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In this paper, we discuss a strategy for reducing a complex single molecule kinetic process to a set of generic
structures (motifs) that are building blocks for a general kinetic scheme. In general, these motifs have complex
kinetics (i.e., waiting time distribution functions) which are composed of fundamental kinetic steps. (1) First,
we treat four different experimental single molecule measurements within both the usual kinetic framework
(i.e., using the rate matrix) and the waiting time distribution function framework. The two frameworks are
then shown to be equivalent and can be formulated on the basis of the first passage time distribution function
of monitored single molecule events. (2) Second, to calculate this basic quantity, we decompose a complex
kinetic scheme with the help of two kinetic motifs, sequential and branching, and derive self-consistent equations
by convoluting waiting time distributions and first passage time distribution(s) along the reaction pathway(s).
(3) As examples, two experimental systems, a chain reaction model with a special case of enzymatic reactions
and a general kinetic model for fluorescence emission, are analyzed on the basis of a generic scheme composed
of a monitored link, controlled link, and unknown link, each representing a possible subscheme associated
with a complex waiting time distribution function. As a result, single molecule measurements of the generic
scheme retain the same functional form when a kinetic link is altered within a subscheme, and different
measurements can be classified and analyzed within the same framework. (4) Finally, to explore the physical
reasons for nonexponential waiting time distribution, we use the example of blinking phenomena to discuss
several scenarios of dynamic and static disorder and their implications for observed memory effects. The
self-consistent pathway formalism is presented in this paper for renewal processes and will be generalized to
nonrenewal processes with memory effects in a future publication.

I. Introduction

The advance of single molecule techniques has inspired recent
interest in chemical kinetics, statistics, and data analysis.1,2 Much
of the current theoretical formulation of single molecule kinetics
is built on the transfer matrix solution, which is standard for
first-order kinetics3 but which can be ineffective as the probed
systems and proposed schemes become increasingly complex.
From the viewpoint of theoretical analysis, for any changes in
a subscheme, whether rising from mutations, different probes,
or changes in experimental conditions, the standard calculation
has to be repeated, making it difficult to predict the generic
behavior of a broad class of schemes. From the viewpoint of
numerical analysis, the lack of generic schemes for a class of
single molecular measurements also causes difficulties in
comparing different interpretations of single molecule data and
defining a definite model for their information content.4-7 To
address these two issues, we propose a self-consistent solution
based on single molecule reaction pathways to compute first-
order kinetics, which will lead to the definition of the generic
scheme, i.e., the irreducible scheme composed of monitored
link(s), controlled link(s), and unknown link(s). The monitored
link is the kinetic step or subscheme directly detected in single
molecule experiments, the controlled link is the kinetic step or

subscheme governed by experimental conditions, and the
unknown link is the kinetic step or subscheme to be inferred
with single molecule measurements. Our discussion in this paper
is limited to renewal processes and will be further extended to
nonrenewal processes.8

Our self-consistent reaction pathway solution is inspired by
the original paper by Ninio on an alternative approach to
deriving reaction rate constants in enzymatic reactions.9 Instead
of calculating average rate constants, we extend his approach
to calculate the probability distribution function (PDF) of the
first passage time φ(t),10 i.e., the PDF of adjacent single molecule
transition events, which allows the prediction of all single
molecule measurements in a renewal process. Following
the single molecule reaction pathways, we decompose a complex
kinetic scheme into subschemes using kinetic motifs and
convolute waiting time distributions and first passage time
distributions along the pathways. Each kinetic loop (including
reversible links) defines a self-consistent equation, which is
solved to yield the waiting time distribution for the subscheme.
By systematically concatenating the side-branches and chain
reactions, we can reduce a complex scheme to its “backbone”
or “skeleton”, only constrained by the monitored link(s) and
controlled link(s), and thus define the irreducible scheme, which
corresponds to the maximal amount of information one can
extract from single molecule data. Several groups have recently* To whom correspondence should be addressed.
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derived master equations using pathway summation.11,12 Our
self-consistent pathway solution differs because of the introduc-
tion of the self-consistency and applications to single molecule
kinetics. Our results also support the analysis by Flomenbom
and Silbey on the information content of on-off traces.7 While
they construct the canonical kinetic form from two-state
trajectories, we arrive at the irreducible scheme by reducing an
arbitrarily complex scheme with restrictions imposed by ex-
perimental detection and prior knowledge. The concept of the
irreducible schemes can be related to a general definition of
the information content of single molecule data, thus providing
a basis for developing numerical analysis techniques.

The manuscript is arranged as follows: In section II, we
introduce several single molecule quantities: first passage time
distribution, interevent distribution, and event number distribu-
tion, present both the rate process formalism and waiting time
distribution formalism, and then show their equivalence. In
section III, we discuss two kinetic motifs, sequential reactions
and branching reactions, which are the basic tools for decom-
posing and computing a complex kinetic scheme. As examples,
we present self-consistent pathway solutions for two generic
kinetics problems, enzymatic turnover in section IV and
fluorescence emission in section V, and show a generic scheme
composed of three basic links can describe both processes and
their variations resulting from all possible combinations of
subschemes. In section VI, we investigate the implication of
our analysis for the interpretation of measurements in blinking
experiments.

II. Single Molecule Measurements

We limit our discussions to renewal processes, where a single
type of transitions is monitored, and refer readers to a future
publication for discussions and references on nonrenewal
processes (i.e., kinetic schemes with multiple types of monitored
transitions).8 Note that the definitions of renewal and nonrenewal
processes depend on the detection scheme: If various types of
transitions are detected separately, the single molecule measure-
ment is a renewal process; otherwise, the measurement is a
nonrenewal process. Thus, without multiple conformational
channels, a complex chain reaction as described in section IV
or a photon emission process in section V is a renewal process
although the first passage time distribution is multiexponential
and complicated. On the other hand, a simple decay process
with two decay channels that are not detected separately is a
nonrenewal process with memory effects. A renewal process
with a single type of signal is completely specified by the

distribution of the first passage time, φ(t), which is the
probability distribution function of adjacent single molecule
events, e.g., monitored enzymatic turnover events or detected
photons. Depending on the type of kinetic processes, various
terms have been associated with φ(t), including residence time,
dwelling time, exit time, and turnover time. As shown below,
once φ(t) is obtained, we can completely predict all other
indicators of single molecule measurements. The key concept
of our approach is to represent a complex kinetic scheme using
waiting time distribution functions Q(t). A first-order kinetic
scheme is composed of fundamental rate steps, specified by rate
constants k or equivalently by Q(t) ) ke-kt. But the waiting
time distribution function can take an nonexponential form such
as multiexponential, stretched exponential, and power-law decay.
Thus, instead of the single rate constant associated with a
fundamental rate step, Q(t), can describe a distribution of rate
constants, i.e., distributed rate processes. In this section, we
formulate single molecule measurements with rate constants and
with waiting time distribution functions, respectively, and then,
in Appendix A, show their equivalence. We adopt the event-
averaged initial condition in most of our calculations and briefly
discuss the time-averaged initial condition in Appendix B. In
Appendix C, we discuss an interesting relationship between the
initial rise in the waiting time distribution and causal connectiv-
ity in kinetic networks.

A. Rate Formalism. For a single molecule scheme com-
posed of exponential rate processes, the kinetics is completely
specified by the rate matrix, Kij ) δijkj - (1 - δij)kij, where kij

is the rate constant for the transition from state j to state i and
kj ) Σikij is the depletion rate constant from state j. Then, the
probability evolution, P(t) ) G(t)P(0), is governed by the
Green’s function, G(t) ) exp(-Kt), or in Laplace space

G(s)) 1
sI+K

(1)

where I is the identity matrix and the Laplace variable s denotes
Laplace transforms. The rate matrix K ) KD-KOD is defined
such that the diagonal elements KD are positive and the off-
diagonal elements–KOD are negative. The Green’s function G(s)
provides complete information on population dynamics in bulk,
but the single molecule experiment probes additional information
associated with the statistics of monitored events, e.g., emitted
photons or enzymatic turnovers. The monitored transition from
the jth state to ith state is described by K′ ) k′ ij, which is an
off-diagonal element in the rate matrix K. Notice k′ ij * kij since
there can be multiple types of transitions from state j to i, and
we assume only one type of transition is monitored. For
example, the transition from the excited-state to the ground-
state can occur through radiative decay, which is detected via
emitted photons, or through nonradiative decay, which is not
monitored. In the following, we consider four types of single
molecule measurements illustrated in Figure 1 and the relevant
transfer matrix expressions most closely related to these
measurements.

Most of the expressions for rate processes have appeared in
reviews on single molecule rate processes13,14 and in standard
literatures on renewal processes. Here, we include the rate
formalism for completeness of our presentation and, more
importantly, for the discussion on the equivalence between the
two formalisms (see Appendix A).

1. A unique feature of single molecule measurements is the
statistics and correlation of events along a single molecule trace.
The key quantity is the PDF of the first passage time of the
monitored transition, or equivalently, the distribution function
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between adjacent events, φ(t) ) K′ ijG0, ji(t), with the Green’s
function G0(t) ) e-K0t. Here, the rate matrix K is separated into
the monitored transition K′ and the remaining part: K ) K0 -
K′. In the Laplace domain, the PDF of the monitored events is

φ(s))K′ ij[ 1
sI+K0] ji

) [K′G0(s)]ii (2)

which is properly normalized as φ(s ) 0) ) 1. Unless specified,
indices i and j are associated with the monitored transition, and
all other repeated indices in our expressions represent matrix
multiplication and are summed over implicitly. As illustrated
in Figure 1a, the PDF for observing a sequence of transitions
is expressed as15

fm,eV(t1, t2, · · · , tm)) [K′G0(tm - tm-1)K′ · · · G0(t2 - t1) ×

K′G0(t1)]ii (3)

where the event-averaged initial condition indicates the initial
state for the time series, ith state. For nonrenewal processes, feV
has been proposed as a direct measure for correlations between
events, i.e., memory effects.8,16 Often, we collect the number
of monitored events, N, within a time window, t, as depicted in
Figure 1c. Its nth moment is obtained from eq 3 as

〈N(t)n〉eV )∑
m

mn[∏
i)1

m ∫ti-1

t
dti]∑

l

[G0(t- tm) ×

K′ · · · G0(t2 - t1)K′G0(t1)]li (4)

where the integral variable ti is time-ordered, the initial state is
at the terminal state of the transition. The sum over the final
state defines the survival probability, Si(t) ) Σl[G0(t)]li. Equation
4 can also be written in the Laplace form as

Lu 〈N(t)n〉eV )∑
m

mnSi(s)[K′G0(s)]ii
m (5)

where Lu denotes Laplace transformation.
2. The second type of single molecule measurements is the

density and moment of monitored events, for example, the
Poisson indicator and the renewal indicator. As depicted in
Figure 1b, the direct route is to introduce ψ(t), the PDF of
observing another transition given the initial transition,14,17

ψ(s))K′ ij[ 1
sI+K]ji

) [K′G(s)]ii (6)

which differs from eq 2 because of K ) K0 - K′. The asymptotic
value of ψ(t) is a constant given by the average mean passage
time. Equation 6 is generalized to the multiple time number
density

gm,eV(t1, t2, · · · , tm)) [K′G(tm - tm-1) · · · K′G(t2 - t1) ×

K′G(t1)]ii (7)

where geV(t) ) ψ(t) is also known as the photon correlation
indicator often used in photon statistics (except for a constant
prefactor). Once we have the number density, we can calculate
the counting moments from17

Cm,eV(t)) 〈N(t)[N(t)- 1] · · · [N(t)-m+ 1]〉eV

)∏
i)1

m ∫0

t
dtigm,eV(t1, t2, · · · , tm) (8)

which has a simple Laplace form

Lu [Cm,eV(t)])
m!
s

[K′G(s)]ii
m (9)

with m! arising from the multidimensional integral in eq 8.
3. The third type of single molecule measurements is the

probability distribution for the number of observed events within
a time bin, as shown in Figure 1c. The nth moments 〈N(t)n〉eV
are already given in terms of feV in eq 3 or geV in eq 7, which
can be transformed to the probability distribution for N(t), i.e.,
PeV(N, t) ) 〈δ(N(t) - N)〉eV. From eq 4 we identify this
probability distribution

PeV(N, t))∏
i)1

N

[∫ti-1

t
dti]∑

l

[G0(t- tN)K′ · · · G0(t2 - t1) ×

K′G0(t1)]li (10)

A compact way to obtain the distribution and moments is the
generating function method,14,16,18 defined by

PeV(z, s)) Lu 〈eizN(t)〉 )∑
m

S(s)[K′G0(s)]ii
meizm

)∑
l

[ 1

sI+K- eizK′ ] li
(11)

which is the Fourier transform of PeV(N, s). Explicitly, the event-
averaged probability distribution of the number of events is
given by

PeV(N, s)) 1
2π∫PeV(z, s)e-izN dz (12)

Taking derivatives with respect to z, we obtain the moments,
〈Nn(t)〉eV, which is equivalent to eq 4.

4. As illustrated in Figure 1, the above three quantities are
defined with the event-averaged initial condition specified with
a monitored transition,14,15 which can be acquired in single
molecule experiments. An alternative approach is the time-
averaged initial condition, where the initial time is randomly
selected along the time axis, as shown in Figure 1d. Thus the
probability of the first event is special and depends on the
stationary distribution F as

φ̃(t))∑
l

K′ ijG0,jl(t)Fl (13)

Here KF ) 0 is stationary but not necessarily in equilibrium

Figure 1. Schematic illustrations of the four measurements along a
sequence of single molecule transition events: (a) the probability
distribution function (PDF) of the first passage time, i.e., distribution
of the adjacent transition events; (b) the PDF of two transition events
regardless of the number of events in between, i.e., interevent
distribution; (c) the event-averaged probability distribution of the
number of events, i.e., intensity distribution; (d) the time-averaged
probability distribution of the number of events.
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unless the kinetic scheme satisfies detailed balance. Then, the
probability for a sequence of events is

fm(t1, t2, · · · , tm))K′G0(tm - tm-1)K′ · · · G0(t2 - t1)φ̃(t1)

(14)

which differs from eq 3 in the first event, and the probability
distribution is given by

P(N, t)) [∏
i)1

N ∫ti-1

t
dti]S(t- tN)K′ · · · G0(t2 - t1)φ

˜(t1)

(15)

where the term S(t) ) ΣG0(t) is the survival probability.

B. Waiting Time Distribution Formalism. We now discuss
these experimental quantities in the language of waiting time
distribution functions. To begin, we consider a general kinetic
process, on a set of states {i}, with complex waiting time
distribution functions, Q(t) ) {Qij(t)}, where Q is the waiting
time matrix and its matrix element Qij is the time-dependent
transition probability from state j to state i. For rate processes
discussed in section IIA, the waiting time distribution function
for the monitored rate step is specified as Q′ ij(t) ) k′ ij exp(-kjt)
or Q′ij(s) ) k′ij/(s+kj), where kj ) Σlklj is the depletion rate from
the j state. Then, the probability evolution, P(t) ) G(t)P(0), is
governed by the Green’s function10 given in Laplace space as

G(s)) S(s)
1

I-Q(s)
(16)

where I is the identity matrix and the Laplace variable s denotes
Laplace transforms. Here, the first term on the far right, [I -
Q(s)]ij

-1, is the probability of transition to the ith state given
the initial state is j, and the term on the near right, Si(s) ) [1 -
ΣlQli(s)]/s, is the survival probability, i.e., the probability of not
jumping out of the state i until time t.

1. The first type of single molecule measurements is the PDF
of the first passage time of the monitored transition, or
equivalently, the time distribution function between adjacent
events, φ(t), which is given explicitly in Laplace space as

φ(s))Q′ ij(s)[ 1
I-Q0(s)] ji

(17)

where Q0 ) Q - Q′ is the waiting time distribution matrix,
excluding the monitored transition. In Appendix B, eq 17 is
shown to reduce to eq 2 for rate processes, indicating equiva-
lence for all event-averaged quantities. As illustrated in Figure
1a, the PDF for observing a sequence of transition events is
expressed as

fm,eV(t1, t2, · · · , tm)) φ(tm - tm-1) · · · φ(t2 - t1)φ(t1) (18)

which can be used as a direct measure of correlations between
events.15,16 Then, the average moment of the monitored transi-
tions is obtained from eq 18 as

〈N(t)n〉eV )∑
m

mn[∏
i)1

m ∫ti-1

t
dti]S(t- tm)fm,eV(t1, t2, · · · , tm)

(19)

where the integral variable ti is time-ordered. S(s) ) [1 - φ(s)]/
s is the survival probability, the probability of not making a
monitored transition. The moments can be written in the Laplace
form as

Lu 〈N(t)n〉eV )∑
m

mnS(s)φm(s) (20)

where Lu denotes Laplace transformation. In Appendix A, the
two forms of survival probability, S(t), in eqs 19 and 4, are
shown to be equivalent.

2. The second type of single molecule measurements is ψ(t),
the PDF of observing another transition given an initial transition
at the initial time

ψ(s))Q′ ij(s)[ 1
I-Q(s)]ji

(21)

which differs from eq 17 because of Q ) Q0 + Q′. Equation
21 is generalized to the multiple time number density

gm,eV(t1, t2, · · · , tm))ψ(tm - tm-1) · · · ψ(t2 - t1)ψ(t1)

(22)

where geV(t) ) ψ(t) is the correlation indicator often used in
photon statistics except for a constant prefactor. Using eq 22,
we calculate the counting moments from17

Cm,eV(t)) 〈N(t)[N(t)- 1] · · · [N(t)-m+ 1]〉eV

)∏
i)1

m ∫0

t
dti gm,eV(t1, t2, · · · , tm) (23)

which can also be expressed in a simple Laplace form

Lu [Cm,eV(t)])
m ! ψm(s)

s
(24)

with m! arising from the multidimensional integral in eq 23.
The inter-event PDF, φ(s) in eq 17, and the PDF of adjacent
events, ψ(s) in eq 21, are related by

ψ(s)) φ(s)
1- φ(s)

(25)

As demonstrated in Appendix A, this identity can also be
confirmed for rate processes, using definitions in eq 6.

3. The third type of single molecule measurements is the
probability distribution for the number of observed events within
a time bin, which can be related to fluorescence intensity
distribution. The nth moments 〈N(t)n〉eV can be evaluated in terms
of feV in eq 18 or geV in eq 22 and can be transformed to the
probability distribution for N(t), i.e., PeV(N, t) ) 〈δ(N(t) - N)〉eV.
A convenient way to obtain this distribution is the generating
function method,14,16,18 defined as

PeV(z, s)) Lu 〈eizN(t) 〉 )∑ S(s)φm(s)eizm ) 1
s

1- φ(s)

1- eiz
φ(s)

(26)

which is the Fourier transform of P(N, s). Taking derivatives
with respect to z, we obtain the moments

〈Nn(t)〉eV ) (-i)n
∂

nPeV(z, t)

∂zn |z)0
(27)

which is equivalent to eq 19 since we have used eq 20 in the
derivation of eq 26. To show the equivalence between eqs 27
and 23, we construct a particular generating function of variable
x using eq 25. The left-hand-side of eq 24 gives

LHS)∑ Lu [Cm(t)]xm

m!
) Lu 〈(1+ x)N(t)〉eV (28)

and the right-hand-side of eq 24 gives
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RHS) 1
s∑m

ψm(s)xm ) 1
s[1- xψ(s)]

(29)

Changing the variable, x ) eiz - 1 and using eq 25 to replace
ψ(s) with φ(s), we recover exactly the generating function
evaluated in eq 27, which yields the moment expressed by eq
26 or, equivalently, by eq 19. Thus we prove the equivalence
of all three approaches for calculating moments 〈N(t)n〉eV.

4. Our discussion so far is limited to event-averaged single
molecule quantities, which differ from time-averaged quantities
in the selection of the initial counting time. As shown in Figure
1d, this initial time is selected randomly along the time axis in
the time-averaged initial condition. Thus, the probability of the
first counting event is proportional to the survival probability

φ(t)) S(t)
〈t〉 (30)

where 〈t〉 ) ΣS(t) dt is the normalization factor. As a result, the
PDF of a sequence is given by

fm(t1, t2, · · · , tm)) φ(tm - tm-1) · · · φ(t2 - t1)φ(t1) (31)

which differs from eq 18 in the first event. In Appendix A, we
show the equivalence between eqs 30 and 13, and therefore the
equivalence for all time-averaged quantities. Several time-
averaged quantities13,19 including the Poisson indicator and the
Mandel’s Q parameter can be derived in a similar way and are
discussed in Appendix B. A detailed calculation of the Poisson
indicator and other time-averaged quantities are presented in
section V for the example of single molecule photon statistics.

The waiting time distribution formalism discussed here is the
starting point of self-consistent pathway analysis in this article.
The rate matrix formalism in section IIA is standard for single
molecule kinetics, which is first order by definition. As shown
in Appendix B, the rate formalism and waiting time distribution
formalism are completely equivalent. The equivalence is
expected, as exponential rate processes are a special case of
general waiting time distribution processes and the complex
waiting time distribution processes can always be decomposed
into a set of first-order rate processes.

In the single molecule community, various terms have been
used for measured time intervals, including waiting times,
dwelling times, first passage times, first arrival times, and
survival times. The complete information of a renewal process
is contained in the distribution of the first passage time φ(t),
but the interpretation of the underlying kinetics responsible for
φ(t) is not unique. Nevertheless, one can relate the short time
rise of φ(t) to the causal connectivity of chemical reactions (see
Appendix C for details). Furthermore, we recently established
a signature of detailed balance violation: If φ(t) does not decay
monotonically, the probed kinetics must be a part of underlying
kinetic loop(s) that supports a nonequilibrium flux.20 Thus
nonmonotonic decay in φ(t) introduces an additional restriction
to the underlying rate process.

The discussion in this article is limited to renewal processes
with a single type of monitored events and will be extended to
nonrenewal processes in a future publication.8 For experiments
with one type of monitored measurement (e.g., enzymatic
turnover or photon emission), the PDF of the first passage time,
φ(s), completely specifies single molecule data in a renewal
process. In comparison, a set of PDFs are needed to specify
single molecule data in a nonrenewal process, thus causing
correlation between events, i.e., the memory effects. The
definitions in this section and the analysis that follows can be
generalized using tensor notations to describe nonrenewal
processes with multiple emission states and multiple conforma-

tion channels. The order of variables in eqs 16-23 is irrelevant
for renewal processes, but becomes important in the generaliza-
tion to nonrenewal processes.

Evidently, the various types of measurements are essentially
equivalent for renewal processes and can be related to each
other. The choice of approach is a matter of convenience and
conceptual simplicity. In the article, we will focus on the
calculation of φ(t), which is the basic quantity for evaluating
all measurements discussed above.

III. Kinetic Motifs

A kinetic scheme can be characterized by a kinetic motif or
a set of kinetic motifs, which are salient features in the
connectivity of states.9 The basic kinetic motifs are sequential
and branching, as illustrated in Figure 2. In sequential kinetics,
a set of states are arranged in a linear and irreversible
configuration. The distribution function for the overall waiting
time in Figure 2(a1)–(a3) is

∏ Q(s))Q43(s)Q̃32(s)Q21(s) (32)

where Q̃ represents the possible summation of intermediate
reaction pathways within a subscheme. Since it takes finite time
for the system to pass through two or more sequential links,
the PDF of jumping from the first to final state instantaneously
is zero and will reach a peak on an intermediate time-scale.
The intermediate kinetics can be a simple irreversible step as
indicated in Figure 2,a1, Q̃32(s) ) Q32(s), a reversible step as
in Figure 2,a2, Q̃32(s) ) [1 - Q32(s)Q23(s)]-1Q32(s), and an
arbitrarily complex subscheme as Figure 2,a3. As long as the
first and last transitions are irreversible and none of the
transitions in between is monitored, the overall kinetics from
the initial to final states can be concatenated into a single waiting
time distribution Q̃. This procedure helps us to reduce a complex
reaction scheme into a scheme of minimal complexity, i.e., the
generic kinetic scheme.

The second motif is branching, through which a state can
decay via several channels to different states as in Figure 2,b1,
to the same states as in Figure 2,b2, or back to the original
state as in Figure 2,b3. In all these cases, we can write the
waiting time distribution for the decay as

∑
i

Qi0(t))Q10(t)+Q20(t) + ... (33)

where 0 denotes the original state from which population
depletes. A good example of branching kinetics is triplet

Figure 2. Examples of sequential motif (a) and branching motif (b):
(a1) a sequential reaction with three irreversible steps, (a2) a sequential
reaction with a reversible intermediate step, (a3) a sequential reaction
where the intermediate step is a complex subscheme, (b1) a branching
reaction with decay to different states, (b2) a branching reaction with
two different decay channels to the same final state, and (b3) a
branching reaction with one of the decay channels back to the reactant
state.
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blinking, where the excited system can decay through fluores-
cence or can be trapped in the triplet state. If the decay rate
from the triplet state is sufficiently slow, the system becomes
dark for a long period of time. The alternating dark and bright
periods lead to triplet blinking and effectively cause photon
bunching. More discussion on triplet blinking is presented in
section V. To relate to underlying mechanisms, we need to
examine the effect of branching on the definition of Qi0(t) for
ith decay channel. The overall survival probability of the initial
state is S(t) ) ΠSi(t), where Si(t) is the survival probability with
only the ith channel present and Qi(t) ) -Ṡi(t) is the corre-
sponding waiting time distribution function. Then, we have the
explicit expression for multiple channel decay

∑
i

Qi0(t))-Ṡ(t))∑
i

Qi(t)∏
j*i

Sj(t) (34)

from which the PDF of decaying through the ith channel is
identified as Qi0(t) ) Qi(t)Πj*iSj(t). Together, eqs 32 and 33
along with eq 34 allow us to derive explicit expressions for the
distribution of the first passage time for a complex scheme.

IV. Example I: Michaelis-Menten Mechanism

Our first example is motivated by the enzymatic turnover
reaction with possible extension to molecular motors. As shown
in the basic scheme for enzymatic reactions in Figure 3a, starting
from state 1, a substrate [S] binds with the enzyme [E] to form
a substrate-enzyme complex [ES], i.e., state 2, which can branch
to form a product [P] or return to the state 1. Using eqs 32 and
33, the distribution of turnover time is found to satisfy the self-
consistent equation

φ(s)) [Q32(s)+ φ(s)Q12(s)]Q21(s) (35)

where the two terms in the bracket represent the branching at
the [ES] state. Solution to eq 35 yields

φ(s))Q32(s)
1

1-Q21(s)Q12(s)
Q21(s))Q32(s)Q̃21(s)

(36)

where Q̃21(s) represents the reversible process from the initial
state 1 to the intermediate state 2 (a simple kinetic loop). In eq
36, Q32(s) describes the monitored transition, Q21(s) describes

the controlled transition which depends on the substrate
concentration [S], and φ(s) describes single enzymatic turnover
measurements.

The average passage time of the turnover reactions can be
calculated from eq 36, assuming Q21(s) ) 1 - sτ1 + ..., Q12(s)
) (1 - q)(1 - sτ2 + ...), and Q32(s) ) q(1 - sτ2 + ...), where
q is the branching ratio between two decay channels from state
2, τ2 is the average lifetime at state 2, and τ1 is the average
lifetime at state 1. Taking the derivative of eq 36, τ ) -∂φ(s
) 0)/∂s, we obtain the average turnover rate

〈t 〉 )
τ1 + τ2

q
(37)

which is identical to Ninio’s pathway derivation of the first
passage time. For a rate process, we assign 1/τ1 ) k1 ) k1

0[S],
1/τ2 ) k-1 + k2, and q ) k2/(k2 + k-1), where [S] is the substrate
concentration, k1

0 is the substrate binding constant, and k2 is the
catalytic rate. Then, we recover the Michaelis-Menten
expression21-23

k) 1
〈t〉 )

k2k1
0[S]

k2 + k-1 + k1
0[S]

)
k2[S]

KM + [S]
(38)

where KM ) (k2 + k-1)/k1
0 is the Michaelis constant. The

Michaelis-Menten expression in eq 38 is a special case of eq
37, which is not limited to rate processes. All above expressions
can be obtained by solving the transfer matrix solution in eq
17 with Q′(s) ) Q32(s), but, as will be seen below, the self-
consistent pathway solution is generic for a class of problems
and provides more insights.

A. Substrate Selectivity and Inhibition. An interesting
extension of the Michaelis-Menten mechanism is the competi-
tion of two substrates with an enzyme and the inhibitor-induced
suppression of catalytic turnovers. As shown in Figure 3b, the
enzyme binds with a substrate, either [SA] or [SB], to form the
substrate-enzyme complexes [ESA] or [ESB], which can dis-
sociate and restart the process, or decay to the product. In
analogy to the derivation of eq 35, the overall distribution
function for the turnover time, obeys the self-consistent equation

φ(s)) [QA,32(s)+ φ(s)QA,12(s)]QA,21(s)+ [QB,32(s)+

φ(s)QB,12(s)]QB,21(s) (39)

where the subscripts A and B denote the two reactions associated
with the two substrates. Solution to eq 39 yields

φ(s))
QA,32(s)QA,21(s)+QB,32(s)QB,21(s)

1-QA,21(s)QA,12(s)-QB,21(s)QB,12(s)

)QA,32(s)Q̃A,21(s)+QB,32(s)Q̃B,21(s) (40)

where the first term is the turnover time distribution for substrate
A, φA(s) ) QA,32(s)Q̃A,21(s), and the second term is the turnover
time distribution for substrate B, φB(s) ) QB,32(s)Q̃B,21(s). The
enzyme specificity is defined as the ratio of turnover velocities
and is given by

VA

VB
)

φA(s) 0)

φB(s) 0)
)

pAqA

pBqB
(41)

where pA ) QA,21(s ) 0) and pB ) QB,21(s ) 0) are the
probabilities for an enzyme to bind with two types of substrates
and qA ) QA,32(s ) 0) and qB ) QB,32(s ) 0) are the branching
probabilities for the two substrates, respectively. For a rate
process, we assign pA/pB ) kA,1

0 [SA]/kB,1
0 [SB], qA ) kA,2/(kA,2 +

kA,-1), and qB ) kB,2/(kB,2 + kB,-1). Then, we recover the

Figure 3. Models of reversible chain reactions: (a) the generic scheme
of enzymatic turn-over reactions; (b) an enzymatic reaction with two
competing substrates, A and B; (c) an enzymatic reaction with the
possibility of deactivation due to binding with inhibitors; (d) an
enzymatic reaction with a sequence of conformational transitions; and
(e) a molecular motor on a one-dimensional lattice.
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standard result for enzyme specificity

VA

VB
)

[SA]kA,2/KA,M

[SB]kB,2/KB,M
(42)

which is a special case of the more general expression in eq
41.

A simple extension of eq 39 is the suppression of enzymatic
activity by an inhibitor, as illustrated in Figure 3c, which can
be treated as a special case of the scheme in Figure 3b, when
one of the substrates can bind but cannot react. With the
nonreactive inhibitor, the self-consistent solution in eq 40
becomes

φ(s))
QS,32(s)QS,21(s)

1-QS,21(s)QS,12(s)-QI,21(s)QI,12(s)
(43)

where the subscript S represents the substrate and the subscript
I represents the inhibitor. To proceed, we assume the general
form for the waiting time distribution: QS,21(s) ) p(1 - sτ1 + ...),
QS,12(s) ) (1 - q)(1 - sτ2 + ...), QS,32(s) ) q(1 - sτ2 + ...) for
reactions with the substrate, and QI,21(s) ) (1 - p)(1 - sτ1

+ ...), QI,12(s) ) (1 - sτI,2 + ...) for the deactivation due to
binding with the inhibitor. Here, p is the probability of binding
with substrates and (1 - p) is the probability of binding with
inhibitors. Then, the average lifetime evaluated from φ(s) is

〈t 〉 ) φ(s) 0)) 1
pq

[τ1 + pτ2 + (1- p)τI,2] (44)

which reduces to eq 37 in the limit of p ) 1. For a rate process,
we can use the rate constants to define p ) k1

0[S]/(k1
0[S] + k1,1

0 [I]),
τ1 ) 1/(k1

0[S] + k1, 1
0 [I]), τ2 ) 1/(k-1 + k2), q ) k2/(k-1 + k2),

and τI, 2 ) 1/kI,-1. As a result, we obtain the rate expression

k) 1
〈t〉 )

k2[S]

[S]+KM(1+
kI,1

kI,-1
[I])

(45)

where the bracket term represents the competition due to the
inhibitor-enzyme binding.

B. Chain Reactions. The basic Michaelis-Menten mecha-
nism is the generic reaction scheme for enzymatic reactions and
can be extended to a chain of conformational changes21 as
illustrated in Figure 3d. Let us denote the PDF of the first
passage time starting from the n-th conformation to the final
product as φn(s). Then, we use the concept of branching to
construct the self-consistent relation

φn(s)) φn+1(s)Qn+1,n(s)+ φn-1(s)Qn-1,n(s) (46)

which is supplemented with the boundary conditions, φ1(s) )
φ2(s)Q21(s) and φL(s) ) QL+1,L(s) with L + 1 denoting the
product state. Starting from φ1(s), the self-consistent pathway
equation, eq 46, can be solved iteratively, giving

φ2(s)) φ3(s)Q32(s)
1

1-Q21(s)Q12(s)

) φ3(s)Q̃32(s)

φ3(s)) φ4(s)Q43(s)
1

1- Q̃32(s)Q23(s)

) φ4(s)Q̃43(s) (47)

which is closed at the final state with the terminal boundary
condition at n ) L. In eq 47, Q̃n+1,n represents the contribution
from all the states to the left of the nth state in Figure 3d, which
is a subscheme of the chain reaction. Interestingly, the iterative
solution eq 49 takes a generalized Michaelis-Menten form as
in eq 38 but with a redefined PDF Q̃.

To obtain an explicit expression for the rate constant, we
assume the general form for the waiting time distribution
functions Qn+1,n(s) ) qn(1 - sτn + ...) and Qn-1,n(s) ) (1 -
qn)(1 - sτn + ...), where qn is the branching ratio at state n and
τn is the lifetime at state n. Taking derivative of eq 46 with
respect to Laplace variable s, we obtain

〈tn 〉 ) 〈tn+1 〉 qn + 〈tn-1 〉 (1- qn)+ τn (48)

with the boundary condition q1 ) 1 and 〈t〉L+1 ) 0. Solving the
above equation iteratively, we arrive at an explicit expression
for the average turnover rate

〈t 〉 )∑
n)1

L

∑
i)1

n-1 τi

qi
∏
j)i+1

n ( 1

qj

- 1)+∑
n)1

L τn

qn

(49)

which is derived in Appendix D. Similar results for chain
reactions have been obtained in the literature using other
methods.11,24 As expected, as long as the first step Q21(s) is
characterized by a rate constant proportional to [S], τ1 ∝ 1/[S],
the overall rate will take the functional form of the Michaelis-
Menten expression in eq 37, although the definitions for k2 and
k-1 will depend on the details of subsequent reactions in Figure
3d.

The chain reaction can be further extended to an infinite one-
dimensional lattice, as shown in Figure 3e, which is a basic
model for molecular motors. Introducing the translational
invariance with repeated units and proper boundary conditions,
one can solve eq 46 self-consistently and give the velocity and
diffusion constant of a molecular motor along the one-
dimensional lattice.25-27

V. Example II: Fluorescence Emission

The second example models room-temperature fluorescent
emission from a molecular system with ground, excited, triplet,
and fluorescent emission states.13,28-30 As shown in Figure 4,
the complete kinetic scheme consists of the excitation from the
ground-state to the excited state, Qexc; relaxation from the
excited-state to the fluorescent emission state, Qrel; intersystem
crossing from the fluorescent state to the triplet state, Qisc; decay
from the triplet state to the ground state, Qt; all other nonra-

Figure 4. Kinetic models for fluorescence emission: (a) reduction of
the emission scheme on the left to the generic irreducible scheme on
the right, (b) possible subschemes associated with the excitation
transition, and (c) possible subschemes associated with nonradiative
decay.

Feature Article J. Phys. Chem. B, Vol. 112, No. 41, 2008 12873



diative decay from the emission state, Qnr; and spontaneous
fluorescent photon emission, Qf.31,32 Using the principle il-
lustrated in Figure 2c, we can denote all kinetic routes from
the ground to the fluorescent state as Qeg, all kinetic routes from
the fluorescent state to the ground state, except for fluorescent
decay, as Qge, and the fluorescent decay as Q′ge. Then, the
complex scheme reduces the irreducible generic scheme in
Figure 4a, which is the minimal scheme to represent a more
complex kinetics scheme, but the maximal scheme to define
the information content of fluorescence emission experiments.
Interestingly, the irreducible generic scheme in Figure 4a is
essentially the same as Figure 3a, although the physical
processes and measured quantities are different.

We now calculate the first passage time distribution for
detecting photons, φ(t), in the irreducible generic model. Starting
from the ground state, the system makes a transition to the
fluorescent state and then branches to the fluorescent channel
and the nonfluorescent channel. In the latter case, the system
returns to the ground-state without emitting a photon and restarts
the above renewal process. Following the reaction pathways,
we have the self-consistent equation

φ(s)) [φ(s)Qge(s)+Q′ge(s)]Qeg(s) (50)

which is solved to yield

φ(s))Q′ge(s)
1

1-Qeg(s)Qge(s)
Qeg(s))Q′ge(s)Q̃eg(s)(51)

where Q̃eg(s) represents all possible transitions from the ground-
state to the emission state without fluorescence. As expected,
eqs 51 and 36 share the same functional form since both
processes have three basic transitions and the simple generic
scheme. In Figure 4a, Q′ge(s) is the monitored transition, Qeg(s)
is the controlled transition, and Qge(s) is the hidden transition.
By means of eq 51, the measurement of φ(s) leads to the
determination of the waiting time distribution Qge(s), which
defines the maximal amount of information from single molecule
time series provided prior knowledge about the excitation
process and fluorescence emission process.

The complex waiting time distribution Qeg in Figure 4b can
be a direct excitation, Qeg(s) ) Qexc(s), an excitation convoluted
with relaxation, Qeg(s) ) Qrel(s)Qexc(s), or a two-level quantum
transition. The case of the quantum two-level system in Figure
4b has been studied intensively and can be solved on the basis
of the optical Bloch equation, which takes the form of 4-state
kinetics with two virtual states associated with quantum
coherence. The complex waiting time distribution Qge in Figure
3c, can be a simple nonradiative decay Qge(s) ) Qnr(s), transfer
through the intermediate triplet state Qge(s) ) Qisc(s)Qt(s), or
transfer through both the triplet state and other nonradiative
channels Qge(s) ) Qnr(s) + Qisc(s)Qt(s). Plugging these expres-
sions into eq 51, we get a formal expression for the photon
waiting time distribution φ(s) and thus all of the single molecule
measurements.

As shown above, eq 51 provides a complete theoretical
description of single molecule photon emission processes.
However, the application of eq 51 to real experiments can be
complicated by experimental details, such as background noise
and detector dark periods. With suitable models, we can
incorporate these realistic considerations into Q(s) and hence
apply our generic scheme in Figure 4 to the analysis of real
experiments.

General expressions can also be derived with the three waiting
time distribution functions expanded to second moments as
Qeg(s) ) (1 - sτeg + s2ηeg + ...), Qge(s) ) (1 -q)(1 - sτge +

s2ηge + ...), and Q′ge(s) ) q(1 - sτ′eg + s2η′eg + ...), where τ is
the average waiting time for each transition and η is the second
moment of the waiting time defined as η ) 2∫Q(t)t2 dt. Then,
using eq 51, we obtain the average interphoton distance

〈t 〉 )
τeg + (1- q)τge + qτ′ge

q
(52)

and the Mandel’s Q parameter

QM ) 1

〈t〉2[(τ′geτeg + η′ge)+
1
q

ηeg +
1- q

q
(τgeτeg + ηge)]-

1
〈t〉 [τ′ge + τeg] (53)

Assuming a Gaussian distribution, we can use the above two
expressions to evaluate P(N, t) as shown in Appendix B. The
same results for 〈t〉 and QM can also be obtained from the
interevent PDF

ψ(s))
QegQ′ge

1-Qeg[Qge +Q′ge]
(54)

using ψ(s) ) 1/s〈t〉 + QM/2. For all possible combinations of
Qeg and Qge in Figure 4, we simply substitute the relevant
waiting time distribution function Q’s, or corresponding τ’s and
η’s, into eqs 51-54 to find analytical expressions for photon
counting quantities. Here we discuss coherent excitations and
triplet blinking to demonstrate the generality of our expressions
for φ(t), ψ(t), 〈t〉 , and QM in terms of the three waiting time
PDF’s.

A. Coherent Excitation. Photon statistics of driven two-
level systems is a well-studied problem in quantum optics. For
simplicity of presentation, we will not include the explicit
solution but refer readers to standard textbooks and review
articles. Here, we discuss the relevance of quantum coherence
in our generic scheme analysis and explore quantum effects not
included in the optical Bloch equation.

• Since spontaneous emission is an incoherent classical decay,
the statistics of fluorescence photons is a standard chemical
kinetics problem, where quantum coherence is destroyed
whenever a photon is emitted. The spontaneous emission process
is completely captured by the waiting time distribution function
Qeg(s). The situation is quite different if absorption, stimulated
emission, and multidimensional spectroscopy33 is measured,
because such quantum processes cannot be treated directly as a
simple kinetics problem.17

• A particularly simple example is fluorescence emission from
driven two-level systems. With some approximations, the
simplest description of the system is the optical Bloch equation,
which defines a rate process for the density matrix or, ef-
fectively, a four-state classical kinetics problem.13,33,34 Since the
fluorescent measurement is related to the population at the
emission state, the diagonal matrix elements define two virtual
states associated with quantum coherence and can be incorpo-
rated into Qeg(s) as intermediate states. In fact, photon statistics
associated with the optical Bloch equation is a standard problem,
and the resulting photon density correlation and Mandel’s Q
parameter are given in the literature.35 The same argument also
applies to three-level systems, four-level systems, or generally,
N-level systems. Absorption and simulated emission are not
treated as simple classical kinetics because the processes are
associated with off-diagonal matrix elements.

• Typical time-scales of dissipative environments in con-
densed phase systems are not necessarily short enough to justify
the use of the Markovian approximation assumed in the optical
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Bloch equation. Many non-Markovian solutions are available
and can be generally considered as rate problems with higher-
order density matrices, e.g., {Fe, Feg, Feeg, ...}. Thus, our approach
remains applicable for non-Markovian dissipation with a
complex effective waiting time distribution function.

• Photon statistics have been computed recently for model
systems with the optical Bloch equation, but the implicit
approximations may cause difficulties in several situations,
including non-Markovian dissipation. For example, strong
electric fields and low temperatures may prevent the use of
the optical Bloch equation and will require more careful
treatments of quantum coherence and dissipation.

B. Triplet Blinking. As an example, we consider a three-
state scheme13,28-30 composed of a direct excitation, i.e., the
first possible subscheme in Figure 4b, the nonradiative
relaxation with the presence of a triplet state, i.e., the third
possible subscheme in Figure 4, and radiative decay. The
focus of the calculation is mainly on Qge(s), which involves
the triplet state and nonradiative channel. To simplify the
calculation, we assign the waiting time PDF’s with rate
constants, giving Qeg(s) ) kexc/(s + kexc), Q′ge(s) ) kf/(s +
kf + kisc + knr), and

Qge(s))
knr + kisckt/(s+ kt)

s+ knr + kisc + kf
(55)

with the fluorescence rate kf, excitation rate kexc, nonradiative
relaxation rate knr, intersystem crossing rate kisc, and triplet state
relaxation rate kt. Substituting these waiting time PDF’s for rate
processes into eqs 51 and 54, we have the distribution of
adjacent photons

φ(s))
kfkexc(s+ kt)

(s+ kexc)(s+ kt)(s+ kf + knr + kisc)- kexc[knr(s+ kt)+ ktkisc]

(56)

and the interphoton distribution

ψ(s)) φ(s)
1- φ(s)

)
kfkexc(s+ kt)

s[(s+ kt)(s+ kf + knr + kisc)+ kexc(s+ kt + kisc)]

(57)

Comparing second-order expansion of Q’s, we can identify τ
and η and then use eqs 52 and 53 to find the inverse of average
first passage time or the average fluorescent rate

k) 1
〈t〉 )

kfkexckt

kt(knr + kisc + kf)+ kexc(kisc + kt)
(58)

and the Mandel’s Q parameter

QM )
2kfkt(kisckexc - kt

2)

[kt(knr + kisc + kf)+ kexc(kisc + kt)]
2

(59)

The results have been obtained earlier by solving rate
equations13,29 and are presented here as a special case of our
general solutions in eqs 51-54.

The complicated expressions can be simplified to two limiting
cases. For kisckexc < kt

2, the decay from the triplet state is
sufficiently fast and the original reaction scheme reduces to
scheme 1 of Figure 5, which explains the antibunching mech-
anism. The reduced scheme yields k ) kfkexc/(knr + kisc + kf +
kexc) and QM ) -2kfkt/(kisc + knr + kf + kexc), which are
consistent with eq 57 as kt f ∞. For kisckexc > kt

2, the decay
rate from the triplet state is sufficiently slow so that the system
can be trapped and becomes dark. The alternating dark and
bright periods lead to triplet blinking, effectively causing photon
bunching. The original reaction scheme reduces to scheme 2
of Figure 5, where the branching rate to the triplet state is

γ) kisckexc ⁄ (kexc + kisc + knr + kf) (60)

The reduced scheme yields k ) kfkt/kisc and QM ) 2kfkt/(kexckisc),
which are consistent with eq 57 as kt f 0. From these two
limiting cases, we conclude that the sign of QM in a renewal
process reflects the competition of the two basic motifs:
antibunching caused by sequential kinetics and bunching caused
by branching kinetics.

C. Average Photon Counting Quantities. The average
fluorescence intensity is inversely proportional to the average
passage time, Ij ∝ 1/〈t〉 . If the triplet lifetime τt is long, eq 52 is
dominated by the second term in the numerator, giving

I ∝ 1
〈t〉 ≈ q

(1- q)τt
(61)

For the usual rate process, the branching ratio is given by q )
ktτ′ge. which is the quantum yield in the context of fluorescence
detection, i.e.

Figure 5. Three-state system consisting of ground, singlet, and triplet states. If the triplet relaxation rate is fast, the three-state model reduces to
scheme 1, an effective two-state model; if the triplet relaxation rate is slow, the three-state model reduces to scheme 2, which is responsible for
triplet blinking. In scheme 2, the branching rate γ is defined in text.
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q)
Q′ge(s) 0)

Q′ge(s) 0)+Qge(s) 0)
)

kf

kf + knr + kisc
(62)

The fluorescent lifetime distribution is given by Q′ge(t) as

f(t))
Q′ge(t)

∫Q′ge(t) dt
) (kf + knr + kisc) exp[-(kf + knr + kisc)t]

(63)

where the denominator is the branching ratio. It should be noted
that Q′ge(t) depends not only on fluorescence decay but also on
nonradiative decay. According to eq 34, the observed lifetime
is the sum of all decay channels, giving

kobs ) kf + knr + kisc ) kf ⁄ q (64)

If the quantum yield is large, i.e., q f 1, then radiative decay
dominates and the observed lifetime is approximately the
fluorescence lifetime, kobs ≈ kf. Our results here are limited to
the experimental setup of continuous illumination and, with
some modifications, can be extended to other experimental
set-ups.30,36,37

VI. Nonexponential Waiting Time Distributions and
Generic Schemes for Single Molecule Blinking

To understand the underlying physical mechanisms for the
nonexponential waiting time distribution, Q(t), we now discuss
several scenarios of dynamic and static disorder and their
implications for the measurements of blinking phenomena.

1. In the first scenario, the single molecule system selects a
new rate constant from a rate distribution F(k) for every
transition event, each transition event is exponentially distrib-
uted, and an average over many events along the trace yields
the nonexponential decay Q(t) ) ∫F(k) exp(-kt) dk. Q(t) thus
defined decays monotonically, ∂nQ(t)/∂tn > 0, imposing a
constraint on the experimentally observed waiting distribution
function. Single molecule measurements associated with this
type of disorder do not exhibit any memory effects.38

2. In the second scenario, the single molecule system
undergoes a dynamic process governed by operator L, which
gives rise to the nonexponential waiting time, Q(t) )

〈j|exp[-L t]|i〉. For a linear operator, the waiting time distribution
assumes the same functional form as the static disorder, Q(t) )
ΣiFi exp(-λit) ) ∫F(λ) exp(-λt), where λ is the eigenvalue of
the linear operator L. In this case, each transition follows the
nonexponential waiting time distribution Q(t), although statisti-
cally we cannot differentiate it from the first scenario. Diffusion-
controlled charge transfer39,40 or, generally, diffusion-controlled
reactions,41 is an example of this scenario.

3. In the third scenario, the single molecule system samples
a new rate constant generated from a rate distribution F(k) and
retains the rate for a sufficiently long time. Then, the system
exhibits a single exponential decay for this transition within a
reasonable experimental window and measurements averaged
over many windows or over many molecules are inhomoge-
neous, giving 〈A[K(t)]〉 ) ∫A[t, k]F(k) dk. This type of disorder
cannot be rigorously described by Q(t) and exhibits strong
correlations between different measurements, e.g., correlations
between fluorescence lifetime and intensity distribution. In a
sense, we can view this scenario as the slow modulation limit
of conformational fluctuations, i.e., slow on the experimental
time-scale.

4. The last scenario is concerned with conformational
fluctuations, multiple emission states, and multiple detection
probes. These are different physical realizations of nonrenewal
kinetics that can be formulated in a uniform language. The
present formalism is developed for renewal processes, but can
be extended to nonrenewal processes by writing the first passage
time distribution as a tensor, which can be used to predict
memory effects such as correlations between emission lifetimes,
intensity, and yields. We have kept a particular order of Q’s in
eqs 36 and 51, which is irrelevant for the current scalar analysis
but becomes important in the generalization to the tensor
version. These issues have been studied extensively for rate
processes and will be formulated in detail for continuous waiting
time distributions in a future publication.8

Similar to on-off statistics in enzymatic turnover reactions,
the correlation between photon emission events (lifetime and
intensity) provides insight into the emission state(s) and the
possible interconversion between these states. As illustrated in
Figure 6, there are three possible generic schemes of photon

Figure 6. Possible generic schemes of quantum dots emission kinetics: (a) single emission state, (b) one bright and one dark state, and (c) modulated
multiple emission states.
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emission kinetics in single molecule blinking.
• In the case of a single emission state, as described in Figure

6a, with the possible presence of the triplet state, the photon
emission is a renewal process as described in this article. As a
result, there will be no correlations between two photon lifetime
measurements, between two fluorescence intensities, or between
lifetime and intensity.

• In the case of one emission state and one dark state, as in
Figure 6b, interconversion between the two states is modulated
by a hidden process. If the interconversion is much slower than
the emission lifetime, there will be correlations between intensity
measurements at different times, but there will be no correlation
between different emission lifetime measurements.

• In the case of two or more modulated emission states with
or without the dark state, as in Figure 6c, there will be
correlations in intensity, in lifetime, and between intensity and
lifetime. As discussed in a recent paper,17 this type of correlation
is due to memory effects and is different from the photon
correlation measured by the Poisson indicator.

Experimental evidence from emission lifetime measurements
and from fluorescence intensity measurements suggests case (c)
for quantum dot blinking kinetics,42-44 although the nature of
emission states remains unclear. Here, we classify possible
kinetic schemes responsible for blinking phenomena into the
three generic schemes in Figure 5 without determining underly-
ing physical mechanisms. The experimental observation of
power-law waiting time distribution in quantum dots blinking45-48

and its physical interpretations39,49 are beyond the scope of the
current discussion and will be addressed elsewhere.

VII. Concluding Remarks

In this paper, we introduce the concept of the generic scheme:
an irreducible scheme that cannot be further simplified, given
experimental probes and prior knowledge, i.e., a scheme with
the minimal number of necessary links associated with waiting
time distributions. The implications of this concept are 2-fold.
(1) When a subscheme along the “backbone” or “skeleton” is
modified, the irreducible generic scheme is topologically invari-
ant and the formal expressions for single molecule measurements
retain the same functional form but with a different waiting time
distribution for the modified subscheme. (2) The irreducible
generic scheme imposes a limit on the amount of information
from single molecule experiments: One must not overinterpret
the irreducible generic scheme from the data, because different
kinetic subschemes can lead to the same waiting time distribu-
tion. Often, additional measurements are required to assign
explicit physical meaning to the resolved waiting time distribu-
tions. On the basis of these two considerations, we conclude
that the irreducible generic scheme is the maximal scheme for
analyzing single molecule data, but also the minimal scheme
for solving a more complex kinetic problem.

The reduction to the irreducible generic scheme is carried
out using two kinetic motifs, sequential and branching, and the
corresponding expressions in eqs 32 and 33, respectively. A
complex kinetic scheme often involves several motifs, locally
or globally, which may not be directly resolved from single
molecule measurements. Following the single molecule reaction
pathway(s), we are able to derive self-consistent pathway
expressions for the first passage time distribution(s), φ(t), and
thus obtain all other single molecule measurements. Each kinetic
loop, including a reversible link along the kinetic pathway,
defines a self-consistent equation, which is a convolution of
waiting time distributions associated with each link and first
passage time distribution(s) associated with relevant states. Our

self-consistent pathway solution is essentially the same as the
transfer matrix solution but is transferable to different variations
of the irreducible generic scheme, thus providing flexibility in
incorporating kinetic modifications. For example, enzymatic
turnover and fluorescence emission are analyzed systematically
and are found to share the same generic scheme composed of
a monitored link, controlled link, and unknown link, each
representing a simple elementary kinetic step or a complex
kinetic subscheme. The calculation of the first passage time
distribution lays the basis for computing all single molecule
quantities, including distribution of a sequence of events,
interevent correlation, and event number distribution, which are
discussed in detail in Sec. II. As a result, various measurements,
including turn-over rate, emission lifetime, and fluorescence
intensity, are computed using eqs 36 and 51. Possible scenarios
of nonexponential waiting time distributions and their conse-
quences on observed fluorescence intensity distribution, lifetime
distribution, and their correlations are discussed in the context
of blinking mechanisms.

In a different context, Ross and his collaborators have
pioneered the pulsed concentration response method and cor-
related metric construction to deduce complex reaction
mechanisms.50-52 In the linear response regime, these measure-
ments are equivalent to the first-order kinetics described in this
article. Thus, the concept of the generic scheme can be applied
to systematically reconstruct the connectivity in a complex
kinetic scheme using these response and correlation measure-
ments. For example, our solution for the first passage time
distribution, φij(t), in particular eq 46 for chain reactions, predicts
the response profile at the ith state induced by a pulse at the jth
state, giving both the peak and its position. In Appendix C, we
explore the short-time behavior of the waiting time distribution
as a tool to reveal the causal connectivity of the underlying
chemical network responsible for φ(t).

In the spirit of this work, we will extend the formulation of
generic schemes to a tensor notation8 adequate for multiple
emission states and/or multiple conformational channels, and
classify the information provided by various single molecule
measurements on the basis of generic schemes in order to
provide guidelines for the analysis and interpretation of single
molecule data.
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Appendix A. Equivalence between the Rate Formalism
and Waiting Time Formalism

Single molecule kinetic schemes are first-order rate processes
by definition and were first formulated in terms of rate matrices,
as shown in section IIA. In comparison, the waiting time
distribution formalism in section IIB renders much flexibility
in analyzing complex kinetic schemes. In fact, exponential rate
processes can be considered as a special case of general waiting
time distribution processes, whereas the more complex waiting
time distribution processes can always be decomposed into a
set of first-order rate processes. Therefore, we expect that the
two formalisms in sections IIA and IIB are equivalent and will
demonstrate this equivalency for the basic single molecule
measurements in Figure 1.

• The first step is to identify the waiting time distribution
function Qij(t) for a rate step as Qij(t) ) kij exp(-kjt) or

Feature Article J. Phys. Chem. B, Vol. 112, No. 41, 2008 12877



Qij(s))
kij

s+ kj
) [K

1
Is+KD] ij

(65)

The rate matrix is K ) KD - KOD, where KD,ij ) δijkj is the
diagonal part of the rate matrix and KOD,ij ) (1 - δij)kij is the
off-diagonal part of the rate matrix. Using Qij(s) in eq 65, we
evaluate the adjacent event distribution function in eq 2
explicitly, giving

φ(s))Q′ ij(s)[ 1
I-Q0(s)] ji

) [K′ 1
sI+KD] ij[ 1

I-K0,OD/(sI+KD)] ji

)K′ ij[ 1
sI+KD -K0,OD] ji

)K′ ij[ 1
s+K0] ji

(66)

which recovers eq 17. Here, the monitored transition rate K′
contributes to off-diagonal terms, so that K0,OD ) KOD - K′
and K0 ) KD - K0,OD are the rate matrices excluding the
monitored transition. Similarly, we can show

ψ(s))Q′ ij(s)[ 1
I-Q(s)]ji

)K′ ij[ 1
sI+K]ji

(67)

with K ) KD - KOD, and, consequently, the equivalence for
feV,m and geV,m.

• The key in demonstrating the equivalence between eqs 4
and 19 is the survival probability S(t), which is expressed in
terms of rates as S(s) ) ΣlGli(s) and in terms of Q(t) as S(s) )
[1 - φ(s)]/s. Using the rate expression for φ(s) in Eq. (2), we
have

S(s)) 1
s [1-K′ ik( 1

sI+K0
)

ki] ) 1
s∑lj

(sI+K0 -K′)lj ×

( 1
sI+K0

)
ji
)∑

l

[G0(s)]li (68)

where ΣlKlj ) 0 is used. A related quantity is the average first
passage time, defined as 〈τ〉 ) φ(0) ) Σl[K0

-1]li. We note that,
for the stationary solution, KF ) (K0 - K′)F ) 0, or,
equivalently, F ) K0

-1K′F. Summation over the both sides of
the expression leads to

1)∑
l

[K0
-1]liK′ ijFj ) 〈t 〉 K′ ijFj (69)

which yields the average rate 〈t〉-1 ) K′ ijFj.
• A more difficult task is to derive the probability of the first

monitored transition in the time-averaged initial condition, φ̃,
which is defined with Q(s) in eq 30 or with rate constants in eq
13. The PDF can also be rewritten in a different form as

φ̃(s))∑
l

K′ ijG0,jl(s)Fl )∑
kl

[-(sI+K)+ (sI+K0)]kj ×

[ 1
sI+K0] jl

Fl )∑
kl

[-sG0(s)+ I]klFl )

Lu [∑kl

Ġ0,kl(t)Fl] (70)

Thus, the PDF of the first event is the depletion rate of the
equilibrium distribution due to the sink K′ ij, i.e., φ̃(t) )
-ΣklĠ0, klFl, which is intuitively easy to understand. As a result
of eq 70, we can rewrite eq 30 as

φ̃(t))∑[- s
sI+K0

+ I]F)∑ 1
sI+K0

(K+K′)F

)∑ G0(s)K′F (71)

where Σ represents summations over both the final and initial
states. On the other hand, using eq 69, we rewrite eq 13 as

φ̃(t))
∑ l

G0,li

〈t〉 )∑ G0(s)K′F (72)

thus demonstrating the equivalence between eqs 30 and 13.

Appendix B. Time Averaged Initial Condition and
Poisson Indicator

We limit our formulation in section II to event-averaged single
molecule quantities and will include here a brief discussion of
time-averaged quantities including the Poisson indicator. The
key difference between the two counting conditions is the first
event, which is selected randomly along the time axis in time-
averaged initial condition. Thus the probability of the first event
is special is given by φ̃ defined in eq 30 and the PDF of a
sequence is defined in eq 31. As a result, and the probability
distribution is given by

P(N, t)) [∏
i)1

N ∫ti-1

t
dti]S(t- tN)fN(t1, t2, · · · , tN) (73)

except for the special case of P(0, t). The simplest way to obtain
an expression for P(0, t) is via the normalization condition,
ΣN)0

∞ P(N, t) ) 1, which in combination with eq 73 yields in
Laplace space

P(0, s)) 1
s
- ∑

N)1

∞

P(N, s)) 1
s [1- S(s)

〈 t〉 ] (74)

With P(N, t), we can evaluate all the moments 〈N(t)n〉 )
ΣN)0

∞ P(N, t)Nn, e.g.

Lu 〈N(t) 〉 ) 1

s2〈t〉
(75)

and

Lu 〈N2(t) 〉 ) 1+�(s)
1-�(s)

1

s2〈t〉
(76)

A simple approximation to evaluate P(N, t) is to assume a
Gaussian distribution and use the above two moments to obtain

P(N, t) ≈ 1/√2π∆(t) exp(- [N- 〈N〉]2

2∆(t) ) (77)

with the variance ∆(t) ) 〈N2(t)〉 - 〈N(t)〉2. Combining the first
two moments, we also obtain the expression for the Poisson
indicator often used in photon statistics analysis

Lu [〈N(t) 〉 Q(t)]) 2

s2〈t〉 [ φ(s)
1- φ(s)

- 1
s〈t〉 ]

) 2

s2〈t〉 [ψ(s)- 1
s〈t〉 ] (78)

where 〈N(t)〉Q(t) ) 〈N(t)2〉 - 〈N(t)〉2 - 〈N(t)〉 . Here, we use Q
to denote the Poisson indicator to avoid confusion with the
notation for the waiting time distribution function Q. The long
time limit of the Poisson indicator defines Mandel’s Q param-
eter, given as QM ) limtf∞Q(t) ) [〈t2〉 - 2〈t〉2]/〈t〉2, where the
moments of lifetime are written as 〈tl〉 ) ∫tlφ(t) dt ) (-1)l∂s

lφ(s
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) 0). The same result for the Mandel’s parameter can be directly
obtained from the small s-expansion, ψ(s) ) 1/s〈t〉 + QM/2 + ....
These results for the Poisson indicator have appeared earlier in
literature.14,17,19

The other two types of measurements discussed in section II
can also be evaluated with the time-averaged initial condition.
In particular, the probability of detecting a monitored event with
the time-averaged initial condition in a steady-state process is
a constant, g(t) ) 1/〈τ〉 . It then follows that the multiple time
number density in eq 22 becomes

g(t1, t2, · · · , tm))ψ(tm - tm-1) · · · ψ(t2 - t1)
1
〈t〉 (79)

and the counting cumulants in eq 24 becomes

Lu [Cm(t)]) m ! ψm-1(s)

s2〈t〉
(80)

The definition for time-averaged probability P(N, t) including
the expression for P(0, t) in eq 74 leads to the generating
function

P(z, s)) 1
s [1- 1- φ(s)

〈t 〉 s
1- eiz

1- φ(s)eizφ(s)] (81)

from which moments can be derived and can be shown to be
equivalent to cumulants in eq 80.

Appendix C. Initial Rise in Waiting Time PDF and
Causal Connectivity in Chemical Kinetics

A complex chemical reaction is composed of multiple
elementary reaction steps, leading to nonexponential behavior
in the waiting time probability distribution function (PDF). In
this appendix, we discuss a general relationship between the
short time behavior of φ(t) and the causal connectivity of the
underlying kinetic network: The initial rise of the waiting time
distribution determines the number of elementary rate steps
along the shortest pathway between any pair of states and is
independent of multiple pathways or the mass rate law.

Let us consider a simple experimental measurement of the
waiting time distribution: Given the stationary population at all
state initially, we perturb the state 0 by introducing additional
population, and then measure the response at state j. The
deviation of average concentration at state j, uj ) Fj-Fs,j, from
its stationary value Fs, j, follows the rate equation

u̇j )∑
i

kjiui - (∑
i

kij)uj (82)

At short times, we can ignore the depletion from the probed
state, because it has high-order time-dependence and thus write

uj ≈∫0

t ∑
i

kjiui dt ≈ ∑
i

kjitui (83)

Iterating the above expression, we obtain

uj ≈∑ [∏ knmt]u0 (84)

where the sum is taken over all the pathways between the initial
state 0 and the probed state j and the product is taken for each
step along a pathway. At short times, the deviation u is
dominated by the shortest pathway, and the initial rise in the
response function follows the algebraic law

lim
tf0

φ(t) ∝ lim
tf0

ψ(t) ∝ kLtL (85)

where exponent L is the minimal number of steps between the

perturbed state and the probed state, and kL ) ∏knm is the
product of the rate coefficients along the shortest pathway. Thus,
the initial arise of the waiting time distribution limtf0φ(t) ∝ tL

can be used to infer the shortest pathway between a pair of
states, and a series of such measurements between different pairs
of states can determine the causal connectivity of the underlying
kinetic network.

The proposed experiment is in fact the pulsed concentration
response method of Ross and co-workers50,51 and has been
analyzed extensively. But the initial-rise method has not been
applied because it requires accurate short-time measurements,
which are not feasible in bulk due to sensitivities to initial
preparation and spontaneous fluctuations in concentration.
However, the single molecule measurement of the waiting time
(i.e., first passage time, dwelling time) is nonperturbative and
does not require initial preparation or synchronization. Thus,
fast and repetitive single molecule detection can in principle
make it possible to use the proposed relationship of eq 85. It
should be emphasized that eq 85 is not limited to linear kinetics
as in single molecule measurements but applies in general to
any linear and nonlinear kinetic networks.

Appendix D. Turnover Time for Chain Enzymatic
Reactions

We first rearrange eq 48 in the following form

〈tn〉 -〈tn-1〉 ) (〈tn+1〉 -〈tn-1〉)qn + τn (86)

with initial conditions q1 ) 1 and 〈t〉L+1 ) 0. Introducing a new
variable bn ≡ 〈t〉n+1 - 〈t〉n, we can rewrite eq 86 as

bn-1 ) (bn + bn-1)qn + τn (87)

or equivalently

bn ) bn-1( 1
qn

- 1)- τn

qn
(88)

Iterating eq 88, we arrive an explicit solution

bn )-∑
i)1

n-1 τi

qi
∏
j)i+1

n ( 1

qj

- 1)- τn

qn

(89)

with the initial condition q1 ) 1 and b1 ) -τ1. Finally, we
notice that

∑
n)1

L

bn )-〈t1〉 + 〈tL+1〉 )-〈t1〉 ≡ -〈t〉 (90)

and immediately find the solution for the turnover time in eq
49.
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