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We present an analysis describing how the Casimir effect can deflect a thin microfabricated
rectangular membrane strip and possibly collapse it into a flat, parallel, fixed surface nearby. In the
presence of the attractive parallel-plate Casimir force between the fixed surface and the membrane
strip, the otherwise flat strip deflects into a curved shape, for which the derivation of an exact
expression of the Casimir force is nontrivial and has not been carried out to date. We propose and
adopt a local value approach for ascertaining the strength of the Casimir force between a flat surface
and a slightly curved rectangular surface, such as the strip considered here. Justifications for this
approach are discussed with reference to publications by other authors. The strength of the Casimir
force, strongly dependent on the separation between the surfaces, increases with the deflection of the
membrane, and can bring about the collapse of the strip into the fixed s(sfati®n). Widely used

in microelectromechanical systems both for its relative ease of fabrication and usefulness, the strip
is a structure often plagued by stiction during or after the microfabrication process—especially
surface micromachining. Our analysis makes no assumptions about the final or the intermediate
shapes of the deflecting strip. Thus, in contrast to the usual methods of treating this type of problem,
it disposes of the need for an ansatz or a series expansion of the solution to the differential equations.
All but the very last step in the derivation of the main result are analytical, revealing some of the
underlying physics. A dimensionless constafy, is extracted which relates the deflection at the
center of the strip to physical and geometrical parameters of the system. These parameters can be
controlled in microfabrication. They are the separatigybetween the fixed surface and the strip in

the absence of deflection, the thicknastengthL, and Young’'s modulus of elasticitpf the strip,

and a measure of the dielectric permittivities of the strip, the fixed surface, and the filler fluid
between them. It is shown that for some systekig*0.245), with the Casimir force being the only
operative external force on the strip, a collapsed strip is inevitable. Numerical estimates can be made
to determine if a given strip will collapse into a nearby surface due to the Casimir force alone, thus
revealing the absolute minimum requirements on the geometrical dimensions for a stable
(stiction-freg system. For those systems which do exhibit a stiction-free stable equilibrium state, the
deflection at the middle of the strip is always found to be smaller thann@.48his analysis is
expected to be most accurately descriptive for strips with large aspect tafti) @nd small
modulus of elasticity which also happen to be those most susceptible to stiction. Guidelines and
examples are given to help estimate which structures meet these criteria for some technologically
important materials, including metal and polymer thin films. 1898 American Institute of
Physics[S0021-89708)07517-3

I. INTRODUCTION first performed by Brown and Maclay using the stress-energy
tensor, and included corrections due to finite temperature.
By virtue of their very presence, material bodies alter inElizalde and Romero published a review article on the sub-
and around the space they occupy the spectrum of the zeject in 1990° More recently, Casimir forces have been the
point vacuum electromagnetic field. This can give rise tosubject of a fair number of theoretical studie=e, for ex-
Casimir forces between material bodies in proximity to eachample, Refs. 7—12 Experimental investigations have also
other. Casimir forces can be attractive or repulsive dependseen carried out in the last few years which confirm some of
ing on the geometry of the material bodfes.In the first  the theory**'*Also recently, the notion that useful exchange
published paper on this subject, Casimir derived an expresf energy with the vacuum in a controlled fashion might be
sion for such a force as it exists between parallel, flat, semipossible has received renewed attention, and Casimir forces
infinite slabs of perfect conductors at zero temperat@e-  are considered important for experimental investigations in

variant calculations of the force for this same geometry werdhis area>*°
From a technological viewpoint, one area in which Ca-

a . _ . ._simir forces already demand attention is that of microelec-
Corresponding author; currently at Digital Instruments, Inc., 112 Robin . -

Hill Road, Santa Barbara, CA 93117; electronic mail: serry@di.com tromeCh"_"m?{il SVSten”(MEM_S)- Casimir forces can .and do
BCurrently at Daimler-Benz Research Division, Frankfurt, Germany. play a significant role in micro- and nanometer-size struc-
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tures for two reasons. First, these for¢psr unit areg typi- rectangular membrane strip
cally varying with the third or fourth power of the separation (thickness h)

between the material bodies, are strongest when this separa-

tion is in the submicrometer regime. Second, many devices surface $

are now fabricated small and therefore light enough, and X q(x)
with moving parts in close enough proximity that Casimir I——h

forces can complicate fabrication and significantly affect ac- — W) |
tuation and device performante'®With continuing reduc- Wo Y

tion in the size and separation of structures, Casimir forces

will need to be accounted for increasingly in the design and 5
modeling of MEMS and nanoelectromechanical systems l L
(NEMS). In the near future, the most likely Casimir force to
play a consequential role in these systems is the parallel-
plate Casimir force, which attracts two adjacent flat parallelFI G. 1. Cross section of a MEMS membrane stéag., fabricated by sur-
plates towards each other, and which will be referred to Simfacé rﬁicromachining a rectangular membrane sur.)Yported on two of its
ply as the Casimir force hereafter. We will show that at theedges, ak=0 andx=L. The drawing is not to scale; in reality, the strip is
present the Casimir foro@quivalent in this geometry to the much longer than it is thickl(>h) and the aspect ratio is much smaller
attractive retarded van der Waals foréein part responsible  (Wo<L)-

for stiction in a large number of MEMS, wherein the stiction
is often encountered during and after the removal of sacrifi- _. : . .
cial layers in surface micr%machining of transducers. This(F'g' 1).' The rectangular membrane strip qf uniform thick-
problem is technologically important, because it adverselyneSSh is supported on two opposite edgéixed edgesa

affects the production yield on batch fabricated devices, anglstanceL'apart, and s free along thg cher two.e'dg.es. This
also plagues many devices in operation. A substantia?trucwre is an ubiquitous MEMS building block; in light of

amount of research and development is underway towardgs versatility and relative ease of fabricati¢especially in

: o . o surface micromachining,t is now made with a variety of
the understanding of and finding solutions for stictisee, materials, ranging from single-crystal silicon, over polymers
for example, Refs. 19-23 , ranging gle-cry , poly :

iy . . . to metals?®~34The main objective of this analysis is to relate
The Casimir forceF, (per unit areais proportional to the static deflection at the center of the membrane strip to a
the inverse fourth power of the separatiah,between the ' y : > Strip
: number of physical and geometric parameters which can be
plates, viz., S S . ) .
controlled in microfabrication. In reaching this objective, the
F.= 79R/d%, (19 analysis also reveals some important features of the system
. under study.
R=hcmt/240, (1b) Due to proximity to the rigid flat top surfac8 of the
n<1, (19 bott(_)m_ plate(Fig. 1), the str@p is subject to the attractive
_ _ o Casimir force, and deflects into a curved shape. In the ab-
where 7 depends on the dielectric permittivities of the platessence of deflection, the separation between the bottom sur-
and of the medium between thefy=1 for perfectly con-  face of the strip and the surfa@would bewo. If the strip
ducting plates with vacuum between thetd*?° This pa-  has not collapsed into the surfagethe departure, due to the
rameter is generally larger than 0.5 if one of the Casimirgefiection, from the parallel-plate configuration may be con-
surfaces is metal coated. The valuespfor a given system  sidered small all along the length of the strip in a large class
can be found using Refs. 26 and Z7andc have their usual of real devices7 where the typ|ca| aspect ra_ﬁwo is 100 or
meanings. greater. The thicknesh, of the strip is also considered much

A 2-um-thick, highly doped (doping density gsmaller tharL: this will be elaborated on in Sec. IlI.
=10 cm™3) and thus highly conductive single-crystal sili-

con membrane is attracted towards a nearby parallel metrﬁl
plate under a Casimir force approximately equal to the
weight of the membrane when the separation is@m At In almost all of the attempts made to date at measuring
0.25 um separation, the force is roughly equivalent to thatthe parallel-plate Casimir force, one or two slightly curved
which would be present if a 50 mV potential difference weresurfaces have been used instead of two flat surfaces in order
applied between the membrane and the metal plate. At 0.tb reduce the difficulty of maintaining the surfaces parallel.
um separation, the equivalent potential difference would beret, in these attempts, the parallel-plate fdifys.(1)] have

200 mV. The Casimir force per unit area is approximately 1been assumed for the force despite the departure, albeit
atm strong at 10 nm separation between two metal plates. small, from the parallel configuratiaisee, for example, Ref.

In this article, we consider the Casimir force in a class 0f35). The justification for this has been the following: that for
microfabricated structures which are nearly, but less thamtarge enough radii of curvature and for small enough sepa-
perfectly, parallel. Specifically, we are concerned with tworations between the adjacent surfaces, that is, small enough
objects, the first of which is rigid and flat, and the second ofseparations so that the force is significant, the parallel-plate
which is a rectangular membrane strip, flexible enough ta@eometry is adequately approximated and thus Ebsre-
elastically deflect towards the first under the Casimir forcemain valid. In a recent exception, Lamoreaux used an alter-

edge support rigid, flat plate

THE LOCAL VALUE APPROACH
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edges, i.e., in the midsection of the strip where the deflection
and thus the force are the largest. Under these assumptions
and inspired by the results of Deutsch, Candelas, Brevik, and
Lygren, we propose and adopt a local-value approach to the
force strength. We propose that, during the deflection and in
the final curved configuration of the membrane strip, the
value of the Casimir pressure at a point along the length of
the strip is given by Eq(la), where nowd is the local value

FIG. 2. Two flat conductive semi-infinite plates defining a wedge of aagle of the separation between the strip and the surfSce
and a cusp. For small values oénd «, the strength of the Casimir pressure ’

varies nearly with the inverse fourth power of the local value of the sepa-
ration, r , between the plates, i.é5(ra) *.

lll. THE DIFFERENTIAL EQUATION OF THE PLATE
STRIP AND THE MEMBRANE APPROXIMATION
native to Eq.(1a), by accounting for theknownradius of o . o .
curvature of aigid hemispherical lens, which he used as one ~ Theé membrane strip differential equation is a special
of the Casimir plates in his experiment; the other plate, als&aSe of a plate strip differential equation, which describes the
rigid, was flat® Theoretical approaches involving perturba- deflectionw(x) of a thin plate strip of uniform thicknegsin
tion methods have been applied to explore the force in ged Static equilibrium condition under the loagx), which is
ometries withknown andfixed departures from the parallel Perpendicular to the undeformed plane of the plate., a
configuration. For example, Zayaev and Mostepanenko ha\}@teral_ Ioag. The plate strip differential equation is fourth
used a perturbation approach to calculate corrections to EQrder inx:
(19 for the case where one surface is rigid and flat, and the g4 2
. - wW(X) d“w(x)
second surface is also rigid, but curved, yet nonsphetical. D +N =—q(x), (2a)
: : : dx’ o 4
In contrast, the analysis of the static deflection of the mem-
brane strip which we embark on presently lacks the benefi P L s
of the rigidity of the strip, and of the knowledge of its form. t\?&/hereD, the flexural rigidity of the plate strip, is defined as
That is to say, the final shape of tHexiblestrip in the state Eh3
of stable mechanical equilibrium is not known to us, and Dzm, (2b)
neither are the intermediate shapes through which one tacitly
assumes the strip to have evolved in reaching the energetivith E and v denoting the Young modulus of elasticity and
cally favorable state of static deflection. We need an alternathe Poisson ratio, respectively, of the material of the siip.
tive approach to describe the static deflection of the memto be discussed shortly, is a force per unit width of the strip.
brane strip under the Casimir force. In the absence of akVe consider the plate strip subject to the fixed-fixed bound-
exact expression for the Casimir force on a curved surfacary conditions. That is to say, the supported edges are not
with an unknown shape, a shape which evolves due indeed foee to approach each other as the strip deflects, and further-
the action of the force itself, we propose an alternative apmore, the slope of the strigiw/dx, is zero at these edges.
proach as described next along with the reasoning whicihis boundary condition is appropriate for the great majority
leads up to it. of microfabricated plate strips.

Deutsch and Candelas in 1979 derived an exact expres- Bending and stretching are assumed to be the two
sion for the(attractive Casimir force between two perfectly mechanisms by which the lateral load is carried in the strip.
conducting, semi-infinite plates with flat surfaces at an angldhe bending is represented by the fourth order term in Eq.
to each other so as to define a wedge, such as in Fi§. 2.(2a). The stretching is represented by the second order term,
Brevik and Lygren arrived at the same results in 1996 usingn which the so-called middle surface membrane forégs,

a different approacff These results show the following: that are in-plane forces, assumed to exist in a plane halfway
for a wedge of angle, at a small distance, from the cusp through the thickness of the plate. This plane is considered a
of the wedge, the strength of the Casimir force per unit areaeutral plane, which means that the in-plane stresses devel-
on either surface of the wedge is a function of the productppedas a result of the bendingray be neglected on this
r«, which for small values ot approaches the local value plane. Instead, the main contribution ko comes from the

of the separation between the surfafelg. 2). Furthermore, membrane-typstretchingof the strip in response to the lat-
these results show that the force per unit area varies vergral load®®

nearly as the inverse fourth power of the separation—same If the stretching is negligible, then we have the case of
as in the parallel-plate geometry—and accepts extremelpure bending of the plate strip, and the second order term
small corrections to this formy ) 4, for small values ofy, may be dropped from the differential equatidfqg. (2a)]. If

with the correction reaching only 1% at=0.1 rad(5.79. In  the bending behavior is insignificant and can be neglected,
our system, the curvature of the deflected membrane strip ihen the external load may be assumed to be carried almost
assumed negligible enough so that at all points along thentirely by the membrane forced. An example of this
length of the strip, the tangent to the strip makes an anglevould be the behavior of a strip with a large enough aspect
less than 0.1 rad witls This assumption is especially well ratio L/h as will be discussed later in Sec. ffz*2The strip
justified where it matters the most: away from the supportednay then be well approximated as a flexible membrane strip,
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| * N=Eh[u’(x)+3w'3(x)], (40)
P ur » X-axis
: deflected u(0)=u(L)=0, (5a)
/membrane W(O) =w( L)=0, (5b)
S whereu(x) andw(x) are thex and z components, respec-
J tively, of the displacement vector for a membrane element of

length, dI, as shown in cross section in Fig*3A prime
denotes differentiation with respectxoEquation(4a) is the
edge support rigid flat plate same as EQ(3), but with the loadq(x) replaced by the
, _ _ Casimir pressur@load at a distances from the left edge of
FIG. 3. Membrane strip deflectidfross section an element of lengtll, o emprane strip. In cases where initial in-plane stresses
originally a distancex away from the left edge, is displaced by an amount = " . L . }
u(x) in thex direction and by an amoumi(x) in the z direction. This is not exist,N receives an additive contribution from these stresses,
to scale; the curvature is exaggerated. which we leave out in this study. In static equilibrium, for a
given deflection at the center of the strip, the magnitudd of
is constant along the length of the membr@ig. (4b)]. The

. . . . ._Strain, €,, in the x direction is related to the displacements
which carries the external load mainly by stretching out 'nby““

the plane of the strip. The differential equation then reduces
to the second order ir3943 €xx=U'(X)+(11QW'?(x), (6)

d?w(x) and is seen from Eq$4b) and (4c) to be independent of.
N—pz = —a(x). 3) Using Eq.(4c) and the definition of the flexural rigidity
[Eqg. (2b)], the parametery can be written in terms of the

A clear-cut criterion for determining whether a Strip is to be aspect ratiol_/h, and the expressio[rEq_ (6)] for the strain
treated as a membrane strip or a plate strip does not exisgkx;

and experimental data are needed to address this issue in

microfabricated structures. However, the ratio, C(L\A U (12)w'?
Y=h) \T121=3) ) @)
L2N )
4D (=), To the best of our knowledge, a clear-cut criteri@n

critical value fory) has not been cited in the published lit-

is a useful quantity to investigate in assessing which of therature to distinguish the pure bending behavior from the
two mechanisms, bending or stretching, if either, is thepure membrane-type behavior. Indeed, it is expected that the
dominant one in carrying the external lo&dLarger values  transition from one to the other is a gradual one. We adopt
of y imply stronger membrane behavior. We will return to the criterion set forth implicitly by Mansfield for distinguish-
this quantity,y in order to probe the role of the aspect ratio, jng those strips to which the membrane approximation does
L/h, and of the EIaStiCity in determining the relative impor- app|y, name]y’ for the flexural r|g|d|ty, and thus the bending
tance of bending and stretching. to be neglected safely; should be about 400 or larg&tThe

The deflection of the membrane strip decreases the sepggle of the aspect ratioL(’h) is clear. The role of the elas-
ration; this in turn increases the magnitude of the Casimirticity of the material is less obvious, however, especially
force. This therefore is a System with pOSitive feedback an%ince Young’s modu'us does not appear in m_ The con-
is potentially subject to instability. However, if the strip is tripution of the Poisson ratio does not vary much with dif-
resistant enough, after some deflection and before membramgrent materials, because this parameter is almost always less
contact with the surfacg the effect of the Casimir force on than about 0.5 for materials of interest in MEMS and it ap-
the membrane is countered by the development of restoringears to the second power in Ed). The significance of the
membrane forcebl, which arise due to the deflection. For a g|asticity of the material is reflected largely in the presence
given set of parameters, which includes membrane thicknesst the strain, e[ =u’(X) + 2w’%(x)], in the numerator of
and length, we expect the stable static equilibrium state, ithe right-hand side in Eq(7). The maximum elastic strain
existent, to correspond to a single particular value of thghat a material can support determines the upper limit on
deflection of the points midway along the length of the mem-¢_ . and thus the lower limit on the aspect rati¢h if the
brane strip ak=L/2. Unless otherwise specified, membranerestriction ony is to be met. For steel and aluminum alloys,
deflection shall be understood hereafter as the deflection &y example, the maximum elastic strain is about 0.004. This
X=L/2. puts a lower limit of about 1000 on the aspect ratio. For

Adopting the local-value approadBec. I) to the force  some polymers capable of supporting much larger elastic
strength, the differential equations and boundary conditiongtrains, the aspect ratio can be considerably smaller in order
describing the static equilibrium of the membrane Strip aror the membrane theory to app|y However, we consider the

for O=x=<L (Figs. 1 and B assumption of small slopesl{/dx) essential to the line of
— NW/(x) = pR[Wo—wW(x)] ™4, (43) reasoning which lead up to the proposed local-value ap-
proach to the Casimir force strength on a curved surface.
N’'=0, (4b)  Therefore, for deflections large enough to put in question the
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validity of the local-value approach, the analysis presented 0.25
here will not apply, even if the membrane criterigestric- unstable
tion on y) is met. Experimental data are needed to address
these issues. Our methodology will likely prove best suited
for application to those strips wherein either the aspect ratio
L/h, or the maximum elastic strain possible, or both, are o.15
quite large. Such strips also happen to be those most suscep- 4
tible to the problem of stiction.

0.2

stable
IV. THE ANALYSIS 005 equilibrium
Multiplying Eq. (48 by w’dx and integrating indefi- ”
nitely once, we arrive at the expression o2 04 06 o8 !
(NI2)W'2(x) = (7R/3)[Wo—W(x)] 3= g, (®) s °

whereg is a cor_1$t_ant. AK:_L/Z (the center of the Stf)ﬂhe . FIG. 4. For each value df;<0.245, a stable and an unstable equilibrium
slope of the strip is zerop is thus found to be the Casimir state exist; the stable equilibrium position of the center of the strip is always

energy ax=_L/2: less than 0.48,. ForK.>0.245, membrane strip collapses into the surface
S
b=~ (nRI3)[Wo(1-8.,2)]>, ©)
where we have defined the normalized deflection and its . S . 12
value atx=L/2, V(RL )/(6ng)=f0 do[(1-9) "=(1=6.) °17%
W(x)/Wo= 5(x), (10a (14)

Eliminating N from Egs.(13) and (14), we arrive at an
expression for the dimensionless system characteristic con-

Equation(8) can now be recast in dimensionless form, Stant, which we define as.:
- M ko 12( Jﬁmwl 5 3—(1-4 >-3d5)
Ehwl ' e/ - —(1=oLp
(NWE/2nR) 5 2(x)— 1- ()] °=—31-5,») . ~ EMG °° 0
(11) (

Now we solve Eq(4c) for u’(x), multiply through by
dx, and then integrate over the entire length of the strip.

S(LI2)=8, . (10b)

Sz déo )3
o J(1-6)3-(1-6p) 3%

Using the boundary conditions ar(x) [Eq. (58], we arrive (19
at The expression on the right-hand side is not integrable in
2 closed form. We perform a numerical integratiGnATH-
NL w§ [t
En= f 8'2(x)dx. (12)  EMATICA, Wolfram Research, Ingfor each and every value
0

of &, ,, between zero and unity, which corresponds to the

This quantity has the units of length. We note that the ratio o0 of the membrane strip in contact with the surfacehe

NL/Eh on the left-hand side is the strain in thedirection result is shown in Fig. 4, which is a plot & versus the

. _ normalized deflectiong, , (plotted along the bottom axis
[Eas.(40) and(6)] muitiplied by the full length of the mem This plot relates, in static equilibrium, the geometrical and

brane prior to deflection. Therefore, the expression on the hysical parameters of the system to the normalized deflec-
right-hand side is the difference between the length of th%on at the center of the membrane strip

merrCJl)SriineEbezg)reaig(ihagteszr ;?r(;:t?ﬂ%?lt%z cometrv about Figure 4 shows that, for a given value Kf,<0.245,
g =a. y y 9 y there are two corresponding values ®r,. The interpreta-

x=L/2, Eq. (12) may be transformeddd= 8dx) into an . : . ) .
integral over the dimensionless quantityor 0< 8< 8, ,: tion _of_thls can be found in an earllgr ;tudy of an anharmpnlc
Liz: Casimir oscillatofACO), a system similar to the one studied

N32L 3w, presently but simple®® In summary, the results of the ACO
Eh \ 2R study guide us to conclude that, in the present system, the
smaller value ofs, ;,, which we call 5]y, defines a stable
Sip static equilibrium state. This state is the state of minimum

— -3 -3
=1/, V(1=08) %= (1= 8p)*do. (13 potential energy for the membrane strip, subject to the Ca-

simir force and in the absence of any other external forces.

We next solve for§(x) from Eqg.(11), perform a sepa- Here, the Casimir force deflects the strip, which is restrained
ration of the variables, and integrate over half the length ofrom collapsing into the surfac& by the elastic restoring
the membranéi.e., 0<x<L/2, 0<§< | p): forces, represented by, which develop as a result of the
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