this has been demonstrated for the magnetic sus-
ceptibilities of two noninteracting FL lattices with differ-
ent random potentials [17]. The correlations of order p
between ¢ and y can be obtained from our scaling the-
ory by extracting the coefficients of 1n>” ,u% ,812 e ,u,f, ,8[2, of
In[[T;_, 2" (u;) [T, 2"(B;)] with r = p. Using the re-
sults of Egs. (8) and (9), we get

[(Xc)p]c _ —1 ﬂ 2 -5/2
Derller). ~ WH <gT)” - 10

For finite systems, the divergence as h — 0 is cut off
at h ~ kA/gTW. Then the result can be rewritten as
[((xc)?1./(Ux?)clc?]e) ~ L./L, with a characteristic
length scale L. = (gT/kA)'/2W3/2 for the decay of
correlations. This length-scale has a simple physical
interpretation: L. is the length of a single FL. whose
transverse wanderings can explore the whole sample
width W. Since the transversal fluctuations of a line of
length L grows as 8x(L) = (kA/gT)"3L?3 [15], we get
the above result for L. from the condition x(L.) = W.

The full shape of the PDFs is determined by the rela-
tive cumulants R, x = [X?]./[X]’. For X = N, x, c, or
xc, our results yield R, x ~ Rﬁ’, ;1 up to a numerical co-
efficient. Therefore, the system parameters enter the PDF
shapes through only R, x, which is interestingly indepen-
dent of the observable X and given by

_ -1 ﬂ)z -5/2 _ ELE
Rox (WL) <gT h —WL' (11)

The length scales in the final expression are £, = ay, the
separation of FLs, and &) = (gT/kA)l/zaS/z, the mean
longitudinal distance between collisions of FLs.

The above predictions for the scaling of PDFs, or cu-
mulants, can be tested experimentally by measurements
on different realizations of randomness, drawn from the
same distribution of impurities. Generating many such dif-
ferent realizations could in fact be quite easy, depending
on the system under study. For example, in the case of
the FL lattice of Ref. [8] experiments can be performed

on the same sample, with different realizations of random-
ness generated by simply rotating the sample with respect
to the external magnetic field. In this way, one generates
a number of staircase curves for N(H) like that shown in
Fig. 3b of Ref. [8], which differ in their step width. As can
be seen from the experimental data, the disorder averaged
mean value [NV] increases linearly in A, in agreement with
Eq. (6) for p = 1. Each (finite-size) realization of ran-
domness yields a characteristic value for thermodynamic
observables like N, providing a reproducible “fingerprint”
of the configuration. By monitoring these values, one can
directly measure the PDF of N and test our scaling predic-
tion of Eq. (6) for the moments of the PDF.
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