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Nonperturbative approach to Casimir interactions in periodic geometries
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Due to their collective nature Casimir forces can strongly depend on the geometrical shape of the interacting
objects. We study the effect sfrongperiodic shape deformations of two ideal metal plates on their quantum
interaction. A nonperturbative approach which is based on a path-integral quantization of the electromagnetic
field is presented in detail. Using this approach, we compute the force for the specific case of a flat plate and
a plate with a rectangular corrugation. We obtain complementary analytical and numerical results which allow
us to identify two different scaling regimes for the force as a function of the mean plate distance, corrugation
amplitude, and wavelength. Qualitative distinctions between transversal electric and magnetic modes are re-
vealed. Our results demonstrate the importance of a careful consideration of the nonadditivity of Casimir
forces, especially in strongly nonplanar geometries. Nonperturbative effects due to surface edges are found.
Strong deviations from the commonly used proximity force approximation emerge over a wide range of
corrugation wavelengths, even though the surface is composed only of flat segments. We compare our results
to that of a perturbative approach and a classical optics approximation.
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[. INTRODUCTION example is Boyer’s result that the Casimir energy of a con-
ducting sphere igositive [16]. This observation has trig-

Casimir interaction1-5] are a fundamental property of o043 search for repulsive configuration, 18. Such ef-
the vacuum. They are commonly related to quantum electrogaots can be even of direct practical relevance in

dynamics but fluctuation-induced interactions are of i”teresﬁanotechnology where “sticking” of mobile components in
in a wide variety of other fields like in condensed-matteryicromachines might be caused by Casimir forEg.
systems such as liquid crystals and superfl(i§jg], in cos- The advances in experimental techniques have stimulated
mological modelq8], in particle physic49,10, and in bio-  the measurement of the shape dependence of Casimir forces
logical systems such as proteins on membranes. The guiding specially designed geometri¢as opposed to inevitable
mechanism behind all these phenomena is that a quantum geometrical effects such as surface roughpelS®mhideen
thermal field is constrained by boundary conditions on surand co-workers were able to measure the Casimir force be-
faces so that the energy is modified, and effective interactween a sphere of large curvature radius and a corrugated
tions between the surfaces occur. For quantum fields the Calate [20,21]. Although the corrugation length was larger
simir interaction is given by thehangein the ground-state than the studied range of separations between the surfaces,
energy&):%En o, due to the presence of boundary condi- their results showed a clear deviation from predictions of the
tions. Even for noninteracting fields like the photon gaugeProximity force approximation. While it has been suggested
field it is difficult to obtain the Casimir interaction since the [22] that lateral surface displacements caused this discrep-
eigenfrequenciess, can depend strongly on the confining &NCY: t'here is no reason to believe in _the vaI|d|ty.of the
geometry. Thus it is not unexpected that exact analytical rePrOXimity approximation if the corrugation length is de-
sults for Casimir interactions between macroscopic objectgreased' . o -
are not known even if the geometry has high symmetry. Because of the wide range of realizations of Casimir

) - . . orces, improved experimental techniques, and the increasing
Most of the recent high-precision experiments aim at the

L . : . importance of nanostructures, it is interesting to develop ap-
measurement of the Casimir force in geometries which are . ' . Y
roaches for computing such interactions. In the limit of

closely related to the standard case of two parallel plates,. ; ¥ o )
[11-14. To the latter case applies Casimir's seminal predic-.g“ght surface deformations a path-integral quantization sub

tion [1] ject to boundary conditions allows for a perturbative calcu-
lation of the interactiorj23,24, showing strong corrections
Fiat w2 he to the proximity approximatiof25,2§. Another perturbative
N =" 240H* D approach, based on a multiple-scattering expansion, has been

applied to the limit of large surface separatidi2g]. Very
for the force between two ideal metallic and parallel planerecently, an alternative approximation scheme based on geo-
plates of areaA and distanceH at zero temperature. For metric optics has been proposed for geometries where the
technical reasons, usually a plate-sphere geometry is used @asimir interaction is mostly caused by short wavelengths
experiments. Even for this case only approximative method§28]. A characterization of Casimir interactions between
such as the proximity force or Derjaguin approximatj@s] spherical conductors in terms of classical optics properties of
can be applied and the exact result is not known. There existiie geometry was also obtained within a semiclassical treat-
geometries for which there is even little intuition as to ment[29]. However, to date no systematic method is known
whether the interaction is attractive or repulsive. A strikingfor estimating interactions of strongly deformed objects, in-
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cluding large curvature or even sharp edges. In this paper weopov gauge fixing procedure has to be applig8]. The
present a nonperturbative method to compute electrodynamideal metal boundary condition for the gauge fild(X) is
Casimir interactions between uniaxially and periodically de-given by the requirement that the tangential components of
formed surfaces. It is based on a path-integral approach fare electric field vanishes at the surfaces.

Casimir forces[30,31. The approach is not restricted t0  For plate deformations which are uniaxial, the transla-
small deformations or small surface curvature but it also altiona| invariant direction can serve as reference axis for de-

lows us to study strong deformations and edges. We develolpning TM and TE modes, similar to the treatment of wave

a numerical implementation of the approach which allowsguide geometrieg34]. Then every field configuration can be

for a precise computation of the interaction without any ap'decomposed into those two types of modes, and one can

proximations. As an example we consider a geometry COMesort to a scalar field path-integral quantizatj@h,2qg. The

Ii'g:'?ﬁis ;aegr?:eﬁpydﬁer%cg?a?glfﬁer ?;;?%?:igrgftg\’/esfg ';J%'es'calar fields are given by thg electric- and magnetlc—fleld
range of surface separations and corrugation lengths. We fifgPmponents along the translational symmetry axis,
that the edges of the corrugated surface cause strong devia- D(X) = E,(X)
tions from the proximity approximation, which agrees rea- 2
sonably with our results only if the corrugation length is

much larger than both the surface distance and the corruga- ®(X) =B,(X) for TE modes. (4)

tion amplitude. We show that the qualitative effect of edges

on the interaction can be understood in the limit of largeSince the plates are assumed to be ideally conducting, the
corrugation lengths in terms of classical ray optics. A briefboundary conditions for TM and TE modes are of Dirichlet
account of our method and its application to scalar fieldsand Neumann type, respectively; i.e.,

subject to Dirichlet boundary conditions appeared in Ref.

[32]. ®|S,=0 for TM modes, (5)

The rest of this work is organized as follows. In Sec. Il we
review briefly the path-integral approach and then introduce
the method for a nonperturbative computation of Casimir
interactions. We consider periodic uniaxially deformed sur- ith the surface normal derivative denoted By pointin
faces. The approach is then applied in Sec. Il to the exampl}gl v P 9
of a flat and a corrugated surface with sharp edges. Th to the vacuum between the plates. After a Wick rotation to

asymptotic limits of small and large corrugation lengths ardMmaginary timex,—iXo, both types of modes are described
treated analytically. For arbitrary corrugation lengths the in-2Y the Euclidean action

teraction is obtain by a numerical implementation of our ap-

proach. We give detailed numerical results for the total elec- S{d} = 1 J d*X (VD)2. 7)
tromagnetic Casimir force and the contributions from TM 2

and TE modes separately. In Sec. IV we compare our results _ .

to perturbation theory for slightly deformed smooth surfaces!n 4D Euclidean space, the surface positions of the plates are

We interpret our results for large corrugation length in termdhen  parametrized  byX,(r)=[r,hy(x) +Hd.] with r

for TM modes, (3

aﬁa¢|sa =0 for TE modes, (6)

of classical ray optics. Throughout the paper wecset and = (%0.%)). Following the procedure introduced in Refs.
h=1. [30,31, the boundary conditions are imposed by insertéhg
functions on the surface in the functional integral. The par-

Il. NONPERTURBATIVE PATH-INTEGRAL APPROACH tition function for TM and TE modes, respectively, then
We consider two perfectly conducting periodically de- '€@ds

formed (corrugatedl platesS, («=1,2) with a mean separa- 2

tion H. They are as§umed to bg infinitely extendeq over a ZD2361f D<I>H H 5(<D(Xa))e'SE{‘I’}, ®)

base plane which is parametrized by the coordinates a=1 X,

=(Xq,X%y). For simplicity we assume that the corrugation is

uniaxial along thex; direction. The shape of the plates is 2

then described by height functiohg(x;) which measure de- z = Z—lf Db 5(a~ DX ))e P 9

viations from the mean height so thﬁ;@l h,(x;)=0. The Ca- NT =0 Ellg (75,2 ) ' ©

simir energy of the two plate configuration can be obtained

from an imaginary time path integral representatj@,24  Wwith the boundary free partition functiof,. The functional
for the partition function of the electromagnetic field and theintegrals can be calculated by introducing auxiliary fields to
confining plates. In the absence of boundaries, the path intéepresent thes functions. Then, the Gaussian integration
gral extends over the electromagnetic gauge fiejavith the ~ over ® can be carried out, yielding the partition function in

four-dimensional4D) space-time action terms of an effective action for the auxiliary fields,
(A= -+ J d*X F, FA ) 2
A= w z=| Il Dy, et (10
a=1

and the fieldF ,,=d,A,—d,A, andX=(Xy,X;,X3). In order to
eliminate redundant gauge-field configurations the Fadeewith the effective action
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> P (DM (). (12)

r' ap

Selwd=3

r

In the following we will drop the subscript D or N for the

boundary conditions on all quantities, which apply to botht
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efficiently if the periodic symmetry of the surface is used.
Due to the translational invariance in timéx,)
and one spackx,) direction, it is convenient to introduce the
momentum vectorq, =(qg,0,) which is perpendicular
o the direction of modulation. Due to the periodicity

conditions in the same way. The total electrodynamic Caof the surface profile, the Fourier transfom'{/t(p;q)

simir energy is then given by the sum of TM and TE mode
contributions, =&y +E1g. After subtracting the divergent
and H-independent terms, the energies can be written a
Emm=In detMpMgL)/(2AL), and analogous t6re with D
replaced byN, where Mp, .. is the asymptotic expression of
Mp for H—o, A'is the surface area of the plates, dnds
the Euclidean length in time direction. The Casimir foFee
=-du€ per unit area is then given y=F\,+F1g, with

1 _
Fom=— mTr(MDlaHMD), (12a
Fre=-— mTr(MWHMN). (12b)

The right-hand side of these expressions is always finite, an
no regulation of divergences by subtraction of the vacuu
energy in the absence of boundaries is necessary. The Diri

Green’s functiong(r ,xg) =(r2+x3)~/(47?), and are respec-
tively given by

MEP(rr7) = 7,0) (X G(Xa(r) = Xg(r)),  (138)

MR E) = 9%0) mgX4) 3o ) 50) G Oal1) = XglT ),
(13b)

with the coefficients given byy,(x))=(1+[(d, h,) (x)]?)".
These coefficients arise from the integral measure on th

o
let and Neumann matrix kernels of the effective Gaussiala
action can be expressed in terms of the Euclidean scaIa[\

=f [or €@PTHOT M(r gy

S ~
M

") can be decomposed into the series

(P1.P.;05,0,) =(2m)38(p, +4,)

oo

X X, &py+ 0y + 2NN, Gy),

m=—

(15

whereN(q, ,q;) are 2x 2 matrices which depend only on

q.=|q,|. From Eq.(15) it is obvious that the matri¥\ has

its nonzero entries arranged iNX2 blocks along parallel
bands. Due to this structure, there exists a transformation,
consisting only of row and column permutations, which
makes the matrix block diagonal. To perform this transfor-

%ation, we cut the matriM into smaller matrice®,, which

ave nonzero entries only inX22 blocks along the diagonal,
ee Fig. 1. For the purpose of parametrization, we consider
riscrete momentg,;=(27/W)j, j=0, ... N, along the direc-

ion of surface modulation wittN=W/X\-1. The continuum
limit is obtained if the linear siz®V of the surfaces and are
taken to infinity in order to obtain the force per unit surface
areaA=W2. With this parametrization, the block-diagonal
matricesB,; of dimension 2N+1) X 2(N+1) can be read off

from Eg. (15), leading to

curved surfaces. However, since they are independent of the

mean plate distancd, they cancel in the matrix product of W

Eg. (12) and therefore can be ignored for the calculation of
forces. The kernels are symmetric withM(r;r’)
=MT(r";r), where the transpose refers &9 8. Using the

By(q,)
= diagBy(d,,0),By(q,,2m/W), ... ,By(q,,27N/W)},
e (16)
ith the 2Xx 2 block matrices defined gsee Fig. 1
Bii(d1,0) = Ny (q, Gy + 271/N). (17)

By inspection of Fig. 1 one easily realizes that a sequence

can now be written as
M) =G(r =1 hy (%)) = hg(x) + H(8,2 = 82)),
(143

MEP(rir') = (= ™A= &+ [ (x0) + hp(x)]d,, 3,
= h(xph(xp) 3% }

XG(r = 1" X3 = X3 xgzh, ) +H3,,

xé:hﬂ(xi)+H O

(14b)

for the Dirichlet and Neumann case, respectively. So far, we

permutations transforms the matrix{ to block-diagonal

form. Each of theN+1 bIocksK/tj is composed of exactly
one element from each matri%, and those elements form-

ing a block/\N/lj come from the same position in every matrix
By, as indicated by the color scheme in Fig. 1. Thus, each

block /T/tj is composed of entries which correspond to the
same discrete momentum =(27/W)j, and we obtain for

the elements oﬁ\~/lj the result

Miup..9,)= (2m)? 8(p, +d.)By(q,, 2mj/W).
(18

have not used the periodicity of the surface profile, and the

above results are valid for any uniaxial deformation. How-

The number of permutations needed for the matrix transfor-

ever, the computation of the force can be performed morenation is always even, and thus we get the determinant
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FIG. 1. (Color onling Transformation of the matrix( to block-diagonal form. The figure shows a finite part of the matrix, correspond-

ing to the blocksy, with k, I=-1,0,1,before and after the permutations of rows and columns. Before the transforriafidyox) M has
a band structure with diagonal blockg consisting of 2< 2 matricesN,, along the diagonalThe dependence on the lateral momentym
is not shown herg.The first step of the transformation is to permute the rows and columns which are formed by the first eimtigvery

block By, (indicated as grid These entries form after the permutations the first bl&tk of M (right box. The latter permutation process
is then repeated for the second and the third entry till(te 1)th entry of every blockBy,, leading to theN+1 blocks M;. The momenta
g, within each blockM; are constant for every column and they differ only by integer multiplesmof\2between columngof the same

block), see labels in the right box. The blocfstj differ in their momentum shiff 5, 5=2=/W, which is located in the unit cell0, 27/ \[
sincej=0,... N=W/\-1.

N

detM =[] det;. (19
j=0

9(q,,qy) = tr[B™q,,01)d4B(d,,a)], (22

By differentiating with respect to the mean surface distancéé"_ith tTe _Io(\j/yer-case syrgbol tr 'deggtli)ngNthet trace (;ver the
. . g v . iscrete indices summed over in . Next we perform
H and by using the relation In de¥(;=Tr In M;, we obtain the sum over all subsystems witk0, ... N=W/\-1. This
5 N B 5 can be easily done by going back to continuous mompnta
Ay(In detM) = >, Tr(Mfl&HMj). (20) If we take the limitW, N— o with W/(N+1)=\ fixed, the
j=0 sum in Eq.(20) can be written as the integral

This result reflects the fact that thifee) energy of the
system can be calculated as the sum of the individiuag)
energies ofdecoupledsubsystems, which are described by

the matricesM;. Each subsystem with fixgddescribes scat-
tering events at thdixed momentaq,;=(2w/W)j+(27/N\)I
which differ only by integer multiples of 2/X\.

Using Eq.(18) we can perform the trace over the continu-

ous lateral momenta and the discrete indices within a fixeq-he function has the followina symmetrv proper-
subsystem, 9(q,.qy) g sy Y prop

ties. A shift of the momenturg, by 27/ corresponds just to
LW o a renumbering of the matrix elemerg since the matrix is
Tr(Mj‘l M) = w f dq, > Bil%aﬁ(qLizﬂ'j/VV) of infinite dimension. Thus we have(q,,q;+27/\)

LW W 27T/)\
ap(In det M) = o) f quLZT fo dong(q.,ay).

(23

K, |=—o0 =g(q,,q,). If both surface profiles are described by even
@,B=12 functions, h,(=x;)=h,(x,), for the matricedN,, the relation
X 4B pal 0L, 27 /W) (21) Nm(a,,—01)=N_x(q, ,q;) holds. Using the later relation and

the definition of By, of Eq. (17) it is easy to check that
where we have explicitly indicated that the trace is per-g(dq,,—0g;)=9(q,,q;) by performing appropriate row and
formed with respect to all discrete indices, and we remindccolumn permutations for the matri2. The above symme-
thatL is the system size in time direction. It appears useful taries allow to write the Casimir force per unit area/A
define the function =—(1/2LWA)dy(In det M), as
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1 o N Xg A
FIA= - o dqg,q, day 9(q..q0). (29
0 0

This is the final result of the general approach for arbitrary H ! So
uniaxially corrugated surfaces. As we will show below, it can :
be used for an efficient numerical computation of the Ca- '
simir force. The input of such a numerical approach are the
matricesN,, from the decomposition in Eq15). Moreover, :
the result can be also used to obtain nonperturbative analyti-
cal results in the asymptotic limit of very small corrugation
lengths. 0 '
Before one can develop a numerical implementation of i
the above representation of the Casimir force, one of course
has to restrict the infinite-dimensional matrices. In the re- [ — *» —™
maining part of this section we will introduce a suitable cut-
off procedure for the matrix dimension. We will take two flat ~ FIG. 2. Geometry consisting of a rectangular corrugated plate
plates as a simple example to examine the convergence efid a flat plate. The surfaces are translationally invariant along the
the procedure if the cutoff is taken to large values. The cutofk, direction.

procedure consists in the restriction of the matit to _ . . _

blocks By, with k, I==M, ... ;M only. The dimension ot odically deformeq surfapgs. In this section we v_v|II use the
is then 22M +1)(N+1). Figure 1 displays the restricted ma- approach to obtain explicit resullts for the Casimir folrce be-
trix for M=1. The corresponding functiog is then defined tween a flat. plate and a plgtel with a rect_angular grating. The
by Eg. (22) with the restriction that the trace runs overl effect of th|_s C.IE?‘SS of perlqd|c ge_ometrlet_sorrugated sur-
=-M, ... M only. We will denote this function in the follow- faceg can significantly modify the interaction of the objects
ing by gy. This function is then used instead®fn Eq. (24) [35,36. It was proposed that sugh_ggometnes can be used to
to obtain a series of approximatiolg, to the force which rgvgal more features Of.the Casimir mterac_t[ﬁB,ZAﬂ. Fora
converges td= for M— . As an example consider two flat similar geometry consisting of a sinusoidally corrugated

. ~ . . plate and a sphere with a radigsH, Roy and Mohideen
plates at distancel. Then M is a diagonal matrix antlly  easured the force, and found clear deviations from the pre-
=0 for m# 0. Thus the matrixB is also diagonal with

dictions of the proximity force approximatidr20]. While it
By (d.,0y) = 8 No(q, 0y + 271/)). (25)  has been suggested that lateral shifts of the surfaces caused
the discrepancy, we demonstrate below that periodic surfaces
Using Eq.(22) with the trace taken fok, I=-M, ... ,M, one  allow for a much stronger sensitivity to geometry if the cor-

gets the function rugation length is reduced to smaller values. Specifically, we
M = 5 consider the geometry shown in Fig. 2 with a rectangular
-3 2Vq + (g + 2al/N)” o  Orating of amplitudea and wavelengti.. Choosingx; as the
om(d.,01) = IR . (26) L X : . .
12 @2V +(ag + 2aMZH _ 1 direction of modulation, this corresponds to the height profile
Integration oven, yields anMth-order approximatiof, to () = +a for |x| <NA4 28
the force, P —a for Ma< x| <2,
Es 2N
FM/A:—if quqLJ dayom(q,,ay) and continuation by periodicity;(x;) =h;(x;+n\) for any
8 Jo 0 integern. The upper plate is flat so thag(x;)=0.
1 (= 2m(M+1)/\ 29 The main purpose of our work is to obtain the Casimir
=-— dqlqif doySgn — (27) interaction in regimes where other methods such as proxim-
87 Jo —2aM/ -1

ity approximation, pairwise summation of two-body forces,
with q:V,,m_ For M—o one gets the known or perturbation theory fail or become unreliable. While the

(\-independentresultF/A=—(72/480H, and the finiteM proximity approximation assumes smooth profiles with small

corrections to this asymptotic result scale exponentially fasko.Cal cu'rvature alsq perturbation theory in the height proﬂlg
(~e4m™MH) 1o zero for largeM. Therefore, in the case of yields divergences in the presence of edges in the profile or if

" the corrugation length becomes very small, i2esta, H
periodically deformed plates one can expect accurate nu[-25 2§. In perturbation theory, finite corrections of orcder
merical results foF from moderate values for the cutd¥f, R X

and the convergence is faster for smaler are recovered only if edges are “smeared out” over a finite
length scale. Thus the correct procedure would be presum-
ably to sum all orders of perturbation theory for a “smeared
IIl. RECTANGULAR CORRUGATION out” profile, and then to take the limit of sharp edgdter
summing all contributions. Since the perturbative treatment
In the preceding section we developed a nonperturbativées rather cumbersome the latter program is not practicable,
approach for computing Casimir interactions between periand nonperturbative techniques are imperative.
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In order to apply the general result of E@4) for the

Casimir force, we have to decompose the matvixinto the
matricesN,,, see Eq(15). For a general profile, this has to be
done by a numerical Fourier transformation. A nice property = . ) )
of the rectangular profile of Eq28) is that it allows for an Which is inserted into the matrid of Eq. (14). Then the
analytical computation of the matricé¢,. The idea is to Fourier-transformed matrix{ can be calculated, leading af-
rewrite the profile of the corrugated plate as a discrete Fouter some algebra to the matricig(q, ,q;). Details of this

2a o ()M
hl(Xl) - == E 5 1 e(27-r|/>\)(2n 1)><1, (29)
T h=— 2N —

rier series,

calculation are given in Appendix A. The results are

( 1 e aH
—(1+e %9 ——coshaq)
AX(q,,0) O 4q 2q
+Omo| __qn for meven
0 0 e 1
2—cosi{aq) 2
ND,m(QL:Ql) = < (_ 1)m_71 e_qH (30)
0 ————-——sinh(aq)
mar q
ml for m odd
-1) 7 gm
& — Sinl-(a"qm) 0
k mar qm
for Dirichlet conditions and
( q
-—(1+e 29 g coshag)
AN(q,,qy) O 4 2
( m(qol W O) + Smo for m even
ge“‘“cosr(aq) - g
NNSCICHES mi
' -1 2
0 CD: e‘qH[q + —Wm%}sinh(aQ)
m »oa for m odd
m-1
-2 - 2mmaqy + 27/
CY2 g {am— S G sinh(aty,) 0
\ mar A Om
(31)

for Neumann conditions with

o

1 (- 1)™2 e 28thK-1 — 1

AR ==

m(d1,d1) ﬂzkzz_:w (2k=1)(m=-2k+1) TGy q
(32
and
1 o (_ 1)ml2 1- e—23712k—1
AN ==
(01,0 wzkzz_x (2k-1)(m-2k+1) T3,

2 2 2
X {Ch(ch*' %m>(%+ %(Zk‘ 1))

m 27
+ 2q2l<fh+ T)(ql + T(Zk_ l)) + fﬂ} ,

(33

respectively, with the definitiorﬁn:\/qi+(q1+2¢rn/ N2,
which impliesq=T,. With these results at hand, the Casimir
force can be calculated by the approach developed in the
preceding section. The method is as follows. First, one con-
structs the matrixB,, of Eq. (17), then one calculates the
inverse ofBy, to obtain the functiorg(q, ,q;) of Eq. (22),

and finally one has to perform the integration of E2g). In
general, this program can only be performed numerically.
However, in the limit\ — O it turns out that a closed form for
the functiong(q, ,q) is available, which allows to obtain the
Casimir force in this limit exactly.

A. The limit of small A

Let us consider the case where the corrugation length
sets the smallest length scale in the geometry of Fig. 2. If we
take the extreme limit oh — 0, a naive assumption is that
the field can no longer get into the narrow valleys of the
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corrugated plate. Even for small but finite this picture A\ —0 are valid for corrugations of arbitrary shape and also
should be a good, though approximate, description since fior rough surfaces if\ is identified with the characteristic
still affects the wavelengths of ordét which give the main  length scale for surface deformations.

contribution to the force. Thus one expects that the plates

feel a force which is_ equal to the force between tﬂqi B. The limit of large A

plates at theeduceddistanceH —a. However, the question o

remains to what extent this is a good approximation when !N the opposite limit of very larga the corrugated surface
becomes larger, say of order To check our naive expecta- 1S composed of large flat segments with a low density of

tion, we will apply the approach of the preceding section toedges. At sufficiently small surface separatidis<i the
the limit A—0. Fortunately, in this limit the matrices Main contribution to the force comes from wavelengths

N.(q,,qy) simplify considerably both for TM and TE Which are much smaller than the scalef the surface struc-
modes. The explicit form of these matrices is given in Ap_ture. Thus in the dommant range'of'mode dlffractlon. can be
pendix B. From this result, we can explicitly calculate theneglected, and the simple proximity force approximation
functionsgy(q, ,q,) which were introduced before E(®5). (Derjaguin approximatiorj15]) should be applicable. Such

As explained in Sec. II, the infinite-dimensional matey is an approximation assumes that the total force can be calcu-
truncated for the calculation at ordeM with k,I lated as the sum of local forces between opposieand

=-M,...,M so that the truncation is done symmetrically parallel small surface elements at their local distartide
around the center dk,1)=(0,0) which contains the leading —h(x;). No distinction is made between TM and TE modes.

matrix entries. From the exponential convergence behaviof S Procedure is rather simple for the rectangular corruga-

of the flat plate result given belofEq. (27)] one can expect tion considered here since the surface_ has no purvaiwe
that in the extreme limit— 0, the seriesgy(q, ,q,) con- cept for edges There are only two different distancés

: +a, H—a which contribute one-half each across the entire
verges so rapidly towardg(q, ,q) that already foM=1 the urface arv(\alaI leadin Ifol«Jr—wo to the proximity a roxima—I
exact asymptotic expression is obtained. Indeed, our explicﬁiOn for the férce 9 P y app
calculation ofgy(q,,q,) for low M confirms this expecta- '

tion. From the truncated matri®, of Eq. (17) and the ma- m 1 1 1
trices of Appendix B we get the simple result F./A=- 2802 (H-a)° + H+at | (37)
—2
- 2g(1 +e™9) for M=0 Below we will see that later result providesl@aver bound
om0, q) =] 1+e29-2e?Haa (34)  for the Casimir force from both TM and TE modes. In con-
glcothiq(H-a))-1] forM=1 trast to the limit of smalk the correction for smath/H is of

order (a/H)? here.
for both TM and TE modes. Thus from first ordéi=1) on

the functiongy(q, ,q;) remains invariantvith increasing di-
mensionM of the matrixBy,. Interestingly, the result fom
=1 has precisely the form, which one gets for tilad plates In this section we implement the nonperturbative ap-
at reduced distancéi-a. If one integrates the function proach of Sec. Il numerically for the rectangular corrugation
gw(g, ,q;) for M=1 one obtains from Eq24) the Casimir  of Fig. 2. One has to resort to a numerical analysis here since

C. Numerical analysis

force per surface area, the functiong(q, ,q;) cannot be obtained analytically from
the matrices of Eq¥:30) and (31) for arbitrary corrugation
Fo/A= - i 1 (35) lengths A\. The numerical procedure follows straightfor-
480(H - a)*’ wardly the computation of the Casimir force in Sec. Il. The

following implementation applies both to TM and TE modes.
At fixed orderM, the truncated matriB,, of Eq. (17) with k,
[=-M, ... M is calculated from the matricés, of Egs.(30)

for both TM and TE modes. Thus in the limit— 0 both
types of modes yield the same contribution to the total elec
trodynamic Cas'm'f forcé =2F,. The result of Eq(35).cor- nd(31). Then the matribBy, is inverted numerically to yield
responds to the naive reduced distance argument given at t

o . . . . e functiongy (g, ,q;) from Eq. (22) where the indexV
beglnnl_ng of this section. N_ote tha_t t_h|s result is r‘Om?ertur'denotes the truncation order. Note that the derivativ®pf
bative ina/H and is exact in the limih — 0. Perturbation

theory for smoothly deformed surfaces always yields correc\—Nith respect toH is obtained analytically and no potentially
neory y 5 ysy inaccurate numerical derivatives have to be computed. Fi-
tions to the force of ordea“ [25,26. However, for small

. nally, the integration in Eq(24) is carried out numerically
alH, the result of Eq(35) has the expansion without difficulty sincegy(q, ,q;) decays exponentially fast
a a\? for largeq,, g;. This provides a series of approximatidig
280 1+ 4ﬁ + 0((‘) ) : (36)  to the Casimir force which must converge to the exact value
of the force asM — 0. From our analysis of the flat plate
which indicates that perturbation theory is not applicable ifgeometry, see Eq27), we expect an exponentially fast con-
A <a. Below we will see that the forcg, provides arupper  vergenceF-F,,~e"™ with a coefficienty. However, the
boundfor the Casimir force from both TM and TE modes at decay coefficienty depends on the geometrical lengths, and
fixed H/a, i.e., for increasing\ the force always decreases it is expected to increase with decreasingH. This type of
compared td-;. We expect that the results of this section for convergence behavior was found to be consistent with our

Fo/A=-
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numerical data foF,. It allowed us to extrapolate the data 100 | ; ———s —————r

to obtain the Casimir forc&. The largestM for which we ! %Ziﬁ” ¢

calculatedry,, wasM=10 for small\/a=0.1 andM =97 for I Ma=5

large \/a=300. ol Ala =10 =]
The results of our numerical analysis are as follows. If we r %Z z ?80 e

express the total Casimir forde or the force contributions I AJa=300 —o—

Fmwm andFrg from TM and TE modes, respectively, in units
of the corresponding force between two flat plates the results
can be expressed in terms of the dimensionless raties
and\/a only. The results from the extrapolation of the data
for Fy are shown in Fig. 3 both for TM and TE modes and
different corrugation lengths. For both types of modes the
force Fyy, Fre is bounded at a fixed plate separatidiia I b
betweenF., andF, as given by Eqs(37) and (35), respec- -
tively. For small\/a the upper bound-, is approached, 0.01 | D
whereas for asymptotically large/a the force converges \*\x\"\
towards the lower bound.,,, which is given by the proximity
force approximation. Since the convergence towards the ,
lower boundF., becomes slower with increasirtd)/a there 0.001 1 10 100
are two distinct scaling regimes for the force at a fixed cor- @ H/a

rugation length\/a. At small H/a the relative change of the
force compared to the force between two flat plates,

—_
T
1

Frm/Frmga— 1
o

100 T

Fr/Fraa—1, T=TM or TE, decays aéH/a)"2 After a cross- Aa=01 o
over regime the relative change of the force decays at large 77:;“ S
H> X\ like (H/a)™%, following the behavior of the exact result \ x/z =10 —>— |
Fo for A — 0. The so far described qualitative behavior of the 10 ¢ AJa=30 —A— 1
force is common to both types of modes. However, there is & M“f 100 =
L ; A/a=300 —o—

clear distinction between TM and TE modes, especially at
large A/a, as can be seen from Fig. 3. The force from TE T 1k i
modes has much more pronounced deviation from the prox- =
imity approximation result.. as the TM modes. In particu- &
lar, at large corrugation lengtha/a=300 this can be seen i .

. S 5 01fp Ky 1
clearly from our numerical data. The same behavior is ob- & R
served for the deviations frorR, at small\/a. Thus, the B o TREX ;
force Fyg appears at intermediate values nfa more
strongly separated from the lower and upper bounds, cf. Fig 0.01
3(b). We will come back to this point below when we discuss
the scaling of the force with close to the bounds. Figure 4
shows the total Casimir force in the range of small separa-  ¢.001 .
tions H. 1 10 100

For particular geometries such as a cubic volume the Ca:(p) H/a

simir force has even a different sign for a scalar field with
Dirichlet boundary conditiongattractive forcg and an elec- FIG. 3. (Color onling Casimir force for TM modesa) and TE

trodynamic field(repulsive forcg[16,37. Since for uniaxial modes(b) as a function ofH/a for different corrugation lengths
plate deformations both types of fields differ in the presence./a. Displayed is the change of the force compared to the force
of a scalar field with Neumann boundary conditiofRe  between two flat plate&iry fiar=Fre fiar=~(7°/480H™, in units of
mode3 it is interesting to study more quantitatively the dif- Fru.flat 2ndFrg na, respectively. The two bold curves enclosing the
ference between the two wave types. Figure 5 shows thaumerical data are the analytical resiffisfor A — 0 (upper curve

ratio Fyy/Fre Of the forces from both types of modes at @"dF= for A —c (lower curve, see text.

different \/a. One observes that the ratio is peaked at gntermediater/a the ratio varies approximately between
characteristicH/a which depends on/a. For smallH/a (.95 and 1.15 in the studied rangeXfa. TM modes domi-

— 1 the ratio tends to 1 as one can expect from the proximityate at\/a=<10 and at smalH/a for all A/a. The contribu-
force approximation which does not differentiate betweentjon from TE waves is larger fox/a=10 andH/a=2. It is

TM and TE modes. In the opposite range of lak)a again instructive to compare this behavior to perturbative results of
both types of modes must contribute almost equally since thRefs.[25,2§ for the geometry consisting of smoothsinu-
geometry approaches that of two flat plates. For the entirgoidally corrugated and a flat plate. As will be explained in
range of studied corrugation lengths the ratio converges tenore detail in the following section, the perturbative result
one for largeH/a according to|Fry/Frg— 1|~ (H/a)™%, see for the later geometry yieldSyy/Frg>1 for all A\/a>1 and
Fig. 5b). However, this asymptotic behavior sets in only H/a>1, in contrast to our results for the rectangular corru-
beyond a crossover separatidnwhich increases with. At~ gation. This observation suggests that the corners of the rect-

062101-8



NONPERTURBATIVE APPROACH TO CASIMIR.

10 M T T T T

PHYSICAL REVIEW A 69, 062101(2004)

X Aa=01 o ] 1.15 M a=0.1
I\ AMa=1 —+— | AMa=1 —+—
\\ AMa=5 —o— 1 Ala=5 —5—
[\ Ala=10 —>— ] Aa=10 —>—
\ Aa=30 —E&— Aa=30 —&—
¥ Afa=100 —*— 1.1 Aja=100 —*—

AJa=300 —o— | AJa=300 —o—

F/Fﬂat_l
Y
//

P>

(g

0.1 b

0.95

H/a
H/a (@) /

FIG. 4. (Color onling Total Casimir force as sum of TM and TE
mode contributions in the short-distance regime. Shown is the rela-
tive change of the force compared to the total Casimir fdfgg
between two flat plates. The data enclosing bold curves have the 0.1
same meaning as in Fig. 3, but for the total force they are now given
by 2F, and F.. due to the same contribution of TM and TE modes
in these two limits.

0.01
angular corrugation in fact cause the slight amplification of

TE modes compared to TM waves rfa=10. One can
argue that imposing for TE modes a vanishing normal de-
rivative on the field at the concave corners inside the valleys*=
of the corrugation provides a stronger constraint on field
fluctuations as compared to Dirichlet conditions for TM
modes. If the width of the valleys is decreased withthe

two opposite corners can no longer be considered separatel
and the Dirichlet condition might provide a stronger restric- 0.0001 . .
tion. For very smalH/a the main contribution to the force 1 10 100
comes from rather short wavelengths which should be only) H/a

very weakly affected by the Neumann conditions at the con- FIG. 5. (Color online (a) Ratio of Casimir force from TM and

ca\I/:(? C(I)lrners. ider th i fthe f f ™ and TE modes as a function of the plate distamtéor different corru-
Inally, we consider the scaling ot the Torce irom an gation lengths\. (b) Logarithmic plot of the deviation of the ratio

TE modes close to lower and upper bourdsand Fo, re- {00 one at largeH.
spectively. Figures 6 and 7 show a logarithmic plot of force
form TM and TE modes at fixeHl=10a andH=100a, mea-
sured relative td-.. for large\/a and relative td-, for small

N a. At small N we found an interesting qualitative differ-
ence between TM and TE modes for the scaling towards th
exact result~y for A — 0,

m/Fre — 1]

T

0.001

Frm—-F. a Fge-F., a
M Te 2 10E T= 2 (39)

Frmsat N Frega A

s we will show in the following section, this linear decrease
can be understood in terms of geometric optics.
Fo—Fm _ 5 IV. COMPARISON WITH PERTURBATION THEORY

(38) AND GEOMETRIC OPTICS

Fo—Fre (5)1/2

a

Frm flat a FrE flat

The aim of this section is to compare the numerical results
For the change in the exponents we cannot present a satisfgf the preceding section to those which were obtained from
ing simple argument. In the opposite limit of largethe  perturbation theory in Refg§25,2¢ for a uniaxially and si-
proximity approximation resul,, is approached linearly for nusoidally corrugated surface. We will show that discrepan-
both types of modes, cies in the results from the two approaches can be qualita-
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0.1

0.01
01

0.001

H/a=10
0.01 | _
—— (Fo— Frm)/Frwm, nat

——— (Frm— Fo) / Fium, flat

H/a=100

—— (Fo— Frm)/Fm, at
——— (Prm— Fo) /Frm, flat

0.0001

L L L L 0.1 1 10 100 1000
0.1 1 10 100
@ Aa

(a) Aa

0.1

0.01 1

0.001 p
H/a=10 H/a=100
0.01 | \ o E
i (FO_FTE)/FTE,ﬂat r (0 TE)/ TE, flat
(Fre — F) [ FrE, flat
—— (Frg — Fx)/F1E, flat 0.0001 | \ |
| A A , L , R . 0.1 I I .1 . ' .10 * * :IOOI -1.000,
(b) A/a

FIG. 7. (Color onling Same plot as in Fig. 6 but for fixed
FIG. 6. (Color onling Scaling of the force from TMa) and TE  distanceH=100a.
(b) modes close to the upper bouRg (A — 0) and the lower bound

F. (\— =) as a function of\/a at fixed mean surface distante 2L L
=10a. Forces are measured in units &y pa and Frefan In 2,= —sf hi(xl) - —f J K(|x, —x|{|)
respectively. 240H X 4 X Jx;
_ "2
tively understood in terms of classical ray optics, a concept X[hy(xg) = hy(x) I (40)

which was introduced in Ref28] for the computation of ) )
Casimir interactions. In the perturbational path-integral apWhereK(|x;—x;|) denotes a response kernel which has con-
proach, the logarithm of the partition function is expanded intributions from both TM and TE modes and was obtained in

powers of the height profilh; as InZ=In Z|y+In 2|, Ref.[26]. The second term is only finite for a smooth profile
+In Z|,+---. The zero-order term I€|y=(72/720ALH3is  hy(x;) since the kernel has a singularity|x,~x;|3. Thus for

the result for flat planes. The first-order correction vanishesa rectangular corrugation witfi, [hy(xy) (% +x7) 12~ x|

In Z|,=0, sinceh, is on spatial average zero, and the secondfor |x;| <\/4 the perturbative result diverges due to the pres-
order contribution reads ence of sharp edges in the surface profile. In contrast, for a
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8
X34 craa forn<H
| F . ) 3\H
| Fat _532+4iz 20921‘)\H
H — S2 H 3 2O\ A=
(42

In both limits the results are valid only #<\. In the limit
of small\/a there is a divergence-a/\ in the perturbative
result, which reflects the above-mentioned divergence in Eq.
(40) for rectangular corrugations with vertical segments. This
singularity does not appear in our numerical results of the
preceding section; it is a characteristic feature of perturbation
theory. In the following comparison we consider only the
case\ > a. Equation(42) suggests for large plate separations
H>\ a decay of the excess force from the corrugation
~al/H and for smallH/\ a decay~(a/H)? The scaling
behavior is in agreement with our observations for the rect-
angular corrugation as demonstrated in Fig. 3. However, the
latter figure also shows that for smallefa=< 10 the scaling
regime with a decay-(a/H)? does not exist.
Next, we will compare the perturbative results of E4R)
with our numerical results for the deviation of the actual
Casimir force from the proximity force approximatioBA),
(F=Fpa)/Fgar, WhereFp, is the force obtained from the PA.
This approximation does no distinguish between the two
: types of modes and thus for the rectangular corrugation one
®) : has Fpa=2F., with F, given by Eq.(37). In general, for
' deformed surfaces the PA is ambigud@s8] since the pairs
FIG. 8. (Color onling Typical paths of the proximity force ap- of small parallel surface elements can be chosen to be paral-
proximation and the geometric optics approach for both sinusoidae| to either surface so that the local plate distance is mea-
(a) and rectangular corrugatiafi) with \>a. Paths with arrows  gyred either normal t8, or normal toS, as indicated by the
denote distances which are measured normal to one of the surfacggqws of Fig. 8. We emphasize that this ambiguity does not
as used for the proximity force appro_ximation. Paths without arrowsyise for the rectangular corrugation. For smooth surfaces
denote the shortest surface connecting paths of lefigththrough ity finite curvature such as a sinusoidal corrugation the PA
a pointx located in the gap between the plates. result depends on the reference plate. If one measures the
local distance perpendicular to the flat surface, as it is most
sinusoidal profile with h;(x;)=a cog27x;/\) one has common, one obtains for the Casimir energy per surface
S [ha(xg) —hy(xg +x7) P ~x? and the divergence of the ker- area,
nel is compensated. For this reason, we compare our numeri-
cal results for the rectangular corrugation to the perturbative 1
results for a sinusoidal profil5,26. This will allow us to Epa= ;\f dS Exar(H — ha(xp)), (43
study the influence of edges on the Casimir interaction. Per- %2

turbation theory yields for the total Casimir force of the sinu- ) ) )
soidal geometry of Fig. @) the result but if the local distances are chosen perpendicular to the

corrugated plate, one has

~ 2 1 o o
F= I:flat|:1 + G<E) (E) + O(as):| ) (41) EPA,corr: _J ds Eflat((H - hl(xl))\’l + [hi(Xl)]z),
N/\H A s,

(44)

with the function parameter fre@(u):(480/ﬂ2)LSG(u) where&(H)=—(72/720H=2 is the Casimir energy per sur-
~uG'(u)], where G(u)=Gy(u)+Gre(u) has contributions  ¢406 area for two flat surfaces. For a sinusoidal corrugation
from TM and TE modes; for the explicit form db(u) see  the integrals over the surfaces can be computed perturba-
Ref. [26]. For comparison with our numerical results the tjyely in a. This yields for large\ the difference between the
limits of small and largeH/\ are of particular interest. From  force F from perturbation theor§Eq. (42)] and the PA force,

an expansion o(u) one obtains the asymptotic expressionsbased on the flat and the corrugated plate, respectively,
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F-Fpa (4712 )(a>2 to evaluate, we consider the two cases where the position is
= ~\ 5 , close to one of the two surfaces and then assume a linear
interpolation between the two lengths f6ix) at arbitraryx
F_F 1072 a\2 in the gap between the plates.Mfis very close to the de-
PA~°°”:< - 20)<_) i (45) formed surfaceS, the shortest path is perpendicular to the
Ffiat 3 A flat surfaceS,. On the contrary, ik is located close to the flat

The essential result is that the perturbatively obtained forc§UrfaceS,, the shortest ray is perpendicular to the deformed
approaches the PA approximation like/\)? for large A surfaceS;. With the so obtained approximative leng#()

which has to be compared to thg\ decay seen in our W€ obtain from EQq(46) by expansion ira/H for the correc-

numerical results for the rectangular corrugation, cf. Figs. N to the flat surface based proximity approximation the

and 7. Thus the deviation from the PA is stronger for theScaling behavior

Fiat

rectangular corrugation than for the sinusoidal profile, pre- FE _F a\?
sumably due to sharp edges. Before we give a simple physi- ot = (—) . (47
cal argument for the variation of the decay exponent, let us Fhiat A

compare the amplitudes in E@S). If we chose the PAto be  Thys the optical approach nicely reproduces the correct scal-
based on the flat plate, the amplitude is negative, and thgyg of the corrections to the proximity approximation at large
force Fpp is nota lower bound to the force at a fixétl a, in \, in agreement with the perturbative result of E45).
d_isagreement with our observation for a r_ectangular corruga- |n order to examine the role of edges for deviations from
tion. The cor_rugated surface based PA in corjtrast_ylelds fhe proximity approximation, we apply the optical approach
positi_ve amplitude. We e>.<pect that also for a s!nusmdal COralso to the rectangular corrugation in Fighg For this ge-
rugation the actual force is monotonoushife at fixedH/a,  ometry the shortest paths are easily identified. Except for
assuming its minimal value for/a— . The change of sign  ositions located in an almost triangular shaped refiom-
!s just ano_ther.mamfestauon of the ambiguity in the Proxim-posed of the two shaded regions of Figb)g the paths are
ity approximation. The observation that the actual Casimiyst perpendicular to both surfaces. Thus the deviation from
force is located between the flat and the curved surface basgge proximity approximation is caused by paths through
PA was also made for a plane plate-sphere geometry recentlyyints which are located inside the shaded region. These
[38]. paths run either to corneé® of the surfacglarger regiofn or

In order to understand the dependence of the exponent fgg the vertical surface segme(gmaller regiop For suffi-
the scaling towards the PA limit on the shape of the corrugagiently large\ the regions from adjacent edges do not over-
tion, it is instructive to consider classical ray optics. Such aNap and can be treated independently. Furthermore, since the
approach was recently applied to the calculation of Casimitatio of the area of the larger shaded region formed by the
interactions[28]. Since this approach does not take diﬁrac'triangle ABC and the area of the smaller shaded region
tion into account it is limited to deformations where the radii o nded by the vertical surface segment scales like
of curvature are large compared to the smallest distance be;(H/a)2’ one has to consider only the triangdBC for the
tween the surfaces. But still, geometric optics allow for agy41uation of Eq(46) in the limit a/H<1. This gives
better description of Casimir forces than the conventional
proximity force approximation. By considering instead of all F...—F. aa
actual optical paths only theshortest paths, Jaffe and _Of:t— ~ \/;X (48)
Scardicchio proposed an “optimal” proximity approximation flat
for scalar field fluctuations subject to Dirichlet boundary This result is in agreement with the scaling behavior we have
conditions [28]. It can be also applied to electromagnetic observed in our nonperturbative approach for the rectangular
fields. Consider a positior in the vacuum space between profile; see Figs. 6 and 7, and E§9). We conclude that the
the plates, and denote yx) the length of the shortest op- analysis of theshortestoptical paths explains the observed
tical ray between the plates through that point. Figure &ependence of the Casimir force on the surface shape close
shows typical paths for the two types of corrugations wethe proximity force limith >H.
consider here. The Casimir energy in this optical approxima- Finally, we consider the rati&y,/Fyg of the force con-

tion can then be written as tributions from TM and TE modes. In perturbation theory
< H 3 one obtains from the separate contributions of the two types
~opt :f dlef dx3H— (46) of modes to the result of E¢41) the lowa expansion
Efat hoy  ALXX)
FTM _ 87Ta a
where the integral runs over the total space between the sur- = cl+—= (49
faces Fre 3 AH

First, we apply this approach to the sinusoidal profile, seavhich is valid if bothH>X\ andA>a. Thus for sinusoidal
Fig. 8@). For simplicity, we replace the sinusoidal profile by corrugations the force has always larger contributions from
a piecewise linear profile, cf. Fig(&, which is a good ap- TM modes at asymptotically largd, in contrast to our nu-
proximation in the limita< X considered here. Then we have merical results for rectangular corrugations, cf. Fig)5We
to determinef(x) for each position between the plates for argued in the preceding section that edges might cause the
this simpler profile. Since the exact value fix) is difficult ~ amplification of TE mode contributions. However, the con-

062101-12



NONPERTURBATIVE APPROACH TO CASIMIR. PHYSICAL REVIEW A 69, 062101(2004)

vergence of the ratio to one for largfeturns out be insensi- x5 A

tive to the shape of the corrugations. Our numerical results § !

agree perfectly over the full range of studigda with per- a S2
turbation theory in that the ratio decays ligéH to one, see H b1 SO 0 EREEEE B S I {
Fig. 5b). For smallA/a—0 the amplitude in no longer

given by Eq.(49) but saturates at a finite value which de- ;
creases withx since forh — 0 the reduced distance argument § '
of Sec. Il A implies equal contributions from both types of ;
modes.

X4

V. CONCLUSIONS AND FURTHER APPLICATIONS ,4_ A —» o1

In this paper we have developed a nonperturbative G, 9. Two rectangular corrugated plates with the same wave-
method to compute Casimir interactions in periodic geom-engthx but different amplitudes; anda, and a lateral shift ob.
etries. This approach is based on a path-integral quantizatiorhe plates are translationally invariant along thedirection.
of the electromagnetic field subject to ideal metal boundary

conditions. The so obtained effective action for the Cas'm,'rforce close to the limits of small and large corrugation length

Interaction is t_ransformed to a representation Wh'(‘fh_ 'Swhich provide an upper and lower bound, respectively, to the
adapted to periodic geometries and allows for an efﬂuen;orce In both cases we find power-law scaling witha

pumencal computation of the force between macroscopic Obr'endering corrections to proximity approximation in general
jects. In particular, the approach allows us to compute th

. i o eFarge. The exponents of these power laws depend on the type
Caf.'m'r forc(:je bdetwee'r__l surfapeg ;N;sh}ong pﬁrlodlihdefolr- ¢ of modes(transversal electric or magnetifor small corru-
ma 'Onf_ a?_ Ide ges.b o(rj uniaxia gqr;natlons el e?_c I:jo'ation length. At large corrugation length we find an inter-
magnetic Tield can be decomposed Into two scaiar fie sting dependence of the exponents on generic features of

W.h.'Ch are SUbJ?Ct to D|_r|ch|et and Neumann boun_dary CONthe corrugations. By comparison with perturbation theory for
ditions, respectively. This enables us to study qualitative dif-

ferences in the geometry dependence of the Casimir intera% sinusoidal corrugation we find that edges induce a slower
) , . : " ecay towards the prediction of the proximity approximation
tion for scalar fields with different boundary conditions. y P b y app

S as compared to smooth profiles. We could explain this ge-
Applications of the latter case range from thermal fluctua P P P g

. . . o ) neric behavior in terms of classical optical paths.

tions in superfluids to l.'qu'd cryst_alﬁ30,31] Wh'c.h can pe Our nonperturbative method can be applied to a number
described bfyba scgla.r f|elr?. Psth—mtegra}l qulanuzalt.lo(r; tm th%f other interesting situations. Since the path-integral tech-
présence of boundaries has been previously applied o p.eﬁ'lque can be used in arbitrary dimensions of the embedding
turbative calculations of Casimir interactions between Stat'%pace and the surfaces. our method can be also used in this

and dynamic deformed manifolds in the context of both ther-general case. In this paper we focused on uniaxial deforma-

r_nal [3.0’3]] and quantum fluctuat|on[§23f2q of the €ON*  +tions. Two directional corrugations can also be treated by our
fined field. However, all these computations were restricte

. ethod by applying it to the full electromagnetic gauge field
to slightly deformed surfaces and edges were excludedyiq ¢ spiitting into TM and TE modes. The latter case

While ‘a number of qualitative predictions of perturbation could help to understand the possibility of repulsive forces

theo_ry are cor_1f|rmed by our ap_proach even f_or strong dEzforéince plates with two directional corrugations form at short-
mations, we find nonperturbative effects which were unac

; . distance cavities, i.e., geometrical shapes similar to a sphere
cessible prew_oysly. ... for which a repulsive “force” is expectdd6]. At short plate
As.an explicit example, we calculated by the Casimir In'separations, material properties become in general important
teraction bet_vveen a flat and a rectangular corrugated ple}t'%r the interaction. These effects can be also described by a
with edges_, mcludlr_ng ';he case of large deformation amp“'path-integral approach with nonlocal boundary conditions
tudes. Arbitrary penodm_proﬂles can _be treated by our ap'[39], enabling the application of the methods developed here.
proac_h as vyell by Fou_ner transforming the _kernel of theFor two corrugated surfaces, the existence of a lateral Ca-
effective action numerically and then applying the same imir force has been predicted and computed by perturbative

technique we used here fof the rectqngular corrugation. FEChniques{ZB,ZQ. It would be interesting to study the effect
could confirm the perturbatively predicted existence of two f strongcorrugations and edges on the lateral Casimir effect
diffe_rent scgling regimes _for the deformation-induced part Ofgy our method. For the dynamic Casimir effect the surfaces
the interaction as a function of the mean pla_te separdion o dynamically deformed, which leads for oscillations in
However, we also find that for small corrugation lengths onlytime again to corrugated surfaces in Euclidean space, but
the largeH scaling regime exists. We demonstrate by explicitnOW along imaginary time. Our results thus imply differént
calculations that in the limit of very small corrugation behavior at small and large frequencies.

lengths the force can be obtained as the interaction of two
flat surfaces with a reduced distance. At very large corruga- ACKNOWLEDGMENT

tion length and smal we find that the force approaches the

result of the proximity force approximation. Our approach This work was supported by the Deutsche Forschungsge-
also allowed for a precise computation of the scaling of themeinschaft through Emmy Noether Grant No. EM70/2-2.
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APPENDIX A: FOURIER TRANSFORM OF THE RECTANGULAR CORRUGATION MODEL

We calculate the Fourier-transformed matrickes for Dirichlet and Neumann boundary conditions for a slightly more
general geometry with two corrugated plates. Both plates are assumed to have a rectangular corrugation profile with the same
wavelength\, but with different amplitudes; anda,. This geometry is depicted in Fig. 9, and the geometry of the system
discussed in Sec. lll is obtained by simply setting the amplitude of the second plate to zero. The reason to perform this
calculation here is that it is more transparent than the calculation which assumes one corrugated and one flat plate. In addition,
we allow the plates to have a lateral displacentent

We start with the matrix for Dirichlet boundary conditions, cf. Et4a). Performing first the Fourier transformation with
respect tax | =(Xg,X,), we have

Mgﬁ(p,q):fx J; J;( J; eiPL.xi+iqi.yieiP1X1+iQ1Y1g[xi—yl,xl—yl;ha(xl)—hﬁ(yl)+H(5a2—5B2)]
IR TS R’

e \fpi+p£2\ ha(x)=hglyD)+H(8,0- )]

=(2m)?28?(p, + QL)f f @l (Pr=ppXg+i(ar+pyys (A1)
X7 y1Y Py

[.2 12
2\p L +pg

To evaluate this last expression analytically, it is necessary to find a simplified expression for the dependence of the second
exponential term orx; andy;. At this point, the use of piecewise constant profiles for the material plates becomes crucial.
Sinceh,=+a,, for «=8 we can write

e P a0l = g8l costa,P) + a,? hu(x)h,(y)sinh(a,p)]. (A2)
Similarly, for a# B, we get
e PNaLa) gy HH0z-9)| = e Pl cosha,P) — (- 1)@, h,(x))sinha,B) [[coshagp) - (- 1)Paj'hy(yp)siniagn)].  (A3)

To keep the notation short, we introducpd Vpi+p12. Now, we insert the Fourier series expressiontgrgiven by
aw(_l 2mi/N)(20=1) (Xg+8 b
hy(xy) = = 3 e g (A4)

into the right-hand sidérhs) of Egs.(A2) and(A3). Then, inserting those into E¢AL), the remaining integrals oveq, Vs,
andp; can easily be performed. This yields the periodic formula

Mo(p,@)=(2m36P(p, +0d,) 2 &py+dy+ 2mmN)Np n(d,dy), (A5)
m=-—o0
with the matrices
i(1 +e7220) iHcosr(a g)cosha,q)
No (.00 = ( Ama(di,d) B 1(d.,dy) ) 4q 2q ' ; (46)
D,m4YL,Y1) = D D mo| _—qgH 1
Y"Bm21(01,00) YA 201,01 € cosha,q)cosha,q) L1 o)
2q 4q
for m even, and
0 Ch 129,91
Npm( ,q)=( " (A7)
o CEq,zl((h,Ch) 0
for m odd. The entries of the matrices are given as follows:
(-pm2 = 1 e 201 — ]
AD - A
mal0,00) = 5 ,Zm (M-2k+ D2k-1)  Tpoy (A8)
(- l)mlz * (2k-D(3p27602) @ lak-1H _ ) _
Ban,aﬁ(QL-%) =2 ) ¥ sinh(a,0z-1)Sinh(@g0x-1) » (A9)

e (M=2k+1)(2k=1) Tpy_q

and
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(_ )(m+1)/2 5 q
aﬁ(qJ_!ql) T (-1« ))““2 q

_NmH
sinh(a,q)coshasq) + (- 1)‘%/“%22q sinh(agGy)cosha,bn [, (A10)

m

where the phase factqr-ezmb”‘ was introduced. We note that the off-diagonal entBE,sa and CD m,as IMplicitly depend on

b throughy. Furthermoreg,,= \,ql+(q1+27rn/)\)2 was introduced, which implieg=T,. If a,=0, the matriced, ., have the

symmetry Np (4, ,—0d1) =Np -m(d, ,q1), and analogously for the Neumann matridég,, which we used in Sec. Il. We
remark that this symmetry is no longer valid for either type of boundary conditiomgxf) # hu(=x,).

The matrix /T/IN for the Neumann boundary condition is obtained similarly, as for the Dirichlet boundary condition.
Evaluating first the Fourier transform of the orthogonal components as done in exprgsbkjpthe result is

Mf(p,q) = (2m282(p, +q.) f f P )= 2 + [0 (x0) + h(yp) ] o, ~ )y 2}

f oy € V2 +p1 %Iyl
X e P11y — —
P

[2 ., 12
1 2Vp| +py

X3=h(x))+H&,»
y3=h3(y1)+H O

Py . ! (_ 1)a+ﬁ |p,
:(277)25(2)@l +ql)f j J, d(P-pYxy+i(ar+py)ys - \,pi+p12_ = 1 ,2( Xl_ayl)
x Yy VP + Py
12 R
| 2 12|
B (pzf—lp’z)mﬁxl&yl] X € VPLHPL Na(x)~N(y1)+H(242= 30 (A11)
1 1

We apply partial integration to obtain

~ (G Vi xR P
MF(p,a) = (2m)?6?(p, +q,) > Y Pl +pi- Tp’z(pl .= 2py) + 5 ,2)3,2(p1 p(as+py)
Py

N 1 (

X J J @l (P1PDX1# (A1 +P)Y1 VPG ) INg(x0)ha(y1) +H(Se2= )] (A12)

This expression will be treated analogous to the case of the matrix for the Dirichlet boundary condition, (&1 )Edt
differs from the Dirichlet kernel by the additiong] dependent term. This yields again E45), but now withNp ., substituted
by the Neumann matricesy ,, which are given by

q _
- —(1 +e %) —e HcosHa,q)cosha,q)
Ny (0.4 )_( ml(quql) mlz((h,%) ) 2 & a
N,m\M1,41 —
VB0 t) Y Am(d1,G) ge'chosf(aN)Cosf(azQ) - —(1 +e 2220)
(A13)
for m even, and
0 Chh 129.,91)
Ni.m(9..9 >=( " (A14)
N Cm,zl(chv%) 0
for m odd. The entries are now given by
(-pmz = 1 1 — g 28402k-1
AN = Al
m,a(qL!ql) 772 k:E_w (m_ oK + 1)(2'(— 1) agk_l (f)mk(qL!ql)v ( 5)
(-pm2 ” Y2 D002 g la-aH _ _ -
B0, 01) = 2 7 E M-k DD B, sinh(@,Gz-1)sinh(@gox-1) dm A, da), (A16)

and
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-1 (m+1)/2 2 5
Oy, ) = D — {(— 1>W“5aze-QH(q : ﬂ%)sinuaamcosr(aﬁq) + (= 1)y et
' mar N oq
2 + 2mm/\
« (Nm _ 2mmaq, - ™ —)sindaﬁangcosﬁaa'dm)} , (A17)
A Om
using the function
2mm 2w 2 mm 2w
émd.,01) = ql(qﬁ T)(ql+ T(Zk_ 1)) + Zqi(ql + T)(qw T(Zk_ 1)) +q1. (A18)

As in the case of the Dirichlet matrices, the off-diagonal elements depebdvianthe phase factop=e?"®_ The matrices
of the previous discussion of the rectangular corrugation model are now simply recovered by performing the-titiand
by defininga=a,.

APPENDIX B: THE LIMIT OF SMALL X FOR THE MATRICES N,

In this section, the limih — 0 of the matricedN,(q, ,q;) for the rectangular corrugation model of Sec. Il will be performed
(cf. Appendix A fora=a;, a,=0, and\ — 0). These matrices depend on the shift of the argurgentlative to 2rn/\, which
requires a separate treatment of various cases. Considering this, for the Dirichlet case we find the simplified expressions

f ~2aq ~qH
e“al+] e
——coshag)
4q 2q
_ forn=0
qH 1
2—qcosi(aq) 2_q
1 e%a-1
Np,o(dy,01 + 277'”/)\)}\;0< P q ‘ (B1)
: ' for n odd
N
47'r|n|
0 €
N for n even.
\ € 47|n|

We have introduced a small quantitgywhich is needed in order to have a nonsingular ma&jxHowever, at the end we can
safely takee—0 in the final expression for the Casimir force. As—0, this quantity vanishes as~\ exd-2mn(H

—a)/\]. The other matrices fom+ 0 are given by

([ oy e
o Y 2€e" .
mMm q sinh(aq) forn=0
0 0
A—0 0 0
No,m(d., Gy + 2/) = § - (B2)
(-1) 7z e forn=-m
——sinhag) O
mm  q
00
for n ¢ {-m,0
\(0 0) i )

for m odd, and

( (_ 1)m/2 e—2aq_ 1
0 ~#nm+n) g for n odd
Np (0.1, Gy + 271/N) = S 0 0 (B3)
[0 o
for n even
L 00

for evenm= 0. Analogously, for the Neumann matrices, we find
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(
- g(e‘z""% 1) ge dHeosHaqg)
forn=0
ge‘chosr(aq)
4(—1)nlq1( —2aq _ 1)
A—0 )\
Nn.o(qy,0y + 27m/N) = < aln for n odd (B4)
€ _ A
)\
1 2~
‘i@*‘w
m for n even
7T
¢ "T
\
and
20- 1)
0 8722 ql @GH
N sinh(ag) forn=0
0
A—0 0 0
Nn,m(Q,0q + 270/N) = < g e (B5)
_AYz )1\) 2 Jean sinhag) 0
00
f -m,0
L(O 0) or n ¢ {—~m,0}
for m odd, and
p
4(—1)le ( —2aq _ 1)
A? for n odd
0 0
N 2n(n m) S 0
Num(GL, Gy + 271/N) = 4 a for n evenn ¢ {- m,0} (B6)
0 0
ql~
+—-C,n) O
m (1 for n e {~m,0}
\ 0 0

for evenm=+ 0. Here, the asymptotic behavior effor A — 0 is e~\"lexd—-2mn(H+a)/\]. The constant is given b@im(n)
=(- 1)”“/22,__30[(2I—1)(2I—1—m)|2|—1+n|]‘1, and the prime at the summation sign indicates tiatl—-n)/2 if n is odd.
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