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The paper discusses the effect of quantum chaos on photon-echo signals of two-electronic-state molecular
systems. The temporal profile of photon-echo signals is shown to reveal key information about nuclear dynamics
on the excited electronic state surface. Specifically, the suppression of echo signals at a particular value of
the delay time τ1 between the first and second excitation pulses is demonstrated as a signature of quantum
level statistics that corresponds to the classically chaotic nuclear motion in the excited electronic state surface.

I. Introduction

A great deal of theoretical work has been devoted to
studying the signatures of chaos in quantum systems.1-8 It
has been shown that systems with regular dynamics have a
Poisson distribution of energy level spacings, while systems
with chaotic dynamics have level statistics similar to that of
the Gaussian orthogonal ensemble (GOE) of random matrices.
Obtaining level statistics from an experimental spectrum has
practical difficulties;9-11 thus, it is interesting to find effects
of different level statistics on time domain signals, that is,
quantum signatures of chaos in the time domain. Time
domain experiments provide an opportunity to find the
signatures of chaos without the necessity of resolving level
statistics. In the present paper, we propose a photon-echo
experiment which reveals an information on level statistics
from a time domain echo signal.

Although the literature on the universal level statistics in
strongly chaotic systems is controversial, the basic property of
quantum chaos is the existence of energy level repulsion. One
can think of level repulsion as being the result of the interaction
between the “good quantum numbers” when the system changes
its dynamics from regular to chaotic. For the Sinai billiard,
which is a strongly ergodic classical system, it has been shown
that its spectral fluctuations are similar to that of a random matrix
of the Gaussian orthogonal ensemble.12 It is assumed that the
same result remains valid for all chaotic systems. For the
convenience of analytical derivations, we assume GOE statistics
of eigenstates with classically chaotic dynamics in the present
paper. Yet, in section IV, we show that any form of spectral
correlation can be used to obtain the information about spectral
fluctuations from the time domain photon-echo signal.

The dynamics (either regular or chaotic) that underlies
particular energy level statistics is of interest to chemical
physicists. In the present paper, we consider a model of a
polyatomic molecule with two electronic states. Nuclear energy
levels of the excited electronic state obey either Poisson or GOE
nearest-neighbor statistics, corresponding to regular or chaotic
dynamics, respectively. Nuclear dynamics of multidimensional
motion on the ground electronic potential energy surface is

assumed to be quasi-periodic with Poisson statistics of nuclear
levels. Poisson statistics of vibrational energy levels in the
ground electronic state was observed in a lower energy range,
for instance, for the molecule of N2O.13 In general, two
independent anharmonic spectra can be sufficient to form a
Poisson statistics.

The basic idea in searching for a time- domain signature of
level statistics lies in averaging over the ensemble of time-
dependent superposition states. Consider a quantum state |ψ〉 ,
which is a superposition of two eigenstates |n1〉 and |n2〉 that
correspond to eigenvalues En1 and En2, respectively; then, after
coherent excitation of |ψ〉 , it will dephase due to the factor
exp{i(En1 - En2)t/p}. The average over an ensemble of states
|ψ(t)〉 in some cases is equivalent to the average over level
spacings En1 - En2, resulting in different time domain signals
(because of the connection of time and level spacings in
exp{i(En1 - En2)t/p}) for different level spacing statistics.
Pechukas was the first to propose the idea that the average
survival probability P(t) ) |〈ψ(0)|ψ(t)〉 |2 behaves differently for
systems with chaotic and regular dynamics.14 This idea was
further developed by Wilkie and Brumer15,16 to show that the
time-resolved fluorescence depends on the average survival
probability and therefore carries signatures of quantum chaos.
Yet, information from a fluorescence experiment is hidden
behind a fluorescence decay due to radiative damping. In the
present paper, we propose another type of optical experiment,
a nonlinear photon-echo experiment, and show that it can avoid
the effects of dephasing and reveal the necessary information
about level statistics. A photon-echo technique is well-known
for its capability to remove the effects of inhomogeneous line
broadening. Homogeneous line broadening effects cannot be
removed in a photon-echo experiment, resulting in a signal decay
that hides the necessary information contained in the signal’s
temporal profile, similarly to the fluorescence experiment.
However, a nonlinear photon-echo experiment is an ultrafast
experiment and allows one to resolve much smaller time scales
than the fluorescence experiment discussed in ref 15. In this
paper, we show that level statistics from a photon-echo
experiment yields a universal time scale 4τ, where τ is a duration
of the laser pulse. Given with the average signal decay rate Γj
due to homogeneous line broadening mechanisms, one can
always pick a laser pulse that will satisfy τ , 1/Γj and thus

† Part of the “Karl Freed Festschrift”.
* To whom correspondence should be addressed.

J. Phys. Chem. B 2008, 112, 15999–16007 15999

10.1021/jp804604h CCC: $40.75  2008 American Chemical Society
Published on Web 11/13/2008



obtain clean information about the signal at time 4τ, which is
not possible in the fluorescence experiment.

Consideration of a nonlinear experiment to extract information
about chaos is also interesting in the context of recent studies
of the effect of chaos in classical response theory. It was
suggested by Mukamel and co-workers17 that classical nonlinear
response functions are good indicators of chaotic dynamics since
stability matrices diverge linearly in time18-22 for systems with
quasi-periodic dynamics and exponentially for systems with
chaotic dynamics. Chernyak and co-workers have recently
shown23,24 that classical nonlinear response functions exhibit
frequency domain signatures of chaotic motions.

The present paper is organized as follows. In section II, we
describe the nonlinear experiment and analytically derive the
expression for the third-order polarization. In section III, we
consider the differences in a photon-echo signal for systems
with regular and irregular dynamics. In section IV, we discuss
the effects of impurities of the spectral level statistics on the
photon-echo signal. In section V, we discuss the suppression
of the photon-echo signal at time τ1 ) 4τ for chaotic systems.

II. Theory Section

We consider a system with two electronic states, ground |g〉
and excited |e〉. The adiabatic Hamiltonian of the system is given
by

where Hg is the nuclear Hamiltonian on the ground electronic
potential surface, He is the nuclear Hamiltonian on the excited
electronic potential surface, and ωeg is the electronic gap
between the minima of both potentials (Figure 1). The nuclear
dynamics of interest (either regular or chaotic) corresponds to
Hamiltonian He, and thus, the statistics of nuclear energy levels
in the excited electronic state is assumed to be either random
(Poisson ensemble) or correlated (Gaussian orthogonal en-
semble). Physically, only particular areas of the energy level
spectrum of He obey particular level statistics; at low energies,
nuclear dynamics is mostly quasiperiodic, and thus, the corre-
sponding level statistics should be that of the Poisson ensemble,
while at high energies, it can be chaotic with the corresponding
statistics of the GOE. By changing the carrier frequency of the
excitation pulse, we can select the energy region of interest.

The most common technique in nonlinear spectroscopy is a
three-pulse photon-echo experiment. In this experiment, a system

is irradiated with three subsequent pulses with delay periods of
τ1 and τ2 between them. The measurement is done at time t
after the third pulse (Figure 2). The electric field acting on a
system is

where ωj and kj are frequencies and wave vectors of the incident
waves and Ej(t) denotes the temporal envelope. We assume that
all three pulses have the same frequencies ω1 ) ω2 ) ω3 ) ω0

and temporal envelopes E(t) ) E0 exp(-t2/2τ2), although they
have different wavevectors kj. The photon-echo signal is
measured in the direction ks ) k3 + k2 - k1.25 The corre-
sponding nonlinear polarization is given by25

where the two response terms in the photon-echo signal are

Here, µ̂ is an electronic dipole moment operator, Fg )
∑t)1

N an|gn〉〈 gn| is a ground-state nuclear density operator, with
an as the population of the nth vibrational level |gn〉 of the ground
electronic state and N as the total number of initially populated
ground vibrational states. The distribution of populations is
Boltzmann, that is, an ) exp(-�En), where � ) 1/kT.

Assuming that pulses do not overlap, that is, t, τ2, τ1 > τ,
(which is actually the necessary condition for deriving eq 3),
we can set the lower limit for the integrals in eq 3 to -∞. Using

H ) |g〉Hg〈g|+ |e〉(He + ωeg)〈e| (1)

Figure 1. The molecular level scheme for a two-level system.

E(r, t) ) E1(t + τ2 + τ1)exp(ik1r - iω1t) +
E2(t + τ2)exp(ik2r - iω2t) + E3(t)exp(ik3r - iω3t) (2)

P(3)(ks ) k3 + k2 - k1, t)

) ( i
p)3 ∫0

∞
dt3 ∫0

∞
dt2 ∫0

∞
dt1[R2(t3, t2, t1) +

R3(t3, t2, t1)] × E3(t - t3)E2(t + τ2 - t3 - t2)E1
*(t + τ1 +

τ2 - t3 - t2 - t1) × exp[i(ω0 - ωeg)(t3 - t1)] (3)

R2(t3, t2, t1) ) 〈µ̂ exp[ i
p

He(t1 + t2)]µ̂ exp[ i
p

Hgt3]µ̂ ×

exp[- i
p

He(t2 + t3)]µ̂ exp[- i
p

Hgt1]Fg〉 (4)

R3(t3, t2, t1) ) 〈µ̂ exp[ i
p

Het1]µ̂ exp[ i
p

Hg(t2 + t3)]µ̂ ×

exp[- i
p

Het3]µ̂ exp[- i
p

Hg(t1 + t2)]Fg〉 (5)

Figure 2. Three-pulse photon-echo experiment depicted in (a) space
and (b) time.25
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a completeness relation ∑ |n〉〈 n| ) 1 in eqs 4 and 5 repeatedly,
we obtain

By plugging eqs 6 and 7 into eq 3 and performing integrations,
we get

where we denote

Here, En
g and |gn〉 are the nth eigenvalue and the nth eigenstate

of the Hamiltonian Ĥg, respectively; EV
e and |eV〉 are the Vth

eigenvalue and the Vth eigenstate of Ĥe.
Matrix elements 〈ei|µ̂|gj〉 can be positive or negative depending

on i and j. For systems with a chaotic classical limit, the
distribution of matrix elements is shown to be Gaussian and
centered at around zero.26-28 We assume that near-symmetrical
distribution of matrix elements around zero also holds for
systems with regular dynamics; we illustrate this, in particular,
in the Appendix on the example of a two-dimensional square-
well potential. The result of summation (eq 8) is therefore
determined by terms that contain squares of coefficients 〈ei|µ̂|gj〉,
that is, by terms with {k ) n, V * u}, {V ) u, k * n}, and {k
) n, V ) u}. Let us consider these three cases separately,
denoting contributions from each of them as Pa

(3)(t), Pb
(3)(t), and

Pc
(3)(t), respectively. The contribution from summation {k ) n, V

* u} is

where ∑′ indicates the exclusion of terms with u ) V.

In the Condon approximation, matrix elements 〈gn|µ̂|eu〉 can
be represented as a product of an electronic dipole matrix
element µ0 ≡ 〈g|µ̂|e〉 , which is a constant, and a multidimen-
sional Franck-Condon factor Snu ≡ 〈g, νn|e, νu〉 , which is an
overlap between multidimensional nuclear wave functions. We
now consider the question whether a multidimensional Franck-
Condon factor Snu can be considered as an independent random
variable in summation over n and V, that is, independent of the
difference of the corresponding eigenvalues εn - εu. In the case
of chaotic motion, that was shown to be true;28 for any given
eigenstate |g, νn〉 , the Franck-Condon factor 〈g, νn|e, νu〉 is a
Gaussian random variable, independent of eigenvalue. The
reason is that an eigenstate of a classically chaotic system can
be represented as a superposition of plane waves with random
phase,28 which is intrinsically independent of the eigenvalue,
thus resulting in the random overlap integrals, that is, Snu,
independent of eigenvalues. In the case of regular motion, the
independence of SnV and εn - εV is not obvious. In the Appendix,
we consider an example of the simplest multidimensional regular
system, a two-dimensional infinite square well, which allows
analytical treatment. There, we show that the model of a square-
well potential allows one to consider Franck-Condon factors
as independent random variables. We therefore can assume
similar independence of the Franck-Condon factors for the
generic regular system. The independence of the Franck-Condon
factors means that the summation (eq 10), which is an average
∑M... ) M〈 ...〉 , will result in the product of averages 〈f(Sij)g(εi

- εj)〉 ) 〈f(Sij)〉〈 g(εi - εj)〉

where 〈Snu
2 SnV

2 〉′ is the average of products of squared Franck-
Condon factors for the vertical transitions from the N ground
vibrational states, u * V.

The last summation over n in the above equation is the
averaging of the expression under the summation sign over the
different values of εn, ∑n)1

N ... ) N〈 ...〉 . However, since εn is a
random spectrum, its distribution density is known; it is a
uniform distribution with the density F(ε) ) p/N〈∆E〉0, 0 < ε <
N〈∆E〉0, where 〈∆E〉0 is the mean level spacing in the ground
potential. Therefore ∑n)1

N ... ) N(p/N〈∆E〉0)∫dε ) (p/〈∆E〉0)∫dε,
and we can integrate εn out (setting the upper limit of integration
to infinity because of the decay coefficient exp[-p�ε]) to have

where we have introduced a new variable ∆r ≡ ∆u-V ) εu -
εV, which stands for the distance between nearest r levels (rth

R2(t3, t2, t1) ) ∑
n,k,u,V

〈gn|µ̂|eu〉 ×

exp[ i
p

Eu
e(t1 + t2)]〈eu|µ̂|gk〉exp[ i

p
Ek

gt3]〈gk|µ̂|eV〉 ×

exp[- i
p

EV
e(t2 + t3)]〈eV|µ̂|gn〉exp[- i

p
En

gt1]exp[-�En
g] (6)

R3(t3, t2, t1) ) ∑
n,k,u,V

〈gn|µ̂|eu〉exp[ i
p

Eu
et1]〈eu|µ̂|gk〉 ×

exp[ i
p

Ek
g(t2 + t3)]〈gk|µ̂|eV〉 × exp[- i

p
EV

et3]〈eV|µ̂|gn〉 ×

exp[- i
p

En
g(t1 + t2)]exp[-�En

g] (7)

P(3)(t) ) ( i
p)3

(√2πτE0)
3 ∑

n,k,u,V
e-p�εn〈gn|µ̂|eu〉〈 eu|µ̂|gk〉 ×

〈gk|µ̂|eV〉〈 eV|µ̂|gn〉 × e-(εk-εV)2τ2/2e-(εn-εu)2τ2
×

e(εk-εn)(εu-εV)τ2
× { ei(εu-εV)τ2 + ei(εk-εn)τ2} ei(εk-εV)tei(εu-εn)τ1 (8)

εn ≡ En
g/p

εk ≡ Ek
g/p

εu ≡ (Eu
e/p) - (ω0 - ωeg)

εV ≡ (EV
e/p) - (ω0 - ωeg)

(9)

Pa
(3)(t) )

( i
p)3

(√2πτE0)
3 ∑

n)1

N

e-p�εn ∑
u,V

′ |〈gn|µ̂|eV〉 |
2|〈gn|µ̂|eV〉 |

2 ×

e-(εn-εV)2τ2/2e-(εn-εu)2τ2
× {ei(εu-εV)τ2 + 1}ei(εn-εV)tei(εu-εn)τ1

(10)

Pa
(3)(t) ) ( i

p)3
(√2πτE0)

3µ0
2〈Snu

2 SnV
2 〉′ ×

∑
u,V

′ ∑
n)1

N

e-pε�ne-(εn-εV)2τ2/2e-(εn-εu)2τ2
×

{ ei(εu-εV)τ2 + 1} ei(εn-εV)tei(εu-εn)τ1 (11)

Pa
(3)(t) ) ( i

p)3
(√2πτE0)

3µ0
2〈Snu

2 SnV
2 〉′ ×

�π
6
p

τ〈∆E〉0
e(p�)2/6τ2

e-[[(t-τ1)2/6τ2]-i[p�(t-τ1)/3τ2]] ×

∑
V

e-p�εV ∑
r)(1,(2,...

e-[(∆r
2τ2/3)-(2p�∆r/3)]e(i∆r/3)(2t+τ1) ×

{ ei∆rτ2 + 1} × (1 + erf[ i(t - t1) - p�

√6τ
+

2

√6
∆rτ + 3

√6
εVτ]) (12)
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nearest-neighbor distance). We can neglect a nonconstant
behavior of the error function (boundary effects) in the very
small region εV ∈ {-2π/τ, 2π/τ} and consider the error function
in eq 12 as a step function, which equals 1 in the interval εV ∈
{0,∞} and 0 outside. Equation 12 thus takes the form

Again, the summation over V is an averaging over the variable
εV. The position in spectrum εV and the distance to its nearest
neighbor ∆r(V) are independent variables and therefore can be
averaged out separately. This results in

where the last averaging is due to the summation over V. Since
∆r has different values at different parts of spectrum, then the
averaging over V results in the average over ∆r. The latter can
be done using nearest-neighbor distribution functions, which
are known functions for both Poisson and GOE statistics.15 Thus,
we have

One can see that the statistics energy spectrum enters the above
expression as a sum F(∆) ) ∑r Fr(∆), which is just a two-level
density of states.29 For now, we postpone a further consideration
of the expression in eq 15 until the next section and continue
with the remaining contributions Pb

(3)(t) and Pc
(3)(t). Denoting

the expression in eq 15 with F(t), we get the final expression
for Pa

(3)(t) in the form of

where C ) (i/p)3[(2π)1/2τE0)3µ0
2〈Snu

2 SnV
2 〉′ (π/6)1/2[2p/τ〈∆E〉0][1/

�〈∆E〉]e(p�)2/6τ2 is a constant and where we have used ∑V)0
∞ e-p�εV

≈ 1/�〈∆E〉 with 〈∆E〉 being the mean level spacing in the excited
electronic potential surface.

Let us now consider Pb
(3)(t); it reads

Using the same assumptions as those in the derivation of Pa
(3)(t)

and replacing summations ∑n)1
N and ∑k)1

∞ with the integral (p/
〈∆E〉0)∫0

∞ dε, we get

where C′ ) (i/p)3[(2π)1/2τE0)3µ0
2〈SnV

2 SkV
2 〉′ π(2)1/2[(p/τ〈∆E〉0)2][1/

�〈∆E〉]e(p�)2/4τ2. Obviously, the contribution of this term to the
overall nonlinear polarization is negligible when the conditions
of pulse nonoverlapping t, τ1, τ2 > τ are satisfied.

The last term to consider is Pc
(3)(t)

which simplifies to

The overall third-order nonlinear polarization reads

P(3)(t) ) Pa
(3)(t) + Pb

(3)(t) + Pc
(3)(t)

) Ce-[[(t-τ1)2/6τ2]-i[p�(t-τ1)/3τ2]](F(t) + 2
〈SnV

4 〉

〈Snu
2 SnV

2 〉′ ) +

Pb
(3)(t) (21)

Here, we did not substitute for a small contribution of Pb
(3)(t) in

order not to overload the formula. One can see that at t ) τ1,
we have an echo.

III. F(t) for Two Types of Statistics

Obviously, F(t) carries the information about level statistics
in the excited electronic state. We now consider the two cases
of statistics separately.

A. Poisson Statistics. Systems with regular dynamics possess
Poisson nearest-neighbor energy level statistics. For this sta-
tistics, energy levels are uncorrelated, and the two-level density
of states is uniform

where 〈∆E〉 is a mean level spacing. Thus, F(t) for systems with
regular dynamics reads

Pa
(3)(t) ) ( i

p)3
(√2πτE0)

3µ0
2〈Snu

2 SnV
2 〉′ ×

�π
6
p

τ〈∆E〉0
e(p�)2/6τ2

e-[[(t-τ1)2/6τ2]-i[p�(t-τ1)/3τ2]] ×

2 ∑
V)0

∞

e-p�εV ∑
r)(1,(2,...

e-[(∆r
2τ2/3)-(2p�∆r/3)]e(i∆r/3)(2t+τ1) ×

{ ei∆rτ2 + 1} (13)

Pa
(3)(t) ) ( i

p)3
(√2πτE0)

3µ0
2〈Snu

2 SnV
2 〉′ ×

�π
6
p

τ〈∆E〉0
e(p�)2/6τ2

e[-[(t-τ1)2/6τ2]-i[p�(t-τ1)/3τ2]] ×

2( ∑
V)0

∞

e-p�εV) × ∑
r)(1,(2,...

〈e[-(∆r
2τ2/3)-(2p�∆r/3)]e(i∆r/3)(2t+τ1) ×

〈{ ei∆rτ2 + 1} 〉 (14)

∑
r)(1,(2,...

〈e-[(∆r
2τ2/3)-(2p�∆r/3)]e(i∆r/3)(2t+τ1){ ei∆rτ2 + 1} 〉 )

2∫0

∞
e-[(∆2τ2/3)-(2p�∆r/3)]{ cos[∆(2t + τ1

3
+ τ2)] +

cos[∆(2t + τ1

3 )]} × ∑
r)1,2,...

Fr(∆)d∆ (15)

Pa
(3)(t) ) Ce-[[(t-τ1)2/6τ2]-i[p�(t-τ1)/3τ2]]F(t) (16)

Pb
(3)(t) ) ( i

p)3
(√2πτE0)

3 ∑
n)1

N

e-p�εn ∑
k,V

|〈gn|µ̂|eV〉|
2|〈gk|µ̂|eV〉|

2 ×

e-(εk-εV)2τ2/2e-(εn-εV)2τ2
× {1 + ei(εk-εn)τ2}ei(εk-εV)tei(εV-εn)τ1 (17)

Pb
(3)(t) ) C′e-[[2t2+τ1

2/4τ2]+i(p�τ1/2τ2)] ×
(1 + e-[τ2(4t+2τ1+3τ2)/4τ2]+i(p�τ2/2τ2)]) (18)

Pc
(3)(t) ) 2( i

p)3
(√2πτE0)

3 ∑
n)1

N

e-p�εn ∑
V

|〈gn|µ̂|eV〉|
4 ×

e-(3τ2/2)(εn-εV)2
ei(εn-εV)(t-τ1) (19)

Pc
(3)(t) ) 2C

〈SnV
4 〉

〈Snu
2 SnV

2 〉′
e-[[(t-τ1)2/6τ2]-i[p�(t-τ1)/3τ2]] (20)

F(ω) ) ∑
r)1,2,...

∞

Fr(ω) ) 1
〈∆E〉 /p (22)
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where

Here, we have introduced dimensionless parameters R̃ )
τ〈∆E〉/p and �̃ ) �p/τ. The necessary conditions for the photon-
echo experiment described in this paper look very simple in
terms of these parameters; they are

The first condition means that the spectral width of the laser
pulse should be greater than the mean level spacing in order to
excite at least two states to form an excited superposition state,
as discussed in the Introduction. The second condition in eq
25, which is �〈∆E〉 , 1, defines the obvious requirement for
the allowed temperature; it should be greater than the mean level
spacing to populate several levels to form a statistics of levels.

A photon-echo signal measured in experiments is given by25

Substituting eqs 21 and 23 into the above integral results in
monotonically decaying signals shown in Figure 3a,b.

B. GOE Statistics. For GOE statistics, the first nearest-
neighbor distribution function is given by the Wigner distribution15

where 〈∆E〉 is a mean level spacing. In this case, the two-level
density of states reads29

with c(ω) ) sin[πpω/〈∆E〉]/(πpω/〈∆E〉). Numerical integration
of eq 15 with eq 28 gives

where functions fR̃�̃ in the range of parameters given by eq 25
can be well-approximated by analytic functions
The plots of fR̃�̃(x) and gRj�j(x) are shown in Figure 4 for different
temperatures. One can see that fR̃�̃(x) has a clear minimum. Its

position is a nonlinear function of parameters R̃ and �̃, which
can be found numerically; in the range of �̃ < 0.3, 0.4 < R̃ < 1,
it can be given by the approximate formula xmin ) 1.25(�̃/R̃1.39)
+ (2.61/R̃0.2) ≈ 2.61/R̃0.2. F(t) for the echo condition t ) τ1

thus has the minimum at t ∼ 2.6τ0.8.
Straightforward numerical calculation of the summation in

eq 11 was also performed to check the obtained analytical
results. For the energy spectrum εn, 400 levels with the mean
level spacing of 〈∆E〉 ) 1 were randomly generated on the
interval (0, 400〈∆E〉) using a uniform distribution function. For
the energy spectrum εV,u, in the case of regular motion, the same
generation of the spectrum as that above was used. In the case
of chaotic motion, 400 level spacings {∆i} were generated using
the Metropolis algorithm with the Wigner distribution function
(eq 27) and 〈∆E〉 ) 1; the spectrum εV was then obtained as εV
) ∑i)1

V ∆i. The result of the summation in eq 11 is given in
Figure 5 as a function of t for τ ) 0.5, τ1 ) t (echo condition),
and different values of the inverse temperature � and τ2. The
variation of τ2 does not significantly affect the position of the
minimum of F(t); yet, it helps to average out the fluctuations
of the numerical results due to a limited number of spectral
lines, which may effectively become even smaller at lower
temperatures. One can see that for the Wigner nearest-neighbor
distribution, F(t) in Figure 5 has a minimum at t ) 2.6τ0.8 )
1.5, in accordance with the analytical predictions.

Calculation of a signal (eq 26) with eqs 29 and 30 is shown
in Figure 3c,d. The �(τ1, τ2) has a minimum at τ1 ∼ 4τ for any
given value of τ2, and its location along τ1 axis is independent
of τ2. We call this minimum a suppression of photon-echo
signal.

IV. Mixed Spectral Statistics

It is interesting that the minimum of the photon-echo signal
at τ1 ≈ 4τ is not sensitive to the purity of the GOE spectral
statistics or the type of correlated level statistics. The level
statistics enters the expression for the photon-echo signal (eq
21) as a two-level correlation function F(ω). In some sense,
the minimum of the photon-echo signal is directly related to
the dip in F(ω) at ω ) 0. As long as F(ω) is different from the
uniform distribution of completely uncorrelated levels (eq 22),
there will be a minimum in the photon-echo signal. For instance,
if the spectrum is a mixture of the correlated and the uncorrelated
levels, its nearest-neighbor statistics can be described with a
Brody distribution, which is an intermediate between the Poisson
and the Wigner distributions. The two-level correlation functions
will look then as an intermediate between the expressions in
eqs 22 and 28. As an example, the two-level density of states
shown in the inset of Figure 6 results in the function F(t) shown
in Figure 6. One can see that F(t) still has a clear minimum in
the region of ∼4τ. The depth of the minimum is proportional
to the strength of the spectral correlation.

Interestingly, the type of the spectral level statistics in the
ground electronic state is not important. In the present analysis,
we have made an assumption about the random level statistics
in the ground electronic state for easier analytical derivations,
yet as one can see, the spectroscopic signal, and in particular
its minimum, depends only on the term Pa

(3)(t), which includes
only the differences between energy levels εu and εV in the
excited electronic state and therefore effectively probes only
the level statistics of the excited electronic state. We will publish
the results on the general level statistics elsewhere.

V. Results and Discussion

The main result of the present analysis is that the photon-
echo experiment carried out with the conditions in eq 25 should

F(t) ) 2{ gR̃�̃(2t + τ1 + 3τ2

3τ ) + gR̃�̃(2t + τ1

3τ )} (23)

gR̃�̃(x) ) Re{ √3π
R̃

e-(3/4)(x+i(2�̃/3))2
×

(1 + i erfi[ √3
2

(x + i(2�̃/3))])} (24)

R̃ < 1

R̃�̃ , 1
(25)

�(τ1, τ2) ) ∫0

∞
|P(t)|2 dt (26)

F1(ω) ) π
2

ωp
〈∆E〉

p exp{-(π/4)[〈ωp/〈∆E〉 〉]2}
〈∆E〉 (27)

F(ω) ) p
〈∆E〉 (1 - c2(ω) - dc(ω)

dω ∫ω

∞
c(ω′)dω′) (28)

F(t) ) 2{ fR̃�̃(2t + τ1 + 3τ2

3τ ) + fR̃�̃(2t + τ1

3τ )} (29)

fR̃�̃(x) ) gR̃�̃(x) - 8
π

Re[ erf2[(R̃x + i(2R̃�̃/3))/3]

(R̃x + i(2R̃�̃/3))2 ] (30)
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result in the suppression of echo-signals at τ1 ∼ 4τ for chaotic
systems, where τ is a pulse duration. The time interval between
second and third laser pulses, τ2, does not influence the location
of the signal’s minimum along the τ1 axis. The suppression can
be considerable; the general formula for the ratio �(τ1,τ2)/�(∞,∞)
near the global minimum τ1 ) 4τ and τ2 ) 0 at high
temperatures, �〈∆E〉 , 1, is

where τ has dimensionless units of p/〈∆E〉 . We can estimate
the ratio assuming |Snu| and |SnV| are uncorrelated, uniformly
distributed variables; then, 〈Snu

2 SnV
2 〉′ /〈SnV

4 〉 ) 〈S2〉〈 S2〉/〈S4〉 ) 5/9,
which results in [�(4τ,0)/�(∞,∞)]f 0.36 and τf 0. Thus, the
suppression of the photon-echo signal can be up to 50%.

On the other hand, the photon-echo signal of regular systems
�(τ1, τ2) does not have any minima (Figures 3a,b). Thus, the
following conditions always hold: �(4τ,τ2)/�(∞,∞) g 1 for
regular systems and �(4τ,τ2)/�(∞,∞) < 1 for irregular systems.
In real experiments, �(τ1,τ2) decays to zero due to different
broadening mechanisms, but on the time scale of an ultrafast
experiment, we can neglect broadening effects and thus consider
the long time limit of �(τ1,τ2) as a constant, which we plot in
Figure 3 as �(∞,∞). Since the location of the correlation
minimum at τ1 ) 4τ does not depend on τ2 (Figure 3d), we can

make the above inequalities stronger by averaging over some
interval of τ2. The latter averaging can remove experimental
nonideality and thus provide more conclusive measurements.

The physics of the observed suppression of the echo signal
is similar to the physics for the suppression of the averaged
survival probability |〈ψ(0)|ψ(t)〉 |2 discussed in refs 14 and 15.
The main idea is that since the energy levels obeying GOE
statistics are correlated on the energy scale 〈∆E〉, the superposi-
tion state |ψ(t)〉 ) ∑ exp(-iEnt/p)|n〉 would remember its initial

Figure 3. Photon-echo signals for regular systems (a,b) and irregular systems (c,d) at a temperature of �〈∆E〉 ) 0.05. Inset (d) contains plots for
increasing values of τ2 from the bottom curve to the top curve; τ2 ) τ, 5τ, 10τ, 20τ, ∞. The values of the parameters are 〈∆E〉 ) 1, τ ) 0.5, and
p ) 1.

Figure 4. The functions fR̃�̃(x) (solid line) and gR̃�̃(x) (dashed line) for
the different values of the inverse temperature � ) 1/kT. The values
of the parameters are R̃ ) 0.5, �̃ ) 2�, τ ) 0.5, and p ) 1. The values
of � change from 0 (the bottom solid and dashed plots) to 0.8 (the top
solid and dashed plots).

�(4τ, 0)
�(∞, ∞)

≈ |1 - 8
π

〈Snu
2 SnV

2 〉′
〈SnV

4 〉 [2
erf2(4τ

3 )
(4τ)2 ] |2 (31)
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conditions on the time scale of ∆t ) p/〈∆E〉 . This time scale
defines the interval of quantum coherence, which will “survive”
after the averaging over initial conditions and energy level
statistics. During this time, |〈ψ(0)|ψ(t)〉 |2 would behave as a
typical quantum dephasing process with oscillatory behavior
around its average value due to quantum coherence effects. As
a result, |〈ψ(0)|ψ(t)〉 |2 can go below its long time limit (it could
have made several oscillations around its long time limit;
however, the time of coherence ∆t ends up earlier than the
second oscillation). For the regular motion, however, the energy
levels do not have any correlation, and thus, no time interval
∆t of quantum coherence exists after the averaging over the
ensemble of levels. Therefore, |ψ(t)〉 is not correlated with its
initial conditions and decays to its statistical average.

In the proposed experiment, the time domain signature of
chaotic motion at 4τ arises from the minimum of the integrated
signal and not from the response function itself. Although the
response function is more fundamental since it is invariant under
experimental conditions, only its convolution with the electric
field yields the results of the present theory. The reason lies in
a particular physical mechanism in which we are interested. Each
eigenstate in the ground potential surface being irradiated by a
laser pulse forms a superposition state in the excited electronic

potential surface. It is the time evolution of a superposition state
(when averaged over many mutually incoherent superposition
states) that reveals energy level statistics in the excited electronic
potential surface. To form a superposition state, we need an
explicit presence of a shaped laser field in our theory. Since
the information about level statistics is determined by a
superposition state and the latter is determined by the parameters
of a laser pulse, the information on level statistics should be
determined by the parameters of the laser pulse. This is exactly
what we have in our theory; the minimum of the photon-echo
signal is located at approximately four pulse durations. The total
number of the excited eigenstates Ne in the excited electronic
potential is equal to the number of initially populated eigenstates
Ng in the ground electronic potential multiplied by the ratio of
the mean level spacings in the ground electronic potential and
that in the excited electronic potential, Ne ) Ng〈∆E〉0/〈∆E〉 . To
have good statistics, we need to populate a considerable number
of ground states Ng . 1, which suggests performing the
experiment at high temperatures, that is, �〈∆E〉0 , 1.

VI. Conclusions

In this paper, we have shown that information about level
statistics can be extracted from a time domain signal of the
photon-echo experiment. Correlated (GOE) statistics of level
spacings results in a suppressed photon-echo signal at τ1 ) 4τ,
whereas Poisson level statistics does not show a dip in the
intensity of a signal. The main advantage of the proposed
experiment is the implication of a nonlinear photon-echo
technique which may overcome both homogeneous and inho-
mogeneous energy level broadening. The possibility to conduct
the experiment for thermal ensembles makes it easy for practical
applications.
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Appendix

In this appendix, we consider the simplest case of a
multidimensional anharmonic system with regular dynamics, a
two-dimensional infinite square-well potential, -Lx/2 < x < Lx/2
and -Ly/2 < y < Ly/2. Its eigenstates and eigenvalues are known
to be

Ψnx,ny
) � 4

LxLy
sin[πnx(x - Lx/2)

Lx
]sin[πny(y - Ly/2)

Ly
]

Enx,ny
) π2p2

2m [(nx

Lx
)2

+ (ny

Ly
)2] (32)

For the irrational ratio of Lx and Ly, the simple quadratic
spectrum (eq 32) forms a random spectrum and results in a
Poisson nearest-neighbor distribution. In the present analysis,
we took Lx ) 21/8Ly since it yields a Poisson distribution for
the first 100 levels.

In application to the two-electronic-state problem considered
in the present paper, we represent the ground electronic potential
surface as a two-dimensional square well and the excited
electronic surface with a two-dimensional square well twice the
size, Lx′ ) 2Lx and Ly′ ) 2Ly; see Figure 7. We numerate energy
levels Ei ≡ Enx,ny, i ) 1, 2, 3,... in the ground well and Ej′ ≡
Enx́,ný, j ) 1, 2, 3,... in the upper well in ascending order. The

Figure 5. The results of the numerical calculation of F(t) by evaluating
the summations in eq 11. The top four curves correspond to the Poisson
nearest-neighbor statistics; the bottom four curves correspond to the
GOE nearest-neighbor statistics. Solid symbols correspond to � ) 0,
and open symbols correspond to �〈∆E〉 ) 0.025. Squares (open and
solid) represent the results for τ2 ) 2τ, and circles (open and solid)
represent the results for τ2 ) 4τ. The other parameters are 〈∆E〉 ) 1,
τ ) 0.5, and p ) 1.

Figure 6. F(t) for the two-level density of weakly correlated states
F(ω) shown in the inset. The magnitudes of the parameters are τ )
0.5, 〈∆E〉 ) 1, and p ) 1.
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Franck-Condon factors Sij of the overlap of states Ψnx,ny and
Ψnx́,ný that correspond to the two eigenvalues Ei and Ej′,
respectively, are

where

If initially an ith eigenstate with an eigenvalue Ei is populated
in the ground potential well, a laser pulse with a spectral width
∆Ω and frequency ω0 will excite eigenstates in the upper
potential well with eigenvalues Ej′ that fit into the energy range
of Ei + pω0 ( p∆Ω/2; see Figure 7. We can thus predict all of
the Franck-Condon factors Sij which are involved in the
excitation from the state |i〉; there will be, on average, p∆Ω/
〈∆E′〉 of them, where 〈∆E′〉 is the mean level spacing in the
upper potential well. In numerical analysis, we used Lx ) 1,
π2p2/2m ) 1, 〈∆E〉 ) 1.8, 〈∆E′〉 ) 0.45, and ∆Ω ) 4, and the
difference between pω0 and the energy gap between the bottoms
of potential wells is equal to 10. The Franck-Condon factors
involved in the process of excitation from the first 200 states
of the ground potential well are shown in Figure 8. Only the
overlap integrals between the states which have eigenvalues
within the spectral window ∆Ω of the laser pulse are considered.
From Figure 8a,c, one can see that there is no correlation
between the eigenvalues, or indices i and j, and the values of
the Franck-Condon factors Sij. Figure 8c also shows that, for
the considered square-well model, the values of the overlap
integrals are symmetrically distributed around zero. We thus

can consider eigenvalues and Franck-Condon factors to be
uncorrelated.
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