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We derive analytically the asymptotic behavior of the Casimir interaction between a sphere and a
plate when the distance between them, d, is much smaller than the radius of the sphere, R. The
leading-order and next-to-leading-order terms are derived from the exact formula for the Casimir
interaction energy. They are found to depend nontrivially on the dielectric functions of the objects. As
expected, the leading-order term coincides with that derived using the proximity force approximation.
Numerical results are presented when the dielectric functions are given by the plasma model or the
Drude model, with the plasma frequency (for plasma and Drude models) and relaxation frequency
(for Drude model) given by the conventional values used for gold metal. It is found that if plasma
model is used instead of the Drude model, the error in the sum of the first two leading terms is at most
2%, while the error in 6, the ratio of the next-to-leading-order term divided by d/R to the leading-

order term, can go up to 4.5%.
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I. INTRODUCTION

Casimir effect is a quantum effect that cannot be ignored
in the realm of nanotechnology. It can cause malfunctions
of nano devices due to stiction [1-3]. In the last decade,
intensive research has been carried out to determine the
exact analytic formula for the Casimir effect between two
nonplanar objects and its effective numerical computations
(see, for example, the references cited in [4]). Prior to this,
one could rely only on the proximity force approximation
(PFA) to compute an approximation for the Casimir inter-
action, and there is no way to determine the magnitude of
the error in such an approximation.

In the case of the sphere-plate setup, the most popular
configuration used in Casimir experiments, there is only
one curvature parameter given by the radius of the sphere,
R. Hence it is expected that as d, the distance from the
sphere to the plate, is much smaller than R, the Casimir
interaction energy has an asymptotic expansion of the form

d
ECas = E(Pél:?(l + ﬁel,E + - ')’ (1)

where EPFA is the proximity force approximation to the

Casimir interaction energy. It follows that for the Casimir
force Fc, and force gradient dF,,/dd, one also has
expansions of the form

d
Few = FEN(14 500+ ).

PACS numbers: 12.20.Ds, 11.10.—z

A few years ago, experiments were set up to measure 6,
using a micromachined torsional oscillator [5]. This gives a
more ernest reason for the theoretical computation of the
next-to-leading-order terms of the Casimir interaction. One
of the breakthroughs in Casimir research brought by the
achievement in explicit functional representation of the
Casimir interaction is that it becomes possible to compute
analytically the next-to-leading terms, as has been shown
in [6-8] for the cylinder-plate configuration, in [9—11] for
the sphere-plate configuration, in [12] for the cylinder-
cylinder configuration, and in [13] for the sphere-sphere
configuration. However, except for [7], all the other works
only deal with ideal or nonphysical boundary conditions,
i.e., Dirichlet, Neumann, perfectly conducting, infinitely
permeable, or Robin boundary conditions. So far, no work
has discussed the exact analytical computation of the next-
to-leading- order term in the Casimir interaction between a
sphere and a plate when both of these objects are made of
real materials. The goal of the current work is to deal with
this problem.

It should be mentioned that the material-dependent next-
to-leading-order term in the Casimir interaction between a
sphere and a plate has been studied by Bimonte et al. [14]
using the method of derivative expansion postulated
in [15]. Inspired by the work [16], the authors of [14]
proposed that the Casimir energy Ec,, between a plane-
parallel slab and a gently curved surface should admit a
local expansion of the form

. @) Ee[H] = EFEALH] + f dxa(H)\VH -VH+ -+, (3)
OFc,  OFEE (1+d0 +) ‘ s,
97 Cas _ 0, ]
od 9d R where z = H(x) is the local vertical distance from a point
- x = (x}, x,) on the planar surface 3, to the curved surface.
*LeePeng.Teo @nottingham.edu.my The function a(H) is determined by matching (3) with the
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perturbative expansion of the Casimir energy in the defor-
mation profile i(x) = H(x) — d, where d is the smallest
distance from the curved surface to the planar surface.
However, no explicit analytic formula for the next-to-lead-
ing-order term was given. In this work, we compute the
next-to-leading-order term from the exact formula for the
Casimir interaction between a sphere and a plate made of
real materials.

II. THE CASIMIR INTERACTION ENERGY

In this paper, we recall the formula for the Casimir
interaction between a sphere and a plate. Assume that the
sphere has relative permittivity €,;, and the plate has
relative permittivity €,,. When the thicknesses of the
sphere and the plate are larger than their respective skin

depths, we can model this configuration by a ball and a
|
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semi-infinite space. Let d be the distance from the sphere to
the plate, and let L = d + R, where R is the radius of the
ball.

As shown in [4,17], the electromagnetic Casimir inter-
action energy of this sphere-plate configuration is given by

Eep = [ ¥ doTrin (1 — M(io)), @)
27 Jo

where the trace Tr is

Tr = Z Z tr,

m=0 |=max {1, |m|}

with tr being the trace over 2 X 2 matrices. The matrix
elements of Ml are given by

(—D)ma @I+ DR+ 1) (= mT —m)_,

M 1l = 5 1
fm, o’ Cmm I+ DI+ 1) (+ m)([l+ m)!
H m/ __m_pm
" foo PP sinh O P}"(cosh 6) <o Pl'(cosh 6) 70
0 — 5 P/'(cosh §)  sinh OP}"(cosh )
o sin}/l QP;’,j '(cosh@) APy /(cosh i) ‘ )
= P (cosh @) sinh 6P/ (cosh 6)
Here
®
K= —,

c

P"(x) are the associated Legendre functions given by

., (_l)m " d1+m
P (x) = 5] (1 — x2)m/2 pRET x*=1)
when m = 0, and

T and T? are, respectively, the scattering matrices of the sphere and the plane. They are the following diagonal matrices:

T — TF 0 50 _ 58 0 .
o ™M) 0 ™

ng = /g,
The diagonal elements of T/ and T are, respectively, given by
I,+%(KR)(%IH%(n1KR) + n1KRI;+%(n1KR)) — IH%(anR)(%IH%(KR) + KRI;+%(KR))
KH_%(KR)(%IH_%(HIKR) + anRILL%(anR)) - IH_%(anR)(%KH_%(KR) + KRKLL%(KR)),

Let
i=1,2.

T[TE(iw) =

m

s R 1300y kR) + 1y KRIL, (1 KR)) = £,11,4 4 KR)G Ty (6R) + KRI (KR))
K ey(RRYG 1y kR) + 1 kR, (1 kR)) = 6,1 y(m kR)IGK - 4(kR) + KRK (R))’

TITmM(ia)) =

and
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n3 + sinh?6 — cosh @

71e =V
e

n3 + sinh?6 + cosh @

s

Direct numerical computations of the Casimir inter-
action energy from the formula (4) have been performed
in a few works, such as [18,19]. In numerical comp-
utations, the infinite matrix M has to be truncated to a
matrix of finite size. A drawback of this direct numerical
computation is that when d/R gets smaller, one has
to use a truncated matrix of larger size for accuracy,
and this is subjected to the capacity of the computer.
Currently, numerical computations for plasma and Drude
models are limited to d/R ~ 0.05 [19]. However, in
experiments, we usually have d/R ~ 0.01. So, even
though in principle, with sufficient computing power,
the numerical method can be extended to these values,
|

(Z—2k _siﬂle):(l 0
_si:}ie [ =2k 0 -1

FIM —
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yn} + sinh26 — &, , cosh 6

n3 + sinh?6 + ¢, cosh 6

the analytical computation of the Casimir interaction
energy becomes desirable.

III. SMALL SEPARATION
ASYMPTOTIC EXPANSION

In this section, we want to derive analytically the small
separation asymptotic expansion of the Casimir interaction
energy, Casimir force, and the force gradient up to the next-
to-leading-order term.

One of the technical issues in the analytical computation
of the Casimir interaction energy (4) is the appearance of
the associated Legendre functions P}*(x). First notice that
because of the relation (6) and

)(I—Zk P )(1 O) ®
s [~ 2k)\0 —1

the matrix element M, ;,,, (5) is equal to that when m is changed to —m. Hence, it is sufficient to consider non-negative m.

In this case, one can show that

I+ m)! (=
P7*(cosh §) = (—1)mim( m) [ de(cosh 6 + sinh 6 cos @)’ cos me
0
- (L m)! l 1-200 2 22k i 2k, L2im
= (=)™ kgok!(l oY ell=2k) [_g dpcos psin > pe?ime,

Differentiating with respect to 6 gives

[+m) & [—2k z .
sinh P (cosh 6) = (—l)mi’"( Wm) ];)k!(l T e=20)6 fzg dpcos 22k psin 2 pe?ime,
Therefore,
sinh @P}"(cosh ) - P"(cosh 6)
g PJ'(cosh @) sinh 6P} (cosh 0)
o (L M) & 1 I=2k &y - b 2k :
= (=m T Z K=k - —hzk el [2” deoos ™ psin Hpens.
k=0"" : sinh 2
Making a change of variables,
Rw
- = f’
¢

and expanding the logarithm in (4), we have

hc [
__RZ

[

where

w3 >

[e e}

)tr(n Ml[m,l[ﬂm)r

0%i=0 [;=max 1,|m]| i=0
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1 F 0
Mlim,liJr]in = ﬁ\/(zli + 1)(21i+1 + 1)(li - m)!(lHl - m)!(li + m)!(li+l + m)! L

0 —T™
il 1 0
X Z Z - - [ d0 sinh 06—2§(1+s)cosh0+(1[+li+l—2k—2k’)0
& :k'(l—k'k'(l+1—k)' 0
1,—2k m B L —2K m
Ji+n  simhesJia+n | THE 0 Sl + D) sinh 0/l (i +1)
m 1,—2k — 7™ m L =2k
- 6 -
sinh §+/1;(1;+1) i+ sinh @/l (L g +1) o (i +1)
g . . : g _ . / : /
X [ ngCOS 21; ZkQDSIH 2k€0621mqo f dQD/COS 21412k QDISIII 2k ¢/e2lmgo , (9)
T —
2 2

with
Th_Iugﬂ@h%M@3+n@Q%M@D—aﬁmgmﬂgh%@%+ﬁ@;6)
" K O + m el (n8) = ail, y(mCK, (&) + €K}, (&)

Here # = TEor TM, and a[F = 1, T = ¢, . The minus ~ When e < 1, the main contributions to the Casimir inter-

signs on T/™ and T3™ in (9) come from the two matrices, ~ action energy come from the terms with
( o ) N 1 L,
’ -~ i T m—~ —=, ~ ~ e.
0 -1 e boJe Je e

in (8). Let . .
In the small e expansion below, we will count the order of /,

d .
=2 l;,,m, & and @ as 1/e, 1/\/e, 1/\/e, 1/e and e respectively.
R Making a change of variables,
In the following, we make a shift of parameters,
N1 — 72
L=+, 0+— 6y + 6, §=7,
where
and replacing each of the summations over /, /;, and m by a
1:=1, sinh 6, = i corresponding integration (which is the leading term in the
¢ Abel-Plana summation formula), we have

E an [~ a *d e TTM , 10
Cas —~ 27TR ZS 1 j;) 7-2 ,—1 — f f m( 1 f_oo z) r(ll_!) (l+l[)m,(l+l,-+1)m) ( )

where [y = 0 and [;;; = 0 by default. The integration over 6 is from —6, to oo, which can be approximated by an
integration from —oo to oo, since 6 is of order e and 6 is of order 1.
Now we perform the small e expansion of (9). Writing cos ¢ as exp (— Insec ¢) and using the fact that

AS
o~

+ ..

2
Insec ¢ =%+

[\

1

we have the following small e expansion:

% , z 2\ 2k I+1;—k .
fz decos 2(l+l,»)72k¢sin 2k¢621m¢> ~ fz d¢¢2k(] _ %) CXp(_(l + 1 — k)QDZ _ Tl¢4)621m¢
-3 -3

1 oo ko? I+1,—k I+1,—k 2ime
e ()
[T f_m ve 31 )P ¢ o2 7 I

1 o0 2ime
~ 2% _ 2
=~ [ioo dee®(1 + A;,)exp(B;; + B;») exp( o + 7 )

(11
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In the second line, we have performed a rescaling ¢ — ¢/ V1 so that the main contribution to the integration over ¢ comes
from ¢ that are ~1. Here and in the following, for any X, X;; and X, are, respectively, terms of order /e and e. When
these terms do not depend on i, i would be omitted. Changing /; to /;, | and k to k¥’ in (11), we obtain a similar expansion:

5 / . / ; / 1 © 21m /
[27 d@'cos 2UFl) 72K plgin 2K ol g2ime! ~ R / de' ¢ (1 + C;)exp (D, + fD,;z)pr(‘éﬂa y2me )
_7 — 00

Vi
Next, we can use Stirling’s formula,

lnn!=(n+l>lnn—n+lln277+i+~~,
2 2 12n

to obtain an expansion,

1 JU+L=—m!I+ Ly —m) I+ L+ m)(+ [y + m)!
J+E I+ 1 =W+ L — k)

m2
= eXp (T + }[i,l + g-[i,2>'

On the other hand, we have

1
Z‘/(ZZ + 20+ D@L+ 20y + 1) = (1+ Gi1 + Gio).
For the terms involving 6, expanding in small e gives

02
sinh (6 + 6,) = sinh 60(1 + 6 coth §, + ?)
T
V1 - 172
exp(—2&(1 + &)cosh (0 + 0y) + 21+ 1; + 1,1, — 2k — 2K')(0 + 6,))

I+&,+E&n);

6> 6> o
~exp(RL+1; + 1,4, — 2k — 2k")6,) exp<—2§(1 + &) sinh 90<coth 0y + 6+ £} coth 6, + 3 + 2 coth 00>

+ QI+ 1+, — 2k — 2k’)0>

1 — 7\krk =t 20 16*  2el
*““( T) i CXP<_—_—_L+(11‘+li+1)9+fi,1"‘fi,z);
T T

1+7 T
1+1,—2k m
y JUAL) I+ G+1) sinh (8+00)A/(I+1,)(I+1;+1)
m 1+1;,—2k
sinh (0+00) /(1) I+ +1) U+ ++1)
I+1, =2k m

1+ L, M, VALl +1) sinh (0+00)y/(1+ 14+ +1)

ml 1+ ‘£i2 ’ m I+1;,, 2K

’ sinh (0+00)A/(+ 1)1+ 11 1) NG (e

1 + N,’)Z Ml

M] 1 + Ni’z '

Here,

mv1 — 72

M =—

It

is of order \/e. We do not need the term that is of order e for the off-diagonal terms of these matrices as they won’t
contribute to the next-to-leading-order term of the Casimir interaction energy. Finally, the small e expansions of T}, 1+, are
the same as the small @ expansions:

045019-5
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\/n% + sinh2(0 + 6y) — &} cosh (6 + 6,)

Then, = s : = (CETH 4+ 0K + 62 5)
\/n2 + sinh (6 + 6y) + &} cosh (6 + 6,)

where @l = 1, afM = ¢,,, sgn™ = 0, sgn™ = 1,

e S L e 27
\/8,,2(1 - )+ 72+ P ’ €0+ \/8,’2(1 -7+ 2 1 \/8,'2(1 -7+ 2
KTF = — g.0(1 — 72) 272 ’ M _ 2e,,7(1 — 7%) ,
(8,21 =7 + 7232 g1 = 72) + 72 ! \/8,,2(1 — ) + (g, + 1)
™ e2,(1 — 77)? (=gl tel, ten 1)

2 eI =)+ ) ey + 1) (el = )+ ey + )

7'2(8,’2J8r’2(1 — 7))+ 72+ 1)?

(6,200 = 1) + P)fora(l = ) + 72 + 5,7

+

Notice that T, K, XK only depend on &,, and 7. They are independent of /; and e.
Gathering the expansions obtained above, we can write

v L T O W B A i e
Eigm(om = 2\ T Zﬁ Zﬁm 1+ 7

0k g
00 220 16 2el 00 2i
X df exp (m_ LTy (1 + liﬂ)ﬁ)[ dop** exp(—gp2 + L\r/njqo)
T —o00

(& 21mgo' 1 + £i2 jvll
>< d !/ /2ke (_ 2 + ) 1 + Oi + @i ’
__de'eTexp| —¢ N ( 1 2) M, 1+ L,
o TPE(1 + 0KTE + 92 KTE) 0 1+ Ny, M,
0 TIM(1 + 6 K™ + 62 KTF) M, 1+ N,/

where

exp(Biy +Bin+ Dy + Din+ Fiy + Fio+ Hiy + Hin) A+ A1 +Ci)(1+ & +E)0+ Gy + Gin)
=1+ @i,l + @Lz.

Notice that M, K7, K are independent of k, K, ¢, ¢’ and 6. Performing the summation over k and k" using the formulas

ivk —v i v —v ikZUk (2+ )*v
— =Y, — =ve Y, —=(v v)e Y,

Payy k! &5k

we obtain an expansion of the form

1 (TH, 0 | — 7\t oo 2 20 12 2el

( i L( T) ’ f dﬁexp(mT—————i—i-(li+li+1)0)
—00 T

7\ 0 —TlTiVlIi V1= 2\1+7 T T
o0 2 2ime’
)[ dgo’exp(— T o+ e )(1 + P+ P;»)

M(l+li)nl,(l+li+l)m -

T
o0 27 2ime
X d - 2+
f_w ‘DeXp( A I+7 N
» T3E(1 + 0KTE + 62 KIE + R,) + TM M3 (T3E + TP M,
(TSE + TIMM, M1+ 0K ™M + 02 ICM + R,) + TEEM?

045019-6



MATERIAL DEPENDENCE OF CASIMIR INTERACTION ... PHYSICAL REVIEW D 88, 045019 (2013)

The R, term comes from £;, and N';,. The Gaussian integrations over ¢ and ¢’ can be performed straightforwardly
and give

M ~l T}rfli O 1+’T 1_7_ _I+12,»+1_l
trmtoon =5\ oy T A\

2 2 2 9
f deexp( m 2 @—ilw+z,+1>e)<1+g,1+le>

.
(T eaq'E + (MQE + Uy) + TMM? (FTE + T M,
(TIE + T M, FIM(1 + K™ + 62K + Uy) + TTEM?

‘U, comes from R,, and it is independent of #. Before performing integration over 6, one is supposed to multiply
(1+9;,+ Q,,) into the matrix after it. Up to the terms of order e, we can write

1+ 9,1 +Q,,=0+ Q)0+ 9,;,)

and only multiply (1 + @) into the matrix. On the other hand, up to the terms of order e, we can extract the term ‘U, of
order e out from the matrix. These give

M+ 1ym (141, ym

(T, 0 1 — 7\~ m® 20 1> 2el
zi( N (HT) [ dHexp( _——+(z+z,ﬂ)a)(1+g,2+fu2)

I+1;

" TEE(I+ 9, +0KE+09,; | KTE+ 62 KTE) + TgM M} (TeE+TEMM,
(TRE+TTMM, TMA+Q, +0KM+609 ;| KM+ 62 FKM) + TTE M3
Performing the Gaussian integration over 6, we have

M(Z+l,-)m,(l+l,»+l)m

TE I;+1;
_ JrT Ty 0 1 — 7\t m? 21 261 )
o o . ( ) exp(———— S T+ 1) )(1 + 8, + Uy)

i J\ T Ir 7
o (TT+ S+ VIP+ 85TE + VID) + TP M3 (T3 + TP M,
(TgE + TgM).']Vll TgM(l +8;, + ’V[TIIVI + Si,szTM + 'VIT%/[) + ngm%
(12)
where

%))

I [ 16° .
0= [ d6’exp<—— +(; + li+1)0>Qi,j’ j=12

7TT

8in / avexp(-"C +l,+1)0>0Q,1,
7TT

" " T
11 = (l + lH—l):](: s i2 (21 412 (l + ll+1) )

Next we consider the small e expansions of T}, . Debye asymptotic expansions of modified Bessel functions say that

1,(vz) =

o) u, (7(2)) Jre (1 + Z2)1/4 my(7(2))
_(1+Z2)1/4<1+ j ) e <1+ . )

7T e vk u (7 TV my(7
K,(vz) = Wit ;)1/4 (1 — 1(1}(2)))’ %KV(VZ) + vzK,(vz) = —\/;e’”"(“(l + zz)l/“(l - I(V(Z))),

1
EIV(VZ) + vzl (vz) =

045019-7
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where
T 57 T 77 1 / <
w(n)=g—%;7 mn=g+57 10= oo @ =N+ 2 In————.
Let
£ 1
=—, =mgz, =l+15+.
CTrepl A TmE 7 2

Then we find that up to terms of order e, we have
020 4f1 + Z%(l + ul(;(z)) + ml(TV(zl))) - o 1+ 201 + ul(TV(Z])) + ml(:(z)))

T 1+ Z%(l _ ul(;(z)) + ml(TV(zl))) + aT /1 + 22(1 + MI(TV(Z])) _ ml(:(z)))

* ~
T1+ll- -

In small e expansion,

1 — 7\ 2]
e ~ C]"_li“(il " :) ’ “exp (7 - 211(1,2 e )+ I+ ]i,z)-

Therefore, we have an expansion of the form

(TZTE“ 0 ) _Cirtm (1 - T)WTMH%exP <§ “ TR )T, + 1.2)
T 207 ! b b

0 -TM [ 1+7
" (TEE(I +IE+TE 0 ) 13
o P TR T
where
e Ve =P e e (=R PR T
To" = S ’ i1 =5 Wi i,ZZWWZ_’_? 2>
\/8,,1(1 -+ 72+ 1 &1 +\/s,,1(1 — 7))+ 72
with
4T
WTE = — ,
\/8,11(1 —72) + 72
2\2 2 2\
WTE _ 872 + 47t +4e, —4de, 7" 41— 1) <8“ + \/8“(1 Tt ) 40— ) (7 + &,1)
2 _ 2 2)3/2 2 2 _ 2 2\’
(g,,(1 =72)+ 1) / 72(8,,1(1 -2+ 7.2)(\/&,1(1 —)+ 2+ 1) (g, (1 —7°) + 7°)
YIE — — T _8g,172 —3g,; — 5¢,,7" + 972 + 57¢ WM — de, (1 — 72)
2 (e.1(1 = 72) + 7)1/ 12(e,,,(1 — ) + 72) \/Sr,l(l —P) + 22+ ¢,,)
WM — e, (1 =787 + 474 + 4e, | — e, 1) N 41— 7267, (1 + \/8r,1(1 —72) + 77)?
™ — _
Era + =) E 7 2 (1= )+ e (=) + 7 + e,
48%’1(1 — 72)3
2T o) o~ ) T 7
Y™ — e (1 =77 B 783’17'4 — 48%17'2 — 38%’1 —5g,,7% + 13¢, 7% — 18¢,. ;72 + 57° — 37*
2 (e + e (1 — 1) + )2 12(g,; + )(g,,(1 — 72) + 77) '

Notice that T, W7, W5, VY only depend on ¢,,; and 7. They are independent of /; and e.
Substituting (13) into (12), we have an expansion of the form,

045019-8
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Nz m> 2l T
Mt ym G+, m = TCI’ lis: 7(1 + T +Tin+ Uy eXP(‘ﬁ T 47(1:' - li+l)2)
TIETTEATE + TIETIM M3 TEE(TEE + TIMYM, a4
TIM(TTE + TIM M, TIMTIMAT™  TIMTTE M2

where

1 # 3 C #
Tii=1 Ti,ZZIi,2+8i,2+§I,%1; N =1+T5H+Siu+ Vi + T Vit T0Si+ T+ Sin K+ Vi
Substituting (14) into (10), and extracting terms up to order e, we have

o (s+1)/2
Eow =g St [ar T / Al =1/
as 276+3/2R “s + 1 25+l 2 /_1 —

X[_ dm(n[ a’l)ex( z(j: 1) Zel(s+1) Z(l ,+1)2)

x{ > [T*T*]S“(1+ZZZHZJI+Zle+(S+1)’Uz)+X3V12

#*=TE,TM i=0 j=0
+ Z [TS‘T(’;]SH(ZZ ZinJj + Zzzllyll + ZTHV[I + ZSzZK Z Z Tin
+=TETM i=0 j=0 =0 j#i i=0 j=it1
3 S VYL S z +Zj +zv;2)},
i=0 j=i+1 i=0 j=0
where
Zo=T;1+S Zin=Ti, + TS
and

- B TTETTE s+1 _ TTMTTM s+1 B - TTETTE s _ TTMTTM s
X = (S + 1){(TOTET3M + TOTMT("I)"E)[ 0 ~0 ] [ 0 0 ] + ZTg‘ETgET(')I‘MTTM[ 0 ~0 ] [ 0 0 ] }

TEFTE _ 7 TM5TM 0 TEFTE _ 7 TM5TM
To To To To To TO To To

We have omitted those terms of order /e since they are odd in one of the /; and thus would give zero after integration with
respect to /;. It follows that

~ 0 1
ECas - ECas + ECas'

EQ . is the leading-order term that comes from those terms of order ¢°, and E(, is the next-to-leading-order term that
comes from those terms of order e. €, and €, , are functions of

c W1 — 72

R T

w =

They are independent of /; and m. Performing the Gaussian integration over /;, | =i = s, and m, we find that

hc <« 1 dr o0
dllex
47TRSZ()(S+1)2/()TV1—TZJ;) P

0 —_ _
ECas -

2el(s + 1 -
(—76 (ST )> S T (15)

#*=TE,TM

1l = he § 1 2€l(s+1) ok s+ 1 & *
EL, 47TRZ(S+1)2fOT\/1_T f dllex ( ){ Y [T (A +C +I))+X:B}. (16)

s=0 #*=TE,TM

The explicit formulas for A, B, C*, and D* are given by
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2
=e3i(( F 1P 25 + 1)+ 5 (2 = Dls + 12— 3r(s+ 1) + 202 = 1)
4+ 2 _ _
™+ 12(S+1)+(1 7)(1 7')_7'(1 %) 1’
1217 2l 31 s+ 1
_ -7 C=CyXK:+ C, W
20r(s + 1) V= I
_l’_
D = DV‘/KTZ + DVJKTWT + DJJWTz + (S ) ! §+ Dv)j(* + DJW* + (S + 1) sz
with
C =—ﬂ((s+1)3+2(s+1))+1_72(s+1)2+1(s+1)+1_472
v 3 21 121
er 1
Cj=——((s+1)3—(s+1))+m((s+1)2—1), DVV—E((s+1)*—2(s+1)2+2(s+1)—1)
Djj—@((s+l)3—2(s+1)2 (s+1)+2),Dw=i((s+1)»—(s+1)),
=— + 172 —=3(s+1)+ =_——((s+1)?*—
Dy 61(2(S 1> =3(s+ 1)+ 1), D, = 12l((s 1> —1).

Using the fact that T, 75, K7, K5, Wi, W3, Y; are independent of e, it is straightforward to take derivative with
respect to d. For the Casimir force

we find that
Feys = Fp + F{
Cas Cas Cas’

where F2, and F(., are, respectively, the leading-order and next-to-leading-order terms with

2el(s + 1))

hc ~
Fl = f / dll* ex ( TeToI !,
Cas 27TR2 Z S +1 0 Tz\/i'j_;' T Z [ 0 0]

#=TE,TM
hc 1 dr oo 2el(s + 1) - - -
Fl — / dllz (_ ){ T % s+1 ﬂ + C* + D* + XB}
cos 27R? Sgos +1J)o2di=2Jo exp ; *:TZETM[ o Tol ™ )
Here,
~ elr N e 5
A==+ 1D +2s +1) =32 + D? + 3r(s + 1) + 1),
- +577-12 l+7—72 7 1
+— G+
12I7 21T 6ls+1

~ ~y ~ ~ 1
=X +C W, Gy = —e—T((s+ P +20s + 1) + (s + 17 +211(s+ D+

<1+T>((+1)2 .

C~J=—e—67((s+1)3—(s+1))+

For the force gradient 9 F¢,,/dd, the leading-order and next-to-leading-order terms are

8F8a~ _ f JiP ( 2el(s + l)) s ]
—_Cas = IPe _ [ToTH]+,
77'R3 0 731 — 72 T *:TZE,TM 00
OF¢, j ( 2el(s + 1)){ > A
S = — dIP ex _— [T:T:PY (A +CF + DY) + XB},
7TR3 0 ’T\/l_’T T *:TZETM 070
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where
~ el
ﬂ——e T((s +1)*+2(s+1))—-((2+72)(s+1)2+3T(s+1)+1+272)
—T4+9T—12 1+7'—7'2+7'
G+ )+
127 21T

& =G+ W Gy =

a=—%((s+1)3—(s+1))+7(1T27)

—g((s+ 1) +2(s + 1)) .

1+ 472

2
.
+ 2
(s+1) 121

_
o (s+1)+
TR

((s+ 1> =1

Let us compare the leading-order term to the proximity force approximation. The Casimir energy density between a pair
of parallel dielectric plates with relative permittivities €, ; and &, is given by the Lifshitz’s formula [20],

El(lzag(d) 1 2];) dK[K dqq z ln(l—rfr;e_zqd), (17)

where

1 V(& = D&+ g7 = a

J(Srt_l)K +q +q

Y

=TE, TM

N Eriq — ‘\/(Sr,i - 1)K2 + C]2

eriq + J(Sr,i - I)Kz + q2

The proximity force approximation to the Casimir interaction energy between a sphere and a plate with relative

permittivities &, and €, , is given by

EFFA = 27R [d " duél. (u). (18)

Expanding the logarithm in (17) and substituting into (18), we find that

th
RS oo [ 3 iy

AcR 1
— _ d d —2q(s+1)d
4 ;(s+1)2[ K[ e

Now, making a change of variables,

we finally obtain

EPFA — _ hc

Cas 47TRY 0(S+1)2];)TV1—T 0

where

\/Sr,i(l - +72-1
\/s,yi(l -+ 72 +1

TE —
ri- =

Comparing to (15), we find that our result for the leading-
order term agrees completely with the proximity force
approximation.

As mentioned in the Introduction, a method for com-
puting the material-dependent next-to-leading-order

=TE,TM

Z [rFirs ]t

*=TE,TM

dlle Xp

> [y,

#*=TE,TM

(_ Zel(sT-i- 1))

Eri — ’\/sr,i(l - Tz) + 7
it \/s,yi(l -7+ 7

|

term for the sphere-plane configuration has been pro-
posed in [14] based on the validity of the derivative
expansion. While we are unable to compare our analytic
result for the next-to-leading-order term with the result
in [14] directly at the analytic level, the numerical values
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L.P. TEO
seem to agree for the case for which results are
presented in [14].

IV. PLASMA MODEL

In this section, we consider the special case where the
dielectric permittivities of the sphere and the plate are
described by the plasma model,

Sr,i(iw) =

where w, ; is the plasma frequency of the material.
In terms of the variables

[ =
T
and 7, we have

(wp,id/c)z

Sr,i =1

First, consider the case

The limit where wp,,»d/c — 00, i =1, 2, is the perfect
conductor limit. We can compute analytically the asymp-
totic expansion of the leading- and next-to-leading-order
terms in the small parameters

PHYSICAL REVIEW D 88, 045019 (2013)

TABLE 1. The coefficients g, ;.
B Exact value Numerical value
Boo 1 1
Bio -3 —1.3333
Bao % 1.8
B 15—8 3.6
Bso — 164 22 2 —1.8560
B -8 —6.8571
Bao B 36 0.3458
B 190 — 326 77 8.6791
Bon 2 16.6667
Bs.o - 3—? + %772 - % 774 3.0322
Ba 180 4 2420 772 —1.4707
B2 *60 + 1220 72 —25.2808
where B,y = 1 and
EPFAPC _ mheR
Cas - 720d°

is the leading-order approximation to the Casimir interac-
tion energy between a perfectly conducting sphere and a
perfectly conducting plate. The exact values of B, ; and A; ;
for i + j = 5 are listed in Tables I and II. From (15), it is
obvious that the leading term is symmetric when we
interchange &, | with g, ,. It follows that

Bi,j = Bj,i for all (l, _])
Hence, we only list the coefficients of 3, ; when i = j in

Table 1.
From (20), we have

 dewe=(t+j+1) o

> STl ) e
i=0 j=0

o dd e i+ j+HDE++2) o

) + EZZ J - J )\,Ja’la§+---). (22)

mhcR

c
a; = .
! a)p,,»d
Specifically, we have
Eoo~ mheR
Cas 7204
(S5 et + 5 33 hataf +-)
i=0 j= i=0 j=
(20)
J
T ShcR (i + ] +2)
FCas -~ 360d3 (Z Z Bz]
dFcy _ T heR (l+]+2)(l+]+3)
ad 1204* <,z(:),z Bij
Here,
PFA,PC
Cas
and
DEENIC
ad

12044
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TABLE II.  The coefficients A, ;. N
- Ip === Fee o amm= ===
A Exact value Numerical value FO LA
Cas  Cas
/\0’0 - % + % _16931 O 0.8
Ay
56 1 _ 32 < 4
ALo > 7 T35 1.1802 £
Aot %"#—% 1.5802 o 0.6
A2 — 3814401 —0.6473 io
04+t
ALg 779—16#+;‘?‘5‘ —2.3993
Aoz BL+8 -1.5615 0 7
Aso 40 1 37 4 286 2 0.3493 ' | . 10° 107
g _ _6 s _4
Aoy WL 2.2202 10 107 10 107 10
A 410 1 16 3.6488 d(m
1,2 7 27 :
410 1 _ 79 ) : s ..
Ao WL B+ 1.3527 FIG. 2 (color. online). Pl;l;hl;cc leading orfier term of the Casimir
force normalized by F, .~ -~ (dashed line) and the sum of the
A _ 69824 1 + 35141 __ 28022 77.2 —1.4484 X Ca§ R PFA PC
40 3465 a* 10395 99225 : leading- and next-to-leading-order terms normalized by F, "
A3q - 2;2226 # % - % a2 —2.0007 (solid line). Inset is the ratio of the latter to the former. These are
_ 139648 1 4 742 2 .2 _ computed using plasma model for gold metal.
A2 1155 =7 T 99 T Tios T 4.7269 P &P g
279296 1 4 43856 _ 46558 , 2 _
A3 3465 72 T 10305 ~ 1001475 7 4.3690
_ 69824 1 14981 _ 11962 .2 _
Ao 3465 =7 ' 10395 1091475 7 0.7087 PEAPC drl 20
26732 1 _ 150368 , 4937399 .2 _ 1142 _4 ~ ) el B e
Aso 87 7 T 307 T Sersene ™ 63063 7 3.3627 Ecas = Ecqs (1 + R[3 77.2] + )
133660 1 _ 35026 4 773884 .2
A4 1287 77 2079 T 567567 7 7.1324 P FPFA PC(I 4 d [1 10] . )
267320 1 __ 548024 | 26212, 2 =~ ’ —=lz— = )
A3 1287 77 21027 T 51507 57822 Cas Cas Rl6 7?2
267320 1 _ 415724 | 16826 2
Ays 1287 77 27007 T 81081 7 77116 OFcys  OFMTC (1 N d[l 20 ] )
133660 1 _ 256888 19984 2 = =z "5 )
AL 1287 =2 27027 ' 81081 7 3.4503 ad od RL9 372
26732 1 _ 84218 4 3329 _2 8059 4 _
Aos 1287 2 27027 + 62370 7 + 2522520 7 0.1736

are, respectively, the leading-order approximations to the
Casimir force and force gradient between a perfectly con-
ducting sphere and a perfectly conducting plate. Setting

a; = a, = 0in (20)-(22), we obtain

0
1 =T ECas _________
0
L 08
o-»
< .
£ES
2 o6t -8
[<ya) E
53 ° 09
= 04 8
)
0.85
0.2
‘ 10° 10° 107
10" 107 107 107 10™
d(m)

FIG. 1 (color online).

interaction energy normalized by E,

PFA,PC
by E Cas

PFA,PC

The leading-order term of the Casimir
(dashed line) and the
sum of the leading- and next-to-leading-order terms normalized
(solid line). Inset is the ratio of the latter to the
former. These are computed using plasma model for gold metal.

plate configuration [11,15].

which are well-known results for the leading- and next-to-
leading-order terms of the perfectly conducting sphere-

Next we consider numerical results with w, | = @), =
1.3671 X 10'6 rad/s, which is the plasma frequency for

0
Ir ===Fieo  mmm=== ==
0 1
FL|,C;15+Fd.Cas
0.8F
@)
&
£
A S 0.6F 2
3 9]
= =
g 2 %098
=d
&5 04+ -3
Rk Eﬁﬁ
50.96
o3
0.2F )
0.94 " p .
10 10° 107
0 -8 = - S —4
10 10 10 10 10
d(m)

FIG. 3 (color online).

045019-13

The leading-order term of the force
gradient normalized by o Fge""C/dd (dashed line) and the sum
of the leading- and next-to-leading-order terms normalized by
aFESf’PC/ dd (solid line). Inset is the ratio of the latter to the
former. These are computed using plasma model for gold metal.
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-16 -0.55 -0.2
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-0.35
19 g 07 — s
~ — o~ -0
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2.2 -0.85 ~055
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10" 107 10° 107 107 10" 107 10° 107 107 10" 107 10° 10° 107
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FIG. 4 (color online).

gold [21], in the unit system with # = ¢ = 1. The radius
of the sphere R is taken to be 1 mm. Substituting (19) into
the formulas obtained in the previous section, we can
compute numerically the leading-order term (the proximity
force approximation) and the next-to-leading-order term
of the Casimir interaction. In Figs. 1-3, we plot the
leading-order term, the sum of the leading-order and
next-to-leading-order terms of the Casimir interaction
energy, Casimir force, and force gradient, normalized,
respectively, by EnPC, FEEAPC and aFEEAPC/9d, as a
function of d for d between 10 nm and 100 wm. From the
figures, we notice that when d/R ~ 0.1, the corrections
to PFA become significant, and they would contribute
corrections of about 10%.

To have a better picture about the corrections to
the proximity force approximations, define 6, g, 6 y, and
01 by

— R E(I:ZIS
d E%as ’

so that (1) and (2) hold.

In Fig. 4, we plot 6, g, 6, , and 6, as functions of d for d
between 10 nm and 100 wm. As d increases to 100 pm,
we find that 6,5, 6, and 6, tend, respectively, to
the values 1/3 —20/7> = —1.6931, 1/6 —10/7> =
—0.8465,and 1/9 — 20/(372) = —0.5644, which are cor-
responding values for perfect conductors. This is not sur-
prising since w , ;d/c is approximately equal to 5000 when
d = 107*. When d is small, the deviations from the limit-
ing values for perfect conductors are very significant. On
the other hand, we also notice that ¢,  and ¢, are bounded
below. 6 is a quantity that can be measured experimentally
[5]. From Fig. 4, we find that it is bounded below by —0.57.

— R F(I:HS
d Fgas

_ROFl,/od
doFd, /od

01k 01,r

>

V. DRUDE MODEL

The Drude dielectric function is given by
w3,

(iw) =1 +——21
TS

d(m)

d(m)

01 (d), 6, (d), and 0,(d) computed using plasma model.

= = =E° Drude
1 E°, plasma ot
E%E', Drude
X E”+E',plasma e
L 08 1
Q'L
Pl
& O
§ 0.6 0.95
R
<
%UU 9 Drude
0.4} ¢ plasma
0.85
0.2 i
‘ 0* 10° 10"
8 _7 6 -5 _4
10 10 10 10 10

d (m)

FIG. 5 (color online). The leading-order term and the sum of
the leading-order and next-to-leading-order terms of the Casimir
interaction energy normalized by EEE?’PC. The inset shows the
ratio of the latter to the former.

- 'FO, Drude
1 FO, plasma X =2
FO+F ', Drude
o 0.8 x FO+F', plasma
A 1
£z
° 0.98
= 0.6 Drude
g p _ é 0.96 ¢ plasma
g0 &
=~ o4l 5094
LS
+rn
<& 092
&
02 0.9
‘ 10" 10° 10"
—8 R —6 5 4
10 107 10 10 10
d (m)

FIG. 6 (color online). The leading-order term and the sum of
the leading-order and next-to-leading-order terms of the Casimir
force normalized by Fero-"C. The inset shows the ratio of the
latter to the former.

045019-14



MATERIAL DEPENDENCE OF CASIMIR INTERACTION ...

1 - -F?I, Drude
Ft;, plasma
08 Fg+F<]1’ Drude
E ' x F3+FL]1’ plasma
£0 0.99
A= 0.6
:& 0.98
g 5 5 Drude
5304t ., 0.97 ¢ plasma
R
0.96
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_ _ 4
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FIG. 7 (color online). The leading-order term and the sum of
the leading-order and next-to-leading-order terms of the force
gradient normalized by 9 F, gﬁf’P €/ad. The inset shows the ratio
of the latter to the former.
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FIG. 8 (color online)

leading-order terms.

The ratio of the plasma model to the
Drude model for the sum of the leading-order and next-to-

- = =plasma

PHYSICAL REVIEW D 88, 045019 (2013)

where 7; is the relaxation frequency of the material. In the
limit where y; — 0, the Drude dielectric function becomes
the plasma dielectric function.

In terms of the variables ¢ and 7, we have

1 + (wp,id/c)z
Eri = .
N1 = 72tV — 72 + y,d/c)

Substituting this into the results obtained in Sec. III, we can
compute numerically the leading-order and next-to-lead-
ing-order terms of the Casimir interaction for Drude
models.

Let us consider the case where w,| = w,,, = 1.3671 X
10'° rad/s and vy, = y, = 5.3165 X 10'3 rad/s, which
are the conventional values used for gold [21].

In Figs. 5-7, we plot the leading-order term, the sum of
the leading-order and next-to-leading-order terms of the
Casimir interaction energy, Casimir force and force gra-
dient, normalized, respectively, by Eqo-PC, FErnPC and
oF g];f'PC /dd, as a function of d for d between 10 nm and
100 pm. Both the Drude model and the plasma model are
plotted on the same graph to show the comparison. To get a
better picture, we plot the ratio of the plasma model to the
Drude model for the sum of the leading-order and next-to-
leading-order terms in Fig. 8. From the figure, we notice
that if the plasma model is used instead of the Drude
model, the error is at most 2%.

In Fig. 9, we plot 6, g, 0,F, and 6, for the Drude
model and compare to that for the plasma model. As
for the plasma model, we notice that for the Drude model,
as d increases, 0| g, 01 F, and 6, tend, respectively, to the
limiting values 1/3 — 20/7> = —1.6931,1/6 — 10/7? =
—0.8465 and 1/9 —20/(37*) = —0.5644, the corre-
sponding values for perfect conductors. When d is small,
the deviations from these limiting values are very signifi-
cant. On the other hand, 6, r and 6, are also bounded from
below.

The ratios of the plasma model to the Drude model for
01, 01 F,and 6, are plotted in Fig. 10. From the figure, we

(23)

FIG. 9 (color online).

-0.5 -0.2
-0.55 \ -0.25 Drude
~06 —— Drude 03 = = -plasma

v - - -plasma
-0.65 -0.35
Ry —

o 07 < -04

-0.75 -0.45

-0.8 -0.5

-0.85 -0.55

-0.9 -0.6

01.£(d), 6, p(d), and 6(d) computed using the Drude model (solid line), compared to those computed using
the plasma model (dashed line).
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1.04 |

1.03 |

1.02

plasma/Drude

1.01}

FIG. 10 (color online). The ratio of the plasma model to the
Drude model for 0, g, 0, r, and 6.

find that if the plasma model is used instead of the Drude
model, the error is at most 4.5%.

VI. CONCLUSION

Starting from the functional determinant representation
of the Casimir interaction energy, we have used the per-
turbation method to obtain analytically the leading-order
and next-to-leading-order terms of the Casimir interaction
energy, Casimir force and force gradient for the interaction
between a sphere and a plate. The results are written as
double integrals over functions of the dielectric permittiv-
ities of the objects and are, hence, general. The leading-
order terms are shown to be equal to that predicted by the
proximity force approximation. The results on the next-to-
leading-order terms are new.

With the given dielectric permittivities of the
sphere and the plate, the double integrals representing

PHYSICAL REVIEW D 88, 045019 (2013)

the leading- order and next-to-leading-order terms can
be computed numerically, and this is demonstrated for a
gold sphere in front of a gold plate, where both plasma
and Drude models are used for the dielectric functions of
gold. It is observed that even at d/R ~ 0.1, the next-to-
leading-order term would contribute a correction to the
leading-order term of about 10%. Of particular interest is
the ratio of the next-to-leading-order term divided by d/R
to the leading-order term, denoted by 6. It is found that
when w,d/c is large enough, 6,(d) tends to the corre-
sponding limiting value for perfect conductors. However,
when w,d/c is small, the deviation from the limiting
perfect conductor value is significant. This signifies that
in the nano range, we cannot model real metals by perfect
conductors.

A comparison between the plasma model and Drude
model shows that their difference is below 2% for the
sum of the first two leading-order terms and below 4.5%
for the values of 6,(d). In fact, this small difference is
expected at zero temperature. In this work, we have not
considered the thermal effect. When d is small enough
such that 27kgTd/hc is < 1, thermal effect can be ne-
glected. For example, when 7 = 300 K, thermal effect can
be neglected when d << 1 um. Nevertheless, it would be
interesting to examine the behavior of the Casimir inter-
action at room temperature and its interplay with material
properties. This will be addressed in a forthcoming work.
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