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In Chapter 1, we saw that the KPZ universality class is characterized by fluctuations

which obey TW statistics. In particular, this result has been derived analytically for the

free energy in the DPRM model using a replica Bethe ansatz method [1–3]. We discussed

also that the TW probability distributions originate from the mathematical study of Gaus-

sian random matrices, and more specifically, from the study of their eigenvalue spectra.

In this chapter, we turn to a mathematical analysis of the transfer matrix formulation of

DPRM in order to explore this connection on the level of matrices. Similar questions have

been considered in the context of disordered elastic networks, where each transfer matrix

contains information about the propagation of the displacement field [4]. Our interest in

the eigenvalue spectrum of the product of DPRM transfer matrices is physically motivated

by systems of non-intersecting paths, a problem which has been studied extensively in the

context of the commensurate-incommensurate transition [5, 6].

To simplify the analysis, we construct a set of transfer matrices in such a way that ensures

all eigenvalues of the product matrix are real and positive. We compute the fluctuations

in the spectrum, and find similarities in distribution to Gaussian random matrices for all

eigenvalues. The spacing between eigenvalues is also relevant for a finite density of non-

intersecting DPRMs, as it determines the cost associated with adding more such directed

polymers in a grand canonical setting. Compared to the pure system, the presence of disorder

changes the scaling of the spacing near the largest eigenvalue from 1/N2 to 1/N , where N

is the system size, thus changing the density of states.

For a DPRM system of size N , let Z̃(x0, x, t) denote the partition function of a directed

polymer originating from (x0, 0) and terminating at (x, t), with x0, x 2 [1, . . . , N ] and t > 0.

Using the transfer matrix formulation, Z̃(x0, x, t) can be written recursively in terms of the

partition functions at time t� 1,

Z̃(x0, x, t) =
X

x0

hx|T(t)|x0iZ̃(x0, x
0, t� 1). (1)

If we define the product of transfer matrices,

W(t) =
tY

t0=1

T(t0). (2)

we can rewrite the partition function as

Z̃(x0, x, t) = hx|W(t)|x0i. (3)
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We consider the ensemble of directed polymers whose endpoints are fixed to be at the

same spatial position x. Summing over all such paths then gives the partition function

Z(t) =
NX

x=1

Z̃(x, x, t) = trW(t). (4)

The free energy is

f = � lnZ

t
= � ln[trW(t)]

t
' � ln�1(t)

t
, (5)

where �1(t) is the largest eigenvalue of the product matrix W(t) which dominates the trace.

This motivates the definition of the quantity of interest,

✏i(t) =
ln�i(t)

t
, (6)

where �i(t) is the ith largest eigenvalue of the product matrix W(t).

I. NON-INTERSECTING PATHS

We motivate the study of the quantities ✏i, related to the eigenvalue spectrum of the

DPRM product matrix, by examining their role in a system of non-intersecting DPRMs [6].

Physical examples include magnetic domain walls in Ising models [7, 8], and pinned flux

lines in superconductors [9]. In such systems, if it is favourable to create one domain wall

or flux line, it is natural to ask why an infinite number is not created. As we explain below,

this is a consequence of the non-crossing condition. The more general problem of non-

intersecting paths is also found in the adsorption of an atomic monolayer on a crystalline

surface [5, 10–12], and the equilibrium shapes of crystals [13, 14]. The statistical behaviour

is exemplified by the commensurate-incommensurate transition, a topic which has sparked

much theoretical interest [5, 15–17].

In the pure case (without disorder), the grand canonical free energy F is obtained by

minimizing the following expression over the density r of non-intersecting paths, [5]

F(r)

Nt
= f1r + br3. (7)

Using the language of domain walls, N and t are the system dimensions, f1 is the free

energy of a single wall, and b > 0 is a constant. The first term, proportional to the density,

is intuitive. The second term represents an e↵ective repulsion due to the non-crossing
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FIG. 1: Illustration of configurations of two DPRMs (solid and dashed lines) which do not satisfy

the non-crossing condition. Introducing the factor (�1)# of crossings leads all such terms to cancel.

restriction. Performing the minimization over r, we see that for f1 > 0, no domain walls

are formed (r = 0). On the other hand, for f1 < 0, a finite density (r > 0) of domain

walls are added in such a way that the free energy gain is balanced by the entropy loss from

imposing the non-crossing condition. These walls can also be interpreted as world-lines of

1D fermions, an approach taken by Pokrovsky and Talapov in Ref. [5].

If we now consider the presence of quenched impurities, the domain walls can be repre-

sented by a system of non-intersecting DPRMs. Using the replica Bethe ansatz, the quantity

to be minimized over in Eq. 7 becomes [6]

hF(r)i
Nt

= hf1ir + br2, (8)

where the angular brackets denote averaging over the disorder, and again, b > 0. The

e↵ective repulsion term in this case is proportional to r2 rather than r3. For the pure

system, this repulsion relates to the typical distance between “collisions” of domain walls

due to transverse wanderings, whereas for the disordered system, it relates to e↵ects of

confinement on a finite density of optimal paths.

In writing down the grand canonical description of DPRM, the key di�culty lies in the

implementation of the non-crossing condition. We use the same trick which proved powerful

in the Ising problem, of removing the non-crossing condition, and introducing a factor of

(�1)# of crossings for each term in the partition function. The terms describing intersecting

paths or shared bonds then cancel, as shown in Fig. 1, leaving only contributions from

non-crossing configurations.

The grand canonical partition function Z can then be written in terms of the canonical
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partition functions Zn for n DPRMs.

Z = exp

(
NX

n=1

(�1)n+1

n
Zn

)

= exp

(
NX

n=1

(�1)n+1

n
trWn

)

= exp

(
NX

i=1

[ln(1 + �i)]

)

= exp

(
NX

i=1

⇥
ln
�
1 + e✏it

�⇤
)
. (9)

(One could introduce a chemical potential ⌫ such that Zn ! e⌫tnZn counts the number of

added steps. However, without loss of generality, ⌫ can be absorbed into the parametrization

of the energies.) In the limit of large t, only terms with ✏i > 0 in Eq. 9 will contribute to

the free energy,

F = � lnZ
t

t!1���! �
X

✏i>0

✏i. (10)

The condition on ✏i reflects a constraint on the strength of the average disorder compared

to the hopping energy, in order for it to be energetically favourable to create more directed

polymers. The value of ✏1 determines whether a single DPRM is favourable; after that, the

di↵erence ✏i � ✏i+1 becomes relevant for adding subsequent DPRMs. We can interpret this

as filling levels �✏i in an energy band, starting from �✏1, up to the Fermi energy. The

resistance to adding more non-intersecting DPRMs is therefore related to the density of

states near the edge of the spectrum.

II. CONNECTION TO RANDOM MATRIX THEORY

It has been well-established both indirectly through the Cole-Hopf transformation, [18]

and directly through replica Bethe ansatz solutions, [1–3] that the DPRM free energy in

Eq. 5 obeys TW statistics, with the details dependent on the geometry. In the case of Eq. 4,

however, the geometry is not strictly pt-pt or pt-line (defined in Chapter 1.2.1). Rather,

Z(t) is the sum of an ensemble of pt-pt paths. Thus we expect the limiting distribution to

be very similar to TW, but perhaps not precisely the GOE or GUE form. In other words,

we can write

✏1(t) = c0 + c1t
�2/3⇠, (11)
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where ⇠ is an O(1) random variable whose distribution is TW-like in the limit of large t,

and c0, c1 are system-specific constants. It is important to note that the regime relevant to

DPRM requires 1 ⌧ t ⌧ N3/2, where N is the system size. This scaling constraint stems

from the dynamic exponent which governs the KPZ universality class, and ensures that the

scalings are not a↵ected by finite size.

In comparison, we consider an n⇥n GOE matrix L with i.i.d. elements Lii ⇠ N (0, 2/n),

Lij = Lji ⇠ N (0, 1/n) [or respectively, GUE matrixM with i.i.d. elementsMii ⇠ N (0, 1/n),

Mij = Mji ⇠ N (0, 1/2n)+iN (0, 1/2n)]. The largest eigenvalue then has the following scaling

form [19, 20],

�TW
1 (n) = 2 + n�2/3⇠, (12)

where ⇠ is a TW-GOE (TW-GUE) random variable in the limit of large n.

The similarities between ✏1(t) in Eq. 11 and �TW
1 (n) in Eq. 12 are immediately evident.

The time t [also number of transfer matrices in the product matrix W(t)] in the DPRM

context appears to play an analogous role to the matrix size n in the GOE and GUE context.

We compare numerics for the DPRM product matrix with known results from random matrix

theory in Section V, and explore whether the connection extends beyond the scaling forms

of the largest eigenvalue.

III. DEFINITION OF THE TRANSFER MATRIX

We define the DPRM transfer matrix at time t as

T(t) =

0

BBBBBBBB@

⌘1(t) � 0 · · · 0

� ⌘2(t) � · · · 0

0 � ⌘3(t) · · · 0
...

...
...

. . .
...

0 0 0 · · · ⌘N(t)

1

CCCCCCCCA

, (13)

where ⌘i(t) = exp[�"i(t)] are i.i.d. random variables on the main diagonal, with constant

elements � > 0 on the o↵-diagonals. We choose "i(t) 2 U(µ, �2), uniformly distributed with

mean µ and variance �2. For mathematical reasons explained in section V, the parameters

are constrained by the relation

µ+
p
3� < � ln(2�), (14)
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FIG. 2: Illustration of the DPRM geometry described by the transfer matrix in Eq. 13. For a

directed polymer x(t), propagating forwards is associated with a random energy ", while deviating

to the left or right is associated with a hopping energy K.

which ensures ⌘i(t) > 2�, 8i and 8t.

The above transfer matrix describes DPRM on a square lattice with closed boundary

conditions. At each time t, the path at position i may propagate forward, picking up a

random energy "i(t), or deviate to the left or right, picking up a hopping energy K = � ln �

(see Fig. 2).

The details of the model are chosen to ensure that all eigenvalues �i of the product matrix

W are real and positive (see section V for a detailed proof). This allows us to study the

objects of interest, ✏i = ln�i/t, which would otherwise be ill-defined. Note that the condition

�i 2 R+ is not a trivial one. Although an individual transfer matrix T is real, positive, and

symmetric, there is a di↵erent realization of randomness for each time t. Thus the product

matrixW is in general, real and positive, but not symmetric. The Perron-Fröbenius theorem

guarantees that the largest eigenvalue is unique and real (positive), but a priori, all other

eigenvalues need not be real. Indeed, for other geometries of DPRM, the spectrum is in

general composed of many complex conjugate pairs of eigenvalues, the physical significance

of which is unclear.
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FIG. 3: Average eigenvalue spectrum for the product of DPRM transfer matrices W with param-

eters t = 32 and N = 32. The data points indicate the mean of ✏i = ln�i/t, where �i is the ith

largest eigenvalue of W, and the errorbars indicate the standard deviation.

IV. STATISTICS OF THE EIGENVALUE SPECTRUM

Armed with the above definition, we analyze the complete spectrum of the product of

transfer matrices. We compute numerically the eigenvalues �i of W, with parameters t = 32

andN = 32, over 225 realizations (the scaling of fluctuations is computed over 222 realizations

instead). We choose µ = �2 and �2 = 1/12 for the random energies, and � = 1 for the

hopping energies. The mean values of ✏i = ln�i/t are plotted in Fig. 3, with errorbars

indicating the respective standard deviations.

A. Probability distributions

We focus on the distributions of ✏i after appropriate rescaling of the the mean and vari-

ance. From Eq. 11, we expect ✏1, corresponding to the largest eigenvalue of W, as well

as the DPRM free energy, to obey TW-like statistics. This is indeed confirmed in Fig. 4a.

Rather surprisingly however, we find that ✏N , corresponding to the smallest eigenvalue of
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W, also has the same TW-like distribution. This is especially remarkable given the discrep-

ancy in the variances (see Fig. 3). Nevertheless, it is reminiscent of the symmetry known

to exist in Gaussian random matrices, between the pairs of eigenvalues �TW
i and �TW

N+1�i.

There, the behaviour is dictated by the symmetry of the Wigner semicircle distribution

[⇢(�) =
p
4� �2/2⇡] for the overall spectrum [21]. The study of non-intersecting DPRMs in

section I provides some physical intuition for the correspondence observed between pairs ✏i

and ✏N+1�i. Since the quantity ✏i is related to creating i directed paths, it could, conversely,

be interpreted as creating N � i+ 1 empty “paths”.

Numerically, this pairwise correspondence persists beyond the extremal eigenvalues for

the DPRM product matrix as well. In fact, for any i, the pair ✏i and ✏N+1�i shares the

same distribution not only with each other, but also with the analogous eigenvalue pair

for Gaussian random matrices. For instance, in Fig. 4b, we see that ✏N/2 and ✏N/2+1 are

Gaussian in distribution, mirroring the expectation for bulk eigenvalues in GOE and GUE

matrices [22, 23]. The distribution of the remaining eigenvalues interpolate between TW

near the edge of the spectrum, and Gaussian in the bulk.

B. Scaling of fluctuations

We compute also the scaling exponents for fluctuations of individual eigenvalues. For

Gaussian random matrices, the following rigidity estimate exists [24, 25],

Var[�TW
i (n)] ⇠ n�4/3[min{i, n+ 1� i}]�2/3. (15)

For the extremal eigenvalues �TW
1 and �TW

n , the scaling of fluctuations reduces to n�2/3, con-

sistent with Eq. 12; for the bulk eigenvalues, however, this scaling is n�1. The term rigidity

refers to an e↵ective repulsion between consecutive eigenvalues, specifically in comparison

to i.i.d. random variables drawn from the same Wigner semicircle distribution. In the lat-

ter case, order statistics yield typical fluctuations of order n�1/2 instead [25]. We plot the

analogous scaling exponents for the DPRM product matrix in Fig. 5. For ✏1 related to the

DPRM free energy, we find [Var(✏1)]1/2 ⇠ t�2/3, as expected from Eq. 11. However, for ✏i in

the bulk, the scaling is approximately t�1/2, consistent with ordered i.i.d random variables

rather than GOE or GUE eigenvalues. The correspondence between pairs of eigenvalues

observed earlier in the probability distributions is also present in the scaling of fluctuations,
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FIG. 4: Probability distribution of ✏i = ln�i/t for the product of DPRM transfer matrices. All

distributions are normalized to have mean 0 and variance 1. (a) On the edges of the spectrum,

✏1 and ✏N have asymmetric distributions consistent with the TW forms. (b) In contrast, ✏i in the

bulk are Gaussian distributed, similar to the bulk eigenvalues of GOE and GUE matrices.
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FIG. 5: Scaling exponents for the variance of ✏i = ln�i/t for the product of DPRM transfer

matrices. For ✏1, the scaling of fluctuations [Var(✏i)]1/2 is consistent with t�2/3, expected for the

DPRM free energy. For bulk ✏i, however, the scaling is approximately t�1/2, similar to that of i.i.d.

random variables drawn from a Wigner semicircle distribution.

although to a lesser extent.

C. Density of states

We now compare the eigenvalue spacings for the DPRM product matrix in disordered and

pure systems, focusing our attention on the density of states near ✏1. In the pure system,

the transfer matrix is time-independent, and the eigenvalues are fixed. We take Tpure to be

of the following form,

Tpure =

0

BBBBBBBB@

⌘̄ � 0 · · · �

� ⌘̄ � · · · 0

0 � ⌘̄ · · · 0
...

...
...
. . .

...

� 0 0 · · · ⌘̄

1

CCCCCCCCA

, (16)
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where ⌘̄ is the average strength of disorder ⌘i(t) defined in Eq. 13 and 14. We have introduced

additional hopping terms � in the (1, N) and (N, 1) positions, which correspond to periodic

boundary conditions. The e↵ect on the spectrum is negligible for large system sizes, and

the advantage of this choice is that Eq. 16 is a circulant matrix whose spectrum is known

analytically,

✏purek =
ln�pure

k

t
= ⌘̄ + 2� cos


2⇡k

N

�
, k = 0, 1, . . . , N � 1. (17)

[Note that the eigenvalues in the above form are not ordered, and that the bulk eigenvalues

(i.e. not the maximum or minimum) are degenerate.]

We plot ✏i for the disordered and pure DPRM systems in Fig. 6. We see that in the

disordered case, the “energy band” is linear near ✏1, rather than quadratic. It is therefore

more energetically costly to add non-intersecting directed polymers into the system. We

plot also the mean eigenvalues for rescaled Gaussian random matrices for reference. (The

curves for GOE and GUE matrices are indistinguishable, so only one is plotted.) There, the

density of states follows the Wigner semicircle distribution, which vanishes continuously at

the edge of the spectrum as n ! 1.

V. TOTALLY POSITIVE MATRICES

We devote this section to proving the claim that the product of DPRM transfer matrices,

as defined in Eq. 2 and 13, has eigenvalues which are all real and positive. To see this, we

turn to a class of matrices known as totally positive matrices [26, 27].

We begin with some definitions. An N ⇥ N matrix A = {aij}Ni,j=1 is totally positive if

the determinant of any square submatrix (obtained by omitting N �k rows and columns) is

positive. More precisely, let {il}kl=1 and {jm}km=1 be increasing subsequences of {1, . . . , N},

with length k < N . Then A0 = {ail,jm}kl,m=1 is a square submatrix of A. As a special case, a

minor Mij of A is the determinant of the submatrix obtained by removing the ith row and

the jth column. Furthermore, if i = j, Mij is called a principal minor. A consequence of

this definition is that a totally positive matrix A is necessarily also positive (has all positive

entries) and positive-definite (has all positive eigenvalues).

The key property we exploit is that total positivity is preserved under matrix multipli-

cation. We begin by proving this closure property. We then verify that each individual
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FIG. 6: ✏i for disordered DPRM (solid line), plotted against the analogous quantity for the pure

system (dashed line), and the rescaled mean eigenvalues of Gaussian random matrices (dotted line).

The “steps” in the dashed line arise from degeneracy. Near i = 1, the curve is linear for disordered

DPRM, in contrast to quadratic for pure DPRM.

transfer matrix T defined in Eq. 13 is totally positive. These results combine to show that

the product matrix W is totally positive, with real and positive eigenvalues.

A. Closure under matrix multiplication

Consider two N ⇥N totally positive matrices A and B. By the Cauchy-Binet theorem,

the determinant of a k ⇥ k submatrix of the product AB can be written as

det[(AB)IJ ] =
X

H

det(AIH) det(BHJ ) (18)

where I, J , and H are increasing subsequences of {1, . . . , N}, with length k. The sum is

over all possible such subsequences H. Since A and B are totally positive, det(AIH) > 0

and det(BHJ ) > 0 for any H. This immediately gives det[(AB)IJ ] > 0 for any minor of the

product AB. Thus AB must also be totally positive. The argument trivially generalizes to

the product of n > 2 matrices. Therefore, totally positive matrices are closed under matrix
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multiplication.

B. Total positivity of the transfer matrix

It remains to show that the DPRM transfer matrix introduced in Eq. 13 is indeed totally

positive. We rewrite Eq. 13 as

T(t) = T0 + E(t),

T0 = �

0

BBBBBBBB@

2 1 0 · · · 0

1 2 1 · · · 0

0 1 2 · · · 0
...
...
...
. . .

...

0 0 0 · · · 2

1

CCCCCCCCA

,

E(t) =

0

BBBBBBBB@

⌘1(t)� 2� 0 0 · · · 0

0 ⌘2(t)� 2� 0 · · · 0

0 0 ⌘3(t)� 2� · · · 0
...

...
...

. . .
...

0 0 0 · · · ⌘N(t)� 2�

1

CCCCCCCCA

. (19)

T0 is now a time-independent Jacobi (tri-diagonal) matrix, while E(t) is a positive diagonal

matrix due to the constraints we placed on the noise ⌘i(t) in Eq. 14. To proceed, we make

use of Theorem 2.3 and Corollary 2.4 from Ref. [27].

Theorem. (Ando, 1987) Let A be an N -square Jacobi matrix. If A is positive, and all

principal minors are positive, then A is totally positive. Furthermore, for any si > 0, i =

1, 2, . . . , N ,

det[A+ diag(s1, . . . , sN)] � detA+
X

i

si, (20)

and it follows that A+ diag(s1, . . . , sN) is also totally positive.

If T0 is totally positive, then by the above theorem, T(t) = T0 +E(t) is totally positive

8t. It is trivial that T0 is positive. We need only show that all principal minors are positive

as well. However, if we denote the Jacobi matrix T0 of size N as TN
0 , the principal minor

Mii of TN
0 can be written in terms of a block matrix,

Mii = det

0

@ Ti�1
0 0

0 TN�i
0

1

A = det(Ti�1
0 ) det(TN�i

0 ) (21)
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Thus the proof reduces to showing det(Tk
0) > 0, 8k < N .

We write Tk
0 as a block matrix in the following form,

Tk
0/� =

0

@ 2 C

CT Tk�1
0 /�

1

A , C = (1, 0, . . . , 0)| {z }
k�1 terms

. (22)

Then by the Schur determinant identity,

det(Tk
0/�) = det(2) det(Tk�1

0 /� �CT2�1C)

= 2 det


Tk�1

0 /� � diag

✓
1

2
, 0, . . . , 0

◆�

= 2

✓
2� 1

2

◆
det


Tk�2

0 /� � diag

✓
1

2� 1
2

, 0, . . . , 0

◆�

= 2

✓
2� 1

2

◆
· · ·

0

B@2� 1

2� 1

2�
...

1

CA

| {z }
k levels

. (23)

In the second line, we can again write the matrix in square brackets as a block matrix, as

in Eq. 22. Recursively applying the determinant identity k times gives the final expression

in Eq. 23. It is not di�cult to see that the limit of the continued fraction is

lim
m!1

0

B@2� 1

2� 1

2�
...

1

CA

| {z }
m levels

= 1+ (24)

and more importantly, for any m, the continued fraction is positive. Thus det(Tk
0) > 0, 8k,

and the proof is complete.
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