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Abstract — The proximity force approximation (PFA) relates the interaction between closely
spaced, smoothly curved objects to the force between parallel plates. Precision experiments on
Casimir forces necessitate, and spur research on, corrections to the PFA. We use a derivative
expansion for gently curved surfaces to derive the leading curvature modifications to the PFA. Our
methods apply to any homogeneous and isotropic materials; here we present results for Dirichlet
and Neumann boundary conditions and for perfect conductors. A Padé extrapolation constrained
by a multipole expansion at large distance and our improved expansion at short distances, provides
an accurate expression for the sphere/plate Casimir force at all separations.

Copyright © EPLA, 2012

First introduced by Derjaguin [1], the proximity force
approximation (PFA) relates forces between gently curved
objects at close separations to the corresponding interac-
tions between flat surfaces over an area set by the local
radii of curvature. Originally developed in the context of
surface adhesion and colloids, the PFA has found applica-
tion as far afield as the study of internuclear forces and
fission [2,3]. In particular, the PFA has long been applied
to Casimir and other fluctuation forces that are short
range and therefore dominated by the surface proximity.
Despite its nearly universal use to parameterize Casimir
forces in experimentally accessible geometries like a sphere
opposite a plate [4,5], not even the first correction to the
PFA in the ratio of the inter-surface separation to the scale
of curvature, d/R, is known for realistic dielectric materi-
als or even for generic perfect conductors. Casimir forces
have non-trivial and sometimes counterintuitive depen-
dence on the overall shape, increasing the interest in devel-
oping a thorough understanding of the corrections to the
PFA and its range of validity. As the experimental preci-
sion of Casimir force measurements improves, they are
becoming sensitive to PFA corrections, further motivating
renewed interest in this subject. For example, an upper

bound on the magnitude of the first-order correction to
the PFA for a gold-coated sphere in front of a gold-coated
plane was obtained a few years ago in an experiment by
the Purdue group [6], which found that the fractional
deviation from the PFA in the force gradient is less than
0.4 d/R.

We here provide a general expression for the first correc-
tion to the PFA for the Casimir energy of objects whose
surface curvatures are large compared to their inter-
surface separation. Scattering methods have provided a
fertile route to computing Casimir forces for non-planar
shapes [7]. While conceptual threads connected to this
approach can be traced back to earlier multiple-scattering
methods [8], concrete analytical [7] and numerical [9]
results are relatively recent. Indeed, the experimentally
most relevant set-up of a sphere and plate was only treated
in 2008 [10] (see also [11] and [12,13] for related work). The
scattering method is most powerful at large separation,
providing analytic expressions for a multipole expansion
in the ratio R/d and numerical results for R/d < 10, but
becomes intractable at the values of d/R~ 1073, needed
to study the PFA. Worldline numerics have been applied
to the sphere/plate set-up for a scalar field with Dirichlet
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(D) boundary conditions [14]. In a feat of mathematical
dexterity, Bordag and Nikolaev (BN) summed the scatter-
ing series to obtain the first correction to the PFA for the
cylinder /plate and sphere/plate geometries, initially for a
scalar field obeying D boundary conditions (bc) [15], and
later for the electromagnetic (EM) field with ideal metal-
lic be [16]. Intriguingly, whereas the correction to the force
in the former case for both geometries is analytic in d/R,
the sphere/plate EM case was predicted to include loga-
rithmic corrections (~(d/R)In(d/R)). While the BN PFA
corrections for cylinders (where there are only analytic
corrections), were independently verified by Teo [17], the
results of refs. [15,16] for the experimentally interesting
sphere/plate EM case remain unconfirmed.

A recent work by Fosco et al. [18] provides a quite
promising perspective on Casimir PFA corrections.
Reinterpreting perturbative corrections to parallel plate
forces [19,20], they propose a gradient expansion in the
local separation between surfaces for the force between
gently curved bodies. They implement their program
for scalar fields and confirm that their general approach
reproduces the BN cylinder and sphere/plate correction
for D be. Inspired by this work, the current paper is orga-
nized as follows: i) We show that the extension of ref. [18]
to two curved surfaces is constrained by tilt invariance
of the reference plane (from which the two separations
are measured). This provides a stringent test of the
self-consistency of perturbative results. ii) Going beyond
the scalar fields and D bc of ref. [18], we compute the form
of the gradient expansion for Neumann (N), mixed D/N,
and EM (perfect metal) boundaries. Interestingly, we find
that the EM correction must coincide with the sum of D
and N corrections. iii) We reproduce previous results for
cylinders [17] with D, N, and mixed D/N conditions, and
the sphere with D bc. However, we do not confirm the
BN predictions for the sphere/plane geometry [16] either
with N or EM bc [21]. iv) As a further test, we introduce
a Padé approximant for the (sphere/plate) force at all
separations, based on an asymptotic expansion at large
distances and the gradient expansion at proximity. The
Padé approximant agrees excellently with the existing
numerical data and implies logarithmic corrections to the
PFA beyond the gradient expansion performed here (see
eq. (9)).

Consider two bodies with gently curved surfaces
described by (single-valued) height profiles z = Hy(x) and
z = Hy(x), with respect to a reference plane X, where
x = (x,y) are Cartesian coordinates on ¥ and the z axis
is normal to X. For our purposes it is not necessary to
specify the precise nature of the fluctuating quantum
field. Our results are valid for scalar fields, for the EM
field, and indeed even for spinor fields. Similarly, the
boundary conditions satisfied by the fields on the surfaces
of the plates can be either ideal e.g., D or N for the scalar
field, or ideal metal in the EM case) or those appropriate
to a real material with complex dielectric permittivity.
The only restriction on the bc is that they should describe

homogeneous and isotropic materials, so that the energy
is invariant under simultaneous translations and rotations
of the two profiles in the plane X.

Following ref. [18], we postulate that the Casimir energy,
when generalized to two surfaces and to arbitrary fields
subject to arbitrary bec, is a functional E[Hy, Ho] of the
heights H; and Hs, which has a derivative expansion,

E[H1,H2]=/ d*xU(H) [1+ 61(H)VH, - VH,

+ 02(H)VHy-VHy+ (34 (H)VH; - VHy
+ B-(H)2-(VHIXVHz)+--], (1)
where H(x) = Hy(x) — Hy () is the height difference, and
dots denote higher derivative terms. Here, U(H) is the
energy per unit area between parallel plates at separation
H; translation and rotation symmetries in « only permit
four distinct gradient coefficients, 81 (H), B2(H), Bx(H)
and _(H) at lowest order. While the validity of this
local expansion remains to be verified, it is supported by
the existence of well-established derivative expansions of
scattering amplitudes [22] from which the Casimir energy
can be derived by standard methods [7].

Arbitrariness in the choice of ¥ constrains the
[B-coefficients. Invariance of F under a displacement of
Y along the z-axis requires that all the 3’s depend only
on the height difference H, and not on the individ-
ual heights H; and Hs. The [-coeflicients are further
constrained by the invariance of E with respect to tilting
the reference plate ¥. Under a tilt of ¥ by an infinites-
imal angle € in the (z,z)-plane, the height profiles H;
change by 0H; = —¢(z + H; ‘rgi" ), and the invariance of E
implies

dlogU
dH

2(B1(H) + f2(H)) +2B<(H)+ H
B_(H)=0.

—1=0,
(2)

Hence the non-vanishing cross-term (3 is determined by
ﬁl, ﬁg and U.

By exploiting eqgs. (2) we see that, to second order in
the gradient expansion, the two-surface problem reduces
to the simpler problem of a single curved surface facing
a plane, since U, 1 and (3 can be determined in that
case and [y follows from eqgs. (2). Therefore in eq. (1)
we set H; =0 and define 82(H)=g(H). By a simple
generalization of ref. [18], where the problem is studied
for a scalar field subjected to D bc on both plates, we
can determine the exact functional dependence of G(H)
on H by comparing the gradient expansion, eq. (1), to
a perturbative expansion of the Casimir energy around
flat plates, to second order in the deformation. For this
purpose, we take ¥ to be a planar surface and decompose
the height of the curved surface as H(x)=d+ h(x),
where d is chosen to be the distance of closest separation.
For small deformations |h(z)|/d<1 we can expand
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E[0,d+ h] as:

G(k;d)|h(k)|?,
(3)

where A is the area, k is the in-plane wave vector and h(k)
is the Fourier transform of h(zx). The kernel G(k;d) has
been evaluated by several authors, for example in ref. [19]
for a scalar field fulfilling D or N bc on both plates, as well
for the EM field satisfying ideal metal bc on both plates.
More recently, G(k;d) was evaluated in ref. [20] for the
EM field with dielectric be. For a deformation with small
slope, the Fourier transform ﬁ(k:) is peaked around zero.
Since the kernel can be expanded at least through order
k? about k =0 [22], we define

E[0,d+h] = AU(d) + pu(d)h(0) + / (gjr';

G(k;d) =y(d)+86(d) k> +---. (4)
For small h, the coefficients in the derivative expansion can
be matched with the perturbative result. By expanding
eq. (1) in powers of h(x) and comparing with the pertur-
bative expansion to second order in both iL(k) and k2, we
obtain

U"(d) = 2v(d), ()
with prime denoting a derivative. Using the above relation,
we computed the coefficient § for the following five cases:
a scalar field obeying D or N bc on both surfaces, or D
bc on the curved surface and N bc on the flat, or vice
versa, and for the EM field with ideal metal bc. Since
in all these cases the problem involves no other length
apart from the separation d, § is a pure number. Op was
computed in [18], and found to be fp =2/3. We find By =
2/3(1-30/7?), Bon=2/3, fBxp =2/3—80/7x% (where
the double subscripts denote the curved surface and flat
surface be respectively), and Bgm =2/3 (1 —15/7%). Upon
solving egs. (2) one then finds fx =2 — 1 — B2, where (;
and (, are chosen to be both equal to either Bp, Oy or
Brn, for the case of identical be on the two surfaces, or
rather 01 = Opn and (32 = Onp for the case of a scalar field
obeying mixed ND bc. While we obtain agreement for D
conditions, our results for 3 in the case of N and EM
conditions disagree with refs. [15,16], which finds Oy =
2/3—5/7? and By = —2.1, multiplied by logarithmic
terms in the latter case that we do not obtain. We note
that our value of Ogn\ is equal to the average of Op and
On. Of course for parallel plates the EM Casimir force
for perfect mirrors is the sum of Dirichlet and Neumann
contributions (see, e.g., ref. [23] for a calculation based
on semi-classical methods); that this should hold for the
first correction to PFA is noteworthy. Using the well-
known results U(d) = —an?hc/(1440d?), where ap = an =
agMm/2=1and apy =anp = —7/8 in eq. (1), it is easy to
verify that to second order in the gradient expansion the
ideal-metal EM Casimir energy for two arbitrary surfaces

is equal to the sum of the D and N Casimir energies in the
same geometry.

Using the values for § and [« obtained above, it is
possible to evaluate the leading correction to PFA, by
explicit evaluation of eq. (1) for the desired profiles. For
example, for two spheres of radii Ry and Rs, both with
the same bc for simplicity, we obtain

_ﬁﬂm—n <}i+}i)], (6)

where Eppa = —(am3hcR1 Ry))/[1440d?(Ry + R3)]. The
corresponding formula for the sphere/plate case can
be obtained by taking one of the two radii to infinity.
Similarly, for two parallel circular cylinders with different
radii our results, not given here for brevity, fully agree
with those derived very recently by Teo [17]. Finally we
consider two circular cylinders whose axes are inclined at

a relative angle 6,
3 d
1 2y %
e P G

T 3 hC\/ R1 R2
1440d? sin 0
again assuming the same bc on both surfaces.

Surprisingly, a hyperboloid/plate configuration, h(r) =
VR2+ X2r2 — R leads to a PFA correction proportional
to (28+1/A\?)d/R, which vanishes for the EM case if
A =1.20. To better understand what geometric features of
the surface determine the PFA corrections, we considered
a general profile, expanded around the point of shortest
separation, including cubic and quartic terms in addition
to quadratic terms representing its curvature. The cubic
terms —representing an asymmetry absent in the shapes
considered above— actually result in a correction term
that scales as y/d/R. The more standard correction
proportional to d/R depends on both cubic and quartic
but no higher-order terms in the expansion of the profile.
The quartic coefficients in fact have opposite signs for
the sphere and hyperboloid, and it is this difference that
accounts for the possibility of a vanishing PFA correction
(for the hyperboloid with EM bc).

Our new understanding of Casimir forces at small sepa-
rations can be combined with existing calculations at
large distances to obtain a single analytic expression for
the experimentally relevant sphere/plate system at all
distances. Also, this analysis provides an independent
comparison with the original predictions of BN [15,16],
and suggests that the gradient expansion of the Casimir
energy may break down at the next order. Precise numer-
ical results based on an extrapolation of a spherical multi-
pole expansion exist for d/R 2 0.1 [10]. Also, at large
separations analytic asymptotic expansions (AE) of the
rescaled force f=R?F/(hc) ~ 37, fjr7°%7 in powers of
r = R/d are available for sufficiently large n, where jo =2
for D and jo =4 for N and EM conditions, respectively.
We resum the AE for f, match it with our improved
PFA result using the method of Padé approximants, and
compare the resulting interpolation with the numerical

E = FEpra |1
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Fig. 1: (Colour on-line) Casimir energy normalized to PFA
energy as a function of d/R for the sphere/plate configuration:
numerical data (dots, from ref. [10]), Padé approximants (solid
curves) and the first correction to the PFA (dashed lines).

results of ref. [10]. We introduce a Padé approximant
Jivyny(r) that agrees with n terms of the AE for small
r and with the leading two terms ~73, r2 for large r given
by eq. (6). This requires N = M — 3, whereas M is deter-
mined by n, so that all coefficients in

f (r) = po+pir+par® 4.+ pur
MM L+qir+qor? +...+qu-sr™—3

(8)

are uniquely determined. The energy, obtained from
fim/nv—3) by integration over distance is shown with
n=7,13 and 15 for D, N and EM bc, respectively,
in fig. 1 together with our result of eq. (6) for the
sphere/plate case (R; =R, Ry — 00) and the numerical
results of ref. [10]. The difference between Padé approx-
imants and the numerical data varies between 0.009%
and 0.062% (D), 0.048% and 0.42% (N), 0.009% and
0.248% (EM). This agreement is quite remarkable given
that the Padé approximants are obtained independent
of the numerical data. Hence, the derivative expansion
in combination with a Padé approximation improves
known numerical results which do not apply to very short
separations [10,11]. The Padé approach may thus be
valuable for Casimir interactions between slowly varying
surfaces at all separations starting from expansions valid
at small and large distances, respectively.

Integration of the Padé approximant for the force yields
an expansion for the energy at small d/R,

E d d\?. d d\?
Epra +99R+ﬂ2<3> OgR4*9<<R> ) )

Table 1: Coefficient 6; for D, N and EM boundary conditions
on sphere/plate from a fit of the numerical data of ref. [10] to
eq. (9) and from the gradient expansion.

Boundary | 6, from fit 0y from gradient

condition | to numerical expansion
data [10]

D +0.36 1/3

N —2.99 1/3—40/7% = —-3.72

EM —1.62 1/3—20/7% = —1.69

with 0; =28 —1 and 03 =0.08 for D, 0 = —24.01 for N
and 0y =—4.52 for EM conditions. The appearance of
a logarithm at second order in eq. (9) follows from our
assumption that the force can be expanded in powers
of d at small d including a term ~1/d [24]. A Padé
approximation to the energy is by definition a power series
with no logarithms, and would not yield a 1/d contribution
to the force. To check that the d?log d term in the energy
is necessary, we have tried a Padé analysis of the energy
and found much poorer agreement with the numerical
data (with fractional differences of the order of 100 times
larger than those given above for the Padé approximant for
the force and moreover a pole in the approximant). This
confirms our finding that eq. (9) indeed must contain a
d?log d term. One could perform Padé approximations to
derivatives of the force which might turn out to be even
more accurate but this would only change the functional
form (logarithmic factors) of eq. (9) at third order in
d/R. As an independent test of our result §; =208 —1 we
fitted [25]! the functional form of eq. (9) to the numerical
data reported in ref. [10]. The corresponding values for
0, are summarized in table 1. When comparing numerical
and analytic values for #; one must consider that they
are limited to d/R 2 0.1 with somewhat better accuracy
for the D and EM case. We note that the presence of
the logarithm at order (d/R)? indicates that the gradient
expansion for the energy might break down at next order.
Finally, we have applied both the derivative expansion
and the Padé approximation to the electrostatic force
gradient between a sphere and a plate and found excellent
agreement with the exact solution (with low-order Padé
approximants having an error of well below 1%.)

Based on the derivative expansion proposed by Fosco
et al. [18], we have described a systematic treatment
of the first non-trivial corrections to the PFA. While
this paper focused on ideal boundary conditions, the
scattering amplitudes for material with arbitrary EM
response (frequency-dependent e(w), u(w), isotropic or
not, local or not) have been computed in the gradient
expansion [22] and can be used to compute improved
PFA corrections in experimentally relevant situations

I'We note that in refs. [10,25] numerical data have been fitted to
a function that differs from eq. (9) by the absence of the log, leading
to different values for 6.
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of sphere/plate as well as corrugated plates and other
set-ups.
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