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Complex interaction geometries offer a unique opportunity to modify the strength and sign of the
Casimir force. However, measurements have traditionally been limited to sphere-plate or plate-plate
configurations. Prior attempts to extend measurements to different geometries relied on either nano-
fabrication techniques that are limited to only a few materials or slight modifications of the sphere-plate
geometry due to alignment difficulties of more intricate configurations. Here, we overcome this obstacle to
present measurements of the Casimir force between two gold spheres using an atomic force microscope.
Force measurements are alternated with topographical scans in the x-y plane to maintain alignment of the
two spheres to within approximately 400 nm (∼1% of the sphere radii). Our experimental results are
consistent with Lifshitz’s theory using the proximity force approximation (PFA), and corrections to the PFA
are bounded using nine sphere-sphere and three sphere-plate measurements with spheres of varying radii.
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In 1948, Hendrik Casimir derived an expression for
the force between two uncharged, parallel plates resulting
from a modification of the quantum electromagnetic
vacuum energy [1]. Yet, only a few measurements have
been performed in the original plate-plate configuration due
to difficulties in maintaining parallelism [2,3]. Instead, a
sphere-plate geometry is typically employed [4–8], and
comparison between experiment and theory is performed
using the proximity force approximation (PFA) [9] to
model curved surfaces as a series of parallel plates.
However, this approximation fails for sharp edges
[10,11] and is predicted to have perturbative corrections
for smooth surfaces [12–14]. In some situations, exact
calculations predict repulsion even when the PFA does
not [15,16].
Two experimental techniques have emerged to extend

Casimir force measurements beyond the sphere-plate and
plate-plate geometries. The first begins with a sphere-plate
geometry and textures one or both surfaces so that the
alignment advantages of the sphere-plate configuration
are maintained while effects beyond the PFA are probed
[17–19]. The second involves fabricating two interacting
surfaces out of a single crystal to ensure the alignment of
the surfaces [20,21]; however, measurements are limited to
materials for which sufficient fabrication techniques exist.
Geometries such as the needle-and-hole [15] and sphere-
sphere [22–25] [Fig. 1(a)] require in situ alignment, making
detection difficult. Recent experiments have probed the van
der Waals force between latex spheres in liquid by aligning
the spheres using their optical interference pattern [26,27],
but the metallic coating necessary for Casimir force
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FIG. 1. (a) Schematic of the experimental configuration
with one gold-coated sphere held directly above another.
(b) Topographical scans are used to position the top sphere
directly above the bottom sphere (scan speed: 10 μm=s,
64 × 64 pixels). (c) Spatial derivative of the force measured
between two spheres as a function of separation. During the
measurement, the hydrodynamic force (normalized by the shake
amplitude) is separated from the spatial derivative of the Casimir
force through the phase of the force signal. All the individual
measurements (light dots) are shown (≈20 000 points). The force
gradients and separations of individual measurements are binned
into groups of ≈200 points and averaged (dark squares). The inset
shows the cantilever’s response to the Casimir (red) and hydro-
dynamic (blue) forces. These data are collected with the spheres
shown in (a) and (d) of Fig. 3.
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measurements prevents optical alignment using that
technique.
Here, we present measurements of the Casimir force

between two gold-coated hollow glass spheres using an
in situ scanning technique to maintain alignment of the
spheres’ centers to within ∼1% of their radii over 24 hours
of continuous measurement. Because the experiments are
performed in air, we determine (and mitigate) both the
electrostatic and hydrodynamic forces through a lock-in
detection scheme, while tracking the in-phase and quad-
rature components of the signal. Horizontal alignment
between the two spheres is preserved by alternating force
measurements with topographical scans. Finally, we put
bounds on corrections to the PFA based on a combination
of sphere-sphere and sphere-plate measurements corre-
sponding to different radii.
To align the two spheres, we attach one to an AFM

cantilever (Mikromasch USA), and it is raster scanned,
while oscillating, over a second sphere. A piezoelectric
transducer controls the bottom sphere so that the oscillation
amplitude of the cantilever, and thus, the separation, is
maintained while an image is recorded [Fig. 1(b)]. We
perform a fit to the resulting image, which allows for lateral
alignment of the two spheres to within 400 nm, or about
0.01 to 0.02 R0, where R0 ¼ ðR−1

1 þ R−1
2 Þ−1 is the effective

radius of the two-sphere system. Misalignment between
the two spheres results in three primary effects (see
Supplemental Material [28]): (1) the absolute separation
of the two spheres can change by up to 1 nm, resulting in a
total separation uncertainty of �3 nm, (2) the effective
sensitivity can change by up to �0.3%, increasing the
calibration uncertainty to �5.3%, and (3) a discrepancy on
the order of 0.05 nm may exist for misaligned spheres
due to motion of the piezo, which is small enough to be
ignored. We use a commercial AFM (Cypher, Asylum
Research) for the measurements, and the environment is
maintained at 303.15� 0.05 K and 15� 9% relative
humidity.
We measure the spatial derivative of the Casimir force

(FC
0 ¼ ½ð∂FCÞ=∂d�) in an ambient environment utilizing

the procedure developed by de Man et al. [7,29]. This
process allows us to determine the surface separation
and spring constant, while also eliminating hydrodynamic
and electrostatic forces from the data channel containing
Casimir force. For each sphere-sphere configuration, we
collect data at ∼400 individual separations (from 4 μm to
30 nm) for each approach and retraction. The measurement
is split into several steps, as described below.
We minimize the electrostatic contribution to the total

force signal at each sphere-sphere separation through the
application of two applied biases. First, an ac voltage, Vac,
is applied to the top sphere at a frequency of ωA=2π ¼
77 Hz (while the bottom sphere is grounded), which causes
the cantilever to oscillate at an angular frequency of ωA and
at higher harmonics (e.g., 2ωA and 4ωA). The signal at 2ωA

is used by a feedback loop to control the amplitude of Vac to
maintain a constant amplitude set point for the cantilever
oscillation. A second voltage, V0, is applied by an addi-
tional feedback loop to the top sphere in order to minimize
the cantilever oscillation signal at ωA, which, in turn,
minimizes the electrostatic force, akin to a Kelvin probe
feedback loop [29]. Data are acquired for each sphere-
sphere separation.
While the electrostatic interaction is minimized, we

determine the spatial derivative of the remaining force
(Casimir and hydrodynamic) by oscillating the bottom
sphere with an amplitude Δd at frequency ωpz=2π ¼
211 Hz and observing the response of the cantilever with
a lock-in amplifier. The phase of the cantilever’s response is
used to separate the hydrodynamic force from FC

0 [29].
The shake amplitude is reduced from 48 to 1 nm on
approach, to maximize the sensitivity at large separations,
while also minimizing any artifact from the nonlinearity of
the Casimir force.
Once the approach and retract run is completed, we

determine the absolute separation using the separation-
dependent tip-sample capacitance, CðdÞ [30]. The capaci-
tance derivative C0 ¼ ½∂C=∂d�, calculated from Vac and
oscillations of the cantilever at 2ωA, is fit to the expected
sphere-sphere C0 for an entire approach or retract sequence
of measurements. While fitting C0 to determine the sepa-
ration, the bending of the cantilever (< 3 nm) is taken into
account, and the modification of the capacitance due to an
expected water layer of 1.5� 0.75 nm on each surface is
included [31]. After the force measurements, the top sphere
again approaches and retracts from the bottom sphere,
while electrostatic measurements are made with Vac ¼ 8 V
to calibrate the optical lever sensitivity and the spring
constant from the electrostatic signal at 4ωA.

FIG. 2. Representative measurements of the spatial derivative
of Casimir force for both sphere-plate (blue) and sphere-sphere
(red) measurement geometries. Results are in agreement with
calculated values of the Casimir force derivative for two gold
spheres with a 4.9 nm rms perturbative roughness correction
(black line). Gray shaded region shows the uncertainty in the
roughness correction due to the uncertainty in the orientation of
the spheres [32]. The sphere-plate force is measured with the
sphere in Fig. 3(a), and the sphere-sphere data are collected
between it and the one in Fig. 3(d).
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We repeat the topography, force measurement, and cali-
bration cycle for 24 hours for each sphere pair resulting in
about 50 force-distance measurements per sphere-sphere
experiment. A total of nine sphere-sphere and three sphere-
plate measurements are recorded, with three different
top spheres and three different bottom spheres (hollow
glass, Trelleborg SI-100). The sphere radii range from
29 to 47� 0.3 μm and are epoxied to either a cantilever or
a silicon substrate and coated (Denton e beam) with
Crð3Þ=SiO2ð50Þ=Crð3Þ=Auð100 nmÞ. The SiO2 layer is
used to block ions from the glass sphere from diffusing into
the Au. The silicon plate is coated with Crð5Þ=Auð100 nmÞ.
We perform measurements for both the sphere-sphere

and sphere-plate configurations and compare their results
when using the same top sphere. The force derivative is
divided by the effective radius, R0, to compare the different
measurements (Fig. 2). The Casimir force between the gold
surfaces is computed by combining ellipsometry data over
the range 0.74–6.3 eV with reference optical data [33] at

higher frequencies and the Drude model with ωp ¼
8.84 eV and γ ¼ 42 meV at the lowest frequencies [34].
The AFM images of the surfaces are then used to estimate
uncertainty in the roughness correction to FC

0 [32]. A thin
water layer (described above) is expected to increase FC

0,
primarily at small separations [35], which is also taken into
account (e.g., at a separation of 50 nm, the water layer
increases the force calculation by 5%, but by only 1.6%
at 100 nm).
All sphere-sphere measurements (nine different combi-

nations) are presented in Fig. 3, showing the consistency of
the measurements. At the shortest separations, roughness
causes the force to increase, and at separations beyond
200 nm, stray light interference affects some of the data.
Stray light appears as an artifact that is partially periodic
with separation and is proportional to Δd. Even though a
superluminescent diode is used to minimize the stray light
effect, it is present in some of the sphere-sphere data up to
about 0.5 Nm−2 (although it differs between measure-
ments) and is about half the level of the artifact in the
sphere-plate data due to increased reflection off the plate in
that configuration. Possible reasons that measurements
with the top sphere in Fig. 3(b) show a smaller force at
separations <100 nm are that the sphere has a deformity
not captured by the roughness measurement [32], or that its
slightly smaller spring constant has led to an increase in the
separation uncertainty.
The PFA allows FC

0 to be computed from the force per
unit area between parallel plates. However, a more com-
plete theory predicts the presence of deviations from the
PFA [13,14]. The largest predicted correction is propor-
tional to 1=R0. The combination of sphere-sphere and
sphere-plate measurements gives effective radii (R0) that
vary from 13–46 μm. The wide range of R0 values allows
the procedure of Krause et al. [6] to be used to put bounds
on deviations from the PFA of the form

1

R0
∂F
∂d ¼ 2πFpp

�
1þ β0d

R0 þ � � �
�
; ð1Þ

≈ ð2πFppβ
0dÞ

�
1

R0

�
þ 2πFpp;

¼ m

�
1

R0

�
þ b; ð2Þ

where Fpp is the Casimir force per area between parallel
plates, β0 is a parameter defined in [6] to characterize how
the measured FC

0 differs from the PFA, m ¼ 2πFppβ
0d is

the slope of the line fit and b ¼ 2πFpp is its intercept.
We combine all twelve measurements to put bounds on

corrections to the PFA in the form of β0. For each
measurement, the data are binned at several separations,
with bin widths that are 2% of the separation; e.g., one bin
is 100� 1 nm. All twelve FC

0 measurements at one
separation are then plotted versus 1=R0 (Fig. 4). We fit a

(a)

(b)

(c)

(d) (e) (f)

FIG. 3. (a)–(c) Measurements of the spatial derivative of the
Casimir force as a function of separation for nine sphere-sphere
combinations. Colored data points correspond to measurements
between a top sphere (insets) and the three different bottom
spheres, color matched to the topography maps shown in (d)–(f).
The error bars in (a)–(c) are dominated by the uncertainties in the
ambient water layer thickness (x axis) and from the stray light
effect (y axis). Black lines correspond to Lifshitz theory with the
PFA, measured optical data, and roughness corrections.
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line in the form of Eq. (2) to the recorded data at each
separation. Then, β0 is calculated from the fits as

β0 ¼ m
bd

; ð3Þ

where m and b are determined from the line fit.
The estimate of β0 is more robust to several types of error

than FC
0, which makes it better suited for exploring

deviations from the PFA. First, systematic uncertainty in
the separation (due to, for example, a water layer) leads to a
smaller error in β0, because β0 varies less with separation
than FC

0 [14]. Second, the stray light effect, which leads to
a systematic artifact in any single experimental configura-
tion, is effectively random between configurations, and so,
the total error it imparts is reduced. Finally, any overall
systematic offset in the calibration that is common to all 12
sets of data does not affect the estimate of β0. The error in β0
for each separation is propagated from the error on each
individual force measurement, which is, in turn, calculated
from: uncertainty in the separation, uncertainty from
roughness, uncertainty from calibration, uncertainty in
the amount of the hydrodynamic force coupled into the
Casimir signal channel, and uncertainty from stray light.
Figure 4(b) shows our experimentally determined esti-

mate of β0 for each separation, d. Early theoretical work

predicted that β0 would be independent of separation [13],
and the earliest experimental investigation of β0 in the
sphere-plate geometry found that β0 ¼ 0� 0.4. However,
recent theoretical work has shown that, for real materials at
finite temperature, β0 depends on separation and is pre-
dicted to vary between -0.4 and -0.6 in the range explored
in this Letter [14]. To put our bounds on β0 in a form similar
to Krause et al., we find that β0 ¼ −6� 27 is within the 2σ
confidence interval of the calculated β0 at all of the
measured separations.
Stronger bounds on β0 will be possible by extending the

range of radii used in the measurement. The largest possible
radius that can be used is limited by the ability to separate
the hydrodynamic force from the Casimir force (the former
scales as R2, the latter as R). The smallest possible radius
must still be large enough so that the sphere contributes
much more to FC

0 than the cantilever used to support it. If a
large enough range of radii were used, it would also be
possible to look for higher-order corrections to Eq. (1).
Because the measurement of β0 is less strongly affected by
systematic errors than direct measurements of FC

0, it should
facilitate comparison between experiment and theory.
In conclusion, we have measured the Casimir interaction

between two spheres for separations of 30–400 nm, by
combining topographical alignment with FC

0 measure-
ments. The alignment method can be used to position
any objects that may present interesting geometries for FC

0
measurements in air. Further, the technique can be adapted
to liquid or vacuum conditions, though care will be
necessary to keep the spheres from contacting one another
when drag is minimal. Once the objects are aligned, any
type of force can be measured: critical Casimir, hydro-
dynamic, magnetic, etc. Finally, by combining measure-
ments from several experimental configurations, we place
limits on corrections to the PFA. Because the experiments
are conducted in ambient conditions, we anticipate that
the results and techniques will be important for incorpo-
rating geometrically controlled Casimir forces into MEMS
devices.
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