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The role of the casimir effect in the static deflection and stiction
of membrane strips in microelectromechanical systems „MEMS…

F. Michael Serry,a) Dirk Walliser,b) and G. Jordan Maclay
Department of Electrical Engineering and Computer Science, University of Illinois, Chicago, Illinois 60607

~Received 23 April 1998; accepted for publication 3 June 1998!

We present an analysis describing how the Casimir effect can deflect a thin microfabricated
rectangular membrane strip and possibly collapse it into a flat, parallel, fixed surface nearby. In the
presence of the attractive parallel-plate Casimir force between the fixed surface and the membrane
strip, the otherwise flat strip deflects into a curved shape, for which the derivation of an exact
expression of the Casimir force is nontrivial and has not been carried out to date. We propose and
adopt a local value approach for ascertaining the strength of the Casimir force between a flat surface
and a slightly curved rectangular surface, such as the strip considered here. Justifications for this
approach are discussed with reference to publications by other authors. The strength of the Casimir
force, strongly dependent on the separation between the surfaces, increases with the deflection of the
membrane, and can bring about the collapse of the strip into the fixed surface~stiction!. Widely used
in microelectromechanical systems both for its relative ease of fabrication and usefulness, the strip
is a structure often plagued by stiction during or after the microfabrication process—especially
surface micromachining. Our analysis makes no assumptions about the final or the intermediate
shapes of the deflecting strip. Thus, in contrast to the usual methods of treating this type of problem,
it disposes of the need for an ansatz or a series expansion of the solution to the differential equations.
All but the very last step in the derivation of the main result are analytical, revealing some of the
underlying physics. A dimensionless constant,Kc , is extracted which relates the deflection at the
center of the strip to physical and geometrical parameters of the system. These parameters can be
controlled in microfabrication. They are the separationw0 between the fixed surface and the strip in
the absence of deflection, the thicknessh, lengthL, and Young’s modulus of elasticity~of the strip!,
and a measure of the dielectric permittivities of the strip, the fixed surface, and the filler fluid
between them. It is shown that for some systems (Kc.0.245), with the Casimir force being the only
operative external force on the strip, a collapsed strip is inevitable. Numerical estimates can be made
to determine if a given strip will collapse into a nearby surface due to the Casimir force alone, thus
revealing the absolute minimum requirements on the geometrical dimensions for a stable
~stiction-free! system. For those systems which do exhibit a stiction-free stable equilibrium state, the
deflection at the middle of the strip is always found to be smaller than 0.48w0 . This analysis is
expected to be most accurately descriptive for strips with large aspect ratio (L/h) and small
modulus of elasticity which also happen to be those most susceptible to stiction. Guidelines and
examples are given to help estimate which structures meet these criteria for some technologically
important materials, including metal and polymer thin films. ©1998 American Institute of
Physics.@S0021-8979~98!07517-3#
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I. INTRODUCTION

By virtue of their very presence, material bodies alter
and around the space they occupy the spectrum of the
point vacuum electromagnetic field. This can give rise
Casimir forces between material bodies in proximity to ea
other. Casimir forces can be attractive or repulsive depe
ing on the geometry of the material bodies.1–3 In the first
published paper on this subject, Casimir derived an exp
sion for such a force as it exists between parallel, flat, se
infinite slabs of perfect conductors at zero temperature.4 Co-
variant calculations of the force for this same geometry w
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first performed by Brown and Maclay using the stress-ene
tensor, and included corrections due to finite temperatu5

Elizalde and Romero published a review article on the s
ject in 1990.6 More recently, Casimir forces have been t
subject of a fair number of theoretical studies~see, for ex-
ample, Refs. 7–12!. Experimental investigations have als
been carried out in the last few years which confirm some
the theory.13,14Also recently, the notion that useful exchang
of energy with the vacuum in a controlled fashion might
possible has received renewed attention, and Casimir fo
are considered important for experimental investigations
this area.15,16

From a technological viewpoint, one area in which C
simir forces already demand attention is that of microel
tromechanical systems~MEMS!. Casimir forces can and do
play a significant role in micro- and nanometer-size str

n

1 © 1998 American Institute of Physics
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tures for two reasons. First, these forces~per unit area!, typi-
cally varying with the third or fourth power of the separatio
between the material bodies, are strongest when this sep
tion is in the submicrometer regime. Second, many dev
are now fabricated small and therefore light enough, a
with moving parts in close enough proximity that Casim
forces can complicate fabrication and significantly affect
tuation and device performance.17,18 With continuing reduc-
tion in the size and separation of structures, Casimir for
will need to be accounted for increasingly in the design a
modeling of MEMS and nanoelectromechanical syste
~NEMS!. In the near future, the most likely Casimir force
play a consequential role in these systems is the para
plate Casimir force, which attracts two adjacent flat para
plates towards each other, and which will be referred to s
ply as the Casimir force hereafter. We will show that at t
present the Casimir force~equivalent in this geometry to th
attractive retarded van der Waals force! is in part responsible
for stiction in a large number of MEMS, wherein the stictio
is often encountered during and after the removal of sac
cial layers in surface micromachining of transducers. T
problem is technologically important, because it advers
affects the production yield on batch fabricated devices,
also plagues many devices in operation. A substan
amount of research and development is underway tow
the understanding of and finding solutions for stiction~see,
for example, Refs. 19–23!.

The Casimir forceFc ~per unit area! is proportional to
the inverse fourth power of the separation,d, between the
plates, viz.,

Fc5hR/d4, ~1a!

R[\cp2/240, ~1b!

h<1, ~1c!

whereh depends on the dielectric permittivities of the plat
and of the medium between them~h51 for perfectly con-
ducting plates with vacuum between them!.4,24,25 This pa-
rameter is generally larger than 0.5 if one of the Casim
surfaces is metal coated. The value ofh for a given system
can be found using Refs. 26 and 27.\ andc have their usual
meanings.

A 2-mm-thick, highly doped ~doping density
>1020 cm23) and thus highly conductive single-crystal si
con membrane is attracted towards a nearby parallel m
plate under a Casimir force approximately equal to
weight of the membrane when the separation is 0.4mm. At
0.25 mm separation, the force is roughly equivalent to th
which would be present if a 50 mV potential difference we
applied between the membrane and the metal plate. At
mm separation, the equivalent potential difference would
200 mV. The Casimir force per unit area is approximatel
atm strong at 10 nm separation between two metal plate

In this article, we consider the Casimir force in a class
microfabricated structures which are nearly, but less t
perfectly, parallel. Specifically, we are concerned with tw
objects, the first of which is rigid and flat, and the second
which is a rectangular membrane strip, flexible enough
elastically deflect towards the first under the Casimir fo
Downloaded 18 Oct 2007 to 18.74.1.224. Redistribution subject to AIP 
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~Fig. 1!. The rectangular membrane strip of uniform thic
nessh is supported on two opposite edges~fixed edges! a
distanceL apart, and is free along the other two edges. T
structure is an ubiquitous MEMS building block; in light o
its versatility and relative ease of fabrication~especially in
surface micromachining,! it is now made with a variety of
materials, ranging from single-crystal silicon, over polyme
to metals.28–34The main objective of this analysis is to rela
the static deflection at the center of the membrane strip
number of physical and geometric parameters which can
controlled in microfabrication. In reaching this objective, t
analysis also reveals some important features of the sys
under study.

Due to proximity to the rigid flat top surfaceS of the
bottom plate~Fig. 1!, the strip is subject to the attractiv
Casimir force, and deflects into a curved shape. In the
sence of deflection, the separation between the bottom
face of the strip and the surfaceS would bew0 . If the strip
has not collapsed into the surfaceS, the departure, due to th
deflection, from the parallel-plate configuration may be co
sidered small all along the length of the strip in a large cl
of real devices, where the typical aspect ratioL/w0 is 100 or
greater. The thickness,h, of the strip is also considered muc
smaller thanL; this will be elaborated on in Sec. III.

II. THE LOCAL VALUE APPROACH

In almost all of the attempts made to date at measur
the parallel-plate Casimir force, one or two slightly curv
surfaces have been used instead of two flat surfaces in o
to reduce the difficulty of maintaining the surfaces parall
Yet, in these attempts, the parallel-plate form@Eqs.~1!# have
been assumed for the force despite the departure, a
small, from the parallel configuration~see, for example, Ref
35!. The justification for this has been the following: that f
large enough radii of curvature and for small enough se
rations between the adjacent surfaces, that is, small eno
separations so that the force is significant, the parallel-p
geometry is adequately approximated and thus Eqs.~1! re-
main valid. In a recent exception, Lamoreaux used an al

FIG. 1. Cross section of a MEMS membrane strip~e.g., fabricated by sur-
face micromachining!: a rectangular membrane supported on two of
edges, atx50 andx5L. The drawing is not to scale; in reality, the strip
much longer than it is thick (L@h) and the aspect ratio is much smalle
(w0!L).
license or copyright, see http://jap.aip.org/jap/copyright.jsp
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native to Eq.~1a!, by accounting for theknown radius of
curvature of arigid hemispherical lens, which he used as o
of the Casimir plates in his experiment; the other plate, a
rigid, was flat.13 Theoretical approaches involving perturb
tion methods have been applied to explore the force in
ometries withknown, andfixeddepartures from the paralle
configuration. For example, Zayaev and Mostepanenko h
used a perturbation approach to calculate corrections to
~1a! for the case where one surface is rigid and flat, and
second surface is also rigid, but curved, yet nonspheric36

In contrast, the analysis of the static deflection of the me
brane strip which we embark on presently lacks the bene
of the rigidity of the strip, and of the knowledge of its form
That is to say, the final shape of theflexiblestrip in the state
of stable mechanical equilibrium is not known to us, a
neither are the intermediate shapes through which one ta
assumes the strip to have evolved in reaching the ener
cally favorable state of static deflection. We need an alter
tive approach to describe the static deflection of the me
brane strip under the Casimir force. In the absence of
exact expression for the Casimir force on a curved surf
with an unknown shape, a shape which evolves due indee
the action of the force itself, we propose an alternative
proach as described next along with the reasoning wh
leads up to it.

Deutsch and Candelas in 1979 derived an exact exp
sion for the~attractive! Casimir force between two perfectl
conducting, semi-infinite plates with flat surfaces at an an
to each other so as to define a wedge, such as in Fig.37

Brevik and Lygren arrived at the same results in 1996 us
a different approach.38 These results show the following: tha
for a wedge of anglea, at a small distance,r, from the cusp
of the wedge, the strength of the Casimir force per unit a
on either surface of the wedge is a function of the produ
ra, which for small values ofa approaches the local valu
of the separation between the surfaces~Fig. 2!. Furthermore,
these results show that the force per unit area varies
nearly as the inverse fourth power of the separation—sa
as in the parallel-plate geometry—and accepts extrem
small corrections to this form, (ra)24, for small values ofa,
with the correction reaching only 1% ata50.1 rad~5.7°!. In
our system, the curvature of the deflected membrane str
assumed negligible enough so that at all points along
length of the strip, the tangent to the strip makes an an
less than 0.1 rad withS. This assumption is especially we
justified where it matters the most: away from the suppor

FIG. 2. Two flat conductive semi-infinite plates defining a wedge of angla
and a cusp. For small values ofr anda, the strength of the Casimir pressu
varies nearly with the inverse fourth power of the local value of the se
ration, ra, between the plates, i.e.,F}(ra)24.
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edges, i.e., in the midsection of the strip where the deflec
and thus the force are the largest. Under these assump
and inspired by the results of Deutsch, Candelas, Brevik,
Lygren, we propose and adopt a local-value approach to
force strength. We propose that, during the deflection an
the final curved configuration of the membrane strip, t
value of the Casimir pressure at a point along the length
the strip is given by Eq.~1a!, where nowd is the local value
of the separation between the strip and the surface,S.

III. THE DIFFERENTIAL EQUATION OF THE PLATE
STRIP AND THE MEMBRANE APPROXIMATION

The membrane strip differential equation is a spec
case of a plate strip differential equation, which describes
deflectionw(x) of a thin plate strip of uniform thicknessh in
a static equilibrium condition under the loadq(x), which is
perpendicular to the undeformed plane of the plate~i.e., a
lateral load!. The plate strip differential equation is fourt
order inx:39

D
d4w~x!

dx4 1N
d2w~x!

dx2 52q~x!, ~2a!

whereD, the flexural rigidity of the plate strip, is defined a

D[
Eh3

12~12n2!
, ~2b!

with E andn denoting the Young modulus of elasticity an
the Poisson ratio, respectively, of the material of the strip.N,
to be discussed shortly, is a force per unit width of the st
We consider the plate strip subject to the fixed-fixed bou
ary conditions. That is to say, the supported edges are
free to approach each other as the strip deflects, and furt
more, the slope of the strip,dw/dx, is zero at these edges
This boundary condition is appropriate for the great major
of microfabricated plate strips.

Bending and stretching are assumed to be the
mechanisms by which the lateral load is carried in the st
The bending is represented by the fourth order term in
~2a!. The stretching is represented by the second order te
in which the so-called middle surface membrane forces,N,
are in-plane forces, assumed to exist in a plane halfw
through the thickness of the plate. This plane is considere
neutral plane, which means that the in-plane stresses de
oped as a result of the bendingmay be neglected on thi
plane. Instead, the main contribution toN comes from the
membrane-typestretchingof the strip in response to the la
eral load.39

If the stretching is negligible, then we have the case
pure bending of the plate strip, and the second order t
may be dropped from the differential equation@Eq. ~2a!#. If
the bending behavior is insignificant and can be neglec
then the external load may be assumed to be carried alm
entirely by the membrane forcesN. An example of this
would be the behavior of a strip with a large enough asp
ratio L/h as will be discussed later in Sec. III.40–42The strip
may then be well approximated as a flexible membrane s

-
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which carries the external load mainly by stretching out
the plane of the strip. The differential equation then redu
to the second order inx:39,43

N
d2w~x!

dx2 52q~x!. ~3!

A clear-cut criterion for determining whether a strip is to
treated as a membrane strip or a plate strip does not e
and experimental data are needed to address this issu
microfabricated structures. However, the ratio,

L2N

4D
~[g!,

is a useful quantity to investigate in assessing which of
two mechanisms, bending or stretching, if either, is
dominant one in carrying the external load.39,43Larger values
of g imply stronger membrane behavior. We will return
this quantity,g in order to probe the role of the aspect rat
L/h, and of the elasticity in determining the relative impo
tance of bending and stretching.

The deflection of the membrane strip decreases the s
ration; this in turn increases the magnitude of the Casi
force. This therefore is a system with positive feedback a
is potentially subject to instability. However, if the strip
resistant enough, after some deflection and before memb
contact with the surfaceS, the effect of the Casimir force on
the membrane is countered by the development of resto
membrane forcesN, which arise due to the deflection. For
given set of parameters, which includes membrane thickn
and length, we expect the stable static equilibrium state
existent, to correspond to a single particular value of
deflection of the points midway along the length of the me
brane strip atx5L/2. Unless otherwise specified, membra
deflection shall be understood hereafter as the deflectio
x5L/2.

Adopting the local-value approach~Sec. II! to the force
strength, the differential equations and boundary conditi
describing the static equilibrium of the membrane strip
for 0<x<L ~Figs. 1 and 3!:

2Nw9~x!5hR@w02w~x!#24, ~4a!

N850, ~4b!

FIG. 3. Membrane strip deflection~cross section!: an element of lengthdl,
originally a distancex away from the left edge, is displaced by an amou
u(x) in thex direction and by an amountw(x) in thez direction. This is not
to scale; the curvature is exaggerated.
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N5Eh@u8~x!1 1
2w82~x!#, ~4c!

u~0!5u~L !50, ~5a!

w~0!5w~L !50, ~5b!

whereu(x) and w(x) are thex and z components, respec
tively, of the displacement vector for a membrane elemen
length, dl, as shown in cross section in Fig. 3.44 A prime
denotes differentiation with respect tox. Equation~4a! is the
same as Eq.~3!, but with the loadq(x) replaced by the
Casimir pressure~load! at a distancex from the left edge of
the membrane strip. In cases where initial in-plane stres
exist,N receives an additive contribution from these stress
which we leave out in this study. In static equilibrium, for
given deflection at the center of the strip, the magnitude oN
is constant along the length of the membrane@Eq. ~4b!#. The
strain,exx , in thex direction is related to the displacemen
by44

exx5u8~x!1~1/2!w82~x!, ~6!

and is seen from Eqs.~4b! and ~4c! to be independent ofx.
Using Eq.~4c! and the definition of the flexural rigidity

@Eq. ~2b!#, the parameterg can be written in terms of the
aspect ratio,L/h, and the expression@Eq. ~6!# for the strain
exx :

g5S L

hD 2S u81~1/2!w82

12~12n2! D . ~7!

To the best of our knowledge, a clear-cut criterion~a
critical value forg! has not been cited in the published li
erature to distinguish the pure bending behavior from
pure membrane-type behavior. Indeed, it is expected tha
transition from one to the other is a gradual one. We ad
the criterion set forth implicitly by Mansfield for distinguish
ing those strips to which the membrane approximation d
apply, namely, for the flexural rigidity, and thus the bendi
to be neglected safely,g should be about 400 or larger.43 The
role of the aspect ratio (L/h) is clear. The role of the elas
ticity of the material is less obvious, however, especia
since Young’s modulus does not appear in Eq.~7!. The con-
tribution of the Poisson ratio does not vary much with d
ferent materials, because this parameter is almost always
than about 0.5 for materials of interest in MEMS and it a
pears to the second power in Eq.~7!. The significance of the
elasticity of the material is reflected largely in the presen
of the strain,exx@5u8(x)1 1

2w82(x)#, in the numerator of
the right-hand side in Eq.~7!. The maximum elastic strain
that a material can support determines the upper limit
exx , and thus the lower limit on the aspect ratioL/h if the
restriction ong is to be met. For steel and aluminum alloy
for example, the maximum elastic strain is about 0.004. T
puts a lower limit of about 1000 on the aspect ratio. F
some polymers capable of supporting much larger ela
strains, the aspect ratio can be considerably smaller in o
for the membrane theory to apply. However, we consider
assumption of small slopes (dw/dx) essential to the line of
reasoning which lead up to the proposed local-value
proach to the Casimir force strength on a curved surfa
Therefore, for deflections large enough to put in question
license or copyright, see http://jap.aip.org/jap/copyright.jsp
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validity of the local-value approach, the analysis presen
here will not apply, even if the membrane criterion~restric-
tion on g! is met. Experimental data are needed to addr
these issues. Our methodology will likely prove best sui
for application to those strips wherein either the aspect r
L/h, or the maximum elastic strain possible, or both, a
quite large. Such strips also happen to be those most sus
tible to the problem of stiction.

IV. THE ANALYSIS

Multiplying Eq. ~4a! by w8dx and integrating indefi-
nitely once, we arrive at the expression

~N/2!w82~x!2~hR/3!@w02w~x!#235f, ~8!

wheref is a constant. Atx5L/2 ~the center of the strip! the
slope of the strip is zero;f is thus found to be the Casim
energy atx5L/2:

f52~hR/3!@w0~12dL/2!#
23, ~9!

where we have defined the normalized deflection and
value atx5L/2,

w~x!/w0[d~x!, ~10a!

d~L/2![dL/2 . ~10b!

Equation~8! can now be recast in dimensionless for
viz.,

~Nw0
5/2hR!d82~x!2 1

3@12d~x!#2352 1
3~12dL/2!

23 .
~11!

Now we solve Eq.~4c! for u8(x), multiply through by
dx, and then integrate over the entire length of the st
Using the boundary conditions onu(x) @Eq. ~5a!#, we arrive
at

NL

Eh
5

w0
2

2 E
0

L

d82~x!dx. ~12!

This quantity has the units of length. We note that the ra
NL/Eh on the left-hand side is the strain in thex direction
@Eqs.~4c! and~6!# multiplied by the full length of the mem
brane prior to deflection. Therefore, the expression on
right-hand side is the difference between the length of
membrane before and after the deflection.

Using Eq.~8! and the symmetry of the geometry abo
x5L/2, Eq. ~12! may be transformed (dd5ddx) into an
integral over the dimensionless quantityd for 0<d<dL/2 :

N3/2L

Eh
A 3w0

2hR

5E
0

dL/2A~12d!232~12dL/2!
23dd. ~13!

We next solve ford(x) from Eq. ~11!, perform a sepa-
ration of the variables, and integrate over half the length
the membrane~i.e., 0<x<L/2, 0<d<dL/2):
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A~RL2!/~6Nw0
5!5E

0

dL/2
dd@~12d!232~12dL/2!

23#1/2.

~14!

Eliminating N from Eqs.~13! and ~14!, we arrive at an
expression for the dimensionless system characteristic
stant, which we define asKc :

RL4

Ehw0
7 ~[Kc!512S E

0

dL/2A~12d!232~12dL/2!
23dd D

3S E
0

dL/2 dd

A~12d!232~12dL/2!
23D 3

.

~15!

The expression on the right-hand side is not integrable
closed form. We perform a numerical integration~MATH-

EMATICA, Wolfram Research, Inc.! for each and every value
of dL/2 between zero and unity, which corresponds to
case of the membrane strip in contact with the surfaceS. The
result is shown in Fig. 4, which is a plot ofKc versus the
normalized deflection,dL/2 ~plotted along the bottom axis!.
This plot relates, in static equilibrium, the geometrical a
physical parameters of the system to the normalized defl
tion at the center of the membrane strip.

Figure 4 shows that, for a given value ofKc,0.245,
there are two corresponding values fordL/2 . The interpreta-
tion of this can be found in an earlier study of an anharmo
Casimir oscillator~ACO!, a system similar to the one studie
presently but simpler.45 In summary, the results of the ACO
study guide us to conclude that, in the present system,
smaller value ofdL/2 , which we calldL/2

min , defines a stable
static equilibrium state. This state is the state of minimu
potential energy for the membrane strip, subject to the
simir force and in the absence of any other external forc
Here, the Casimir force deflects the strip, which is restrain
from collapsing into the surfaceS by the elastic restoring
forces, represented byN, which develop as a result of th

FIG. 4. For each value ofKc,0.245, a stable and an unstable equilibriu
state exist; the stable equilibrium position of the center of the strip is alw
less than 0.48w0 . For Kc.0.245, membrane strip collapses into the surfa
S.
license or copyright, see http://jap.aip.org/jap/copyright.jsp
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deflection. The larger value,dL/2
max, corresponds to an unstab

static equilibrium state. For a given system, if the membr
strip is by the action of an external force~other than the
Casimir force! pushed passeddL/2

min nearer the fixed surfaceS,
it will collapse intoS for large enough additional deflection
There exists the theoretical possibility that this external fo
will deflect the strip in such a way that the strip assume
form which satisfies the differential Eqs.~4!, and the bound-
ary conditions~5!, and withdL/25dL/2

max. The strip can then
theoretically stay in this unstable equilibrium indefinitely
the external force were removed and no perturbations w
present. For details, please see Ref. 45.

Figure 4 also reveals two salient features of the sys
under study. First, with nothing other than the Casimir fo
loading the strip, the strip will collapse ifKc is larger than
the critical value 0.245. This provides a way to check if
system of given dimensions and material properties will h
a stable equilibrium position in the absence of other forc
such as an electrostatic actuation force, or a capillary fo
during and after the wet etching of a sacrificial layer. F
example, in a system where the strip is 500-mm-long, 1-mm-
thick, and made of a polymer withE[109 Pa, and where a
thin film of gold is deposited on both the surfaceS and the
polymer strip to act as electrodes~i.e., h>1!, the strip will
collapse due to the Casimir effect alone ifw0 is roughly 0.8
mm or smaller. The second important feature of this syst
as revealed in Fig. 4 is that, regardless of the dimensions
physical properties of the system, the stable equilibri
state, if existent~i.e., if Kc,0.245), always corresponds to
deflection of less than about 0.48w0 at the midpoint of the
strip atx5L/2.

As stated earlier, the degree of accuracy of the anal
presented here improves with increasing aspect ratio (L/h)
and with elasticity of the strip material. Polymers in gener
and especially highly elastic polymers with low glass tran
tion and high melting temperatures, are becoming more
tractive as materials for fabricating MEM
transducers.30,31,46This is in part because the fabrication a
curing temperatures of many polymers are low enough
facilitate integration of polymer-based transducers with f
ricated complementary metal–oxide–semiconduc
~CMOS! chips. Other reasons include the flexibility
changing functional groups on the polymers for sensing
plications and a wide range of elastic properties to cho
from. The membrane model presented here should pr
useful in some microfabricated devices which employ po
mers and other highly elastic films as transducers.
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