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The dissipative vibrational dynamics of a symmetric triatomic ABA molecule is extensively studied in a
series of three papers. The momentum-dependent rotor model is used to describe the dynamical behavior of
an ABA molecule with a single 1:1 nonlinear resonant coupling. Four characteristic modes, including symmetric
normal modes, asymmetric normal modes, local modes, and quasi-local modes, are identified at different
energy regimes. Under the influence of thermal noise, an ABA molecule switches between the four distinct
modes intermittently along its dynamic trajectory, resulting in blinking of vibrational bond energy. The statistics
of these dynamic transitions (i.e., “vibrational blinking”) is obtained from numerical integration of stochastic
equations in this paper and will be analyzed within the theoretical framework of noise-induced symmetry
breaking and activated barrier crossing in the next two papers. This study demonstrates the rich dynamic
behavior of a highly nonlinear system in a dissipative environment and is instructive for understanding the
stability and stochasticity of energy localization in complex systems ranging from polyatomic molecules to
nanostructures and micromechanical oscillators.

I. Introduction
Vibrational motions of polyatomic molecules in condensed

phases and solvent effects on energy redistribution within a
solvated molecule are important questions in physical chemistry.
Theories of vibrational dynamics of isolated molecules have
been developed extensively during the last 50 years1–6 and are
now well-established; yet, little is known about vibrational
motions of molecules in condensed phases. The dramatic effects
of environmental fluctuations on the vibrational dynamics of
solvated molecules lead to dynamic symmetry breaking,7

normal-to-local mode transitions, and vibrational energy local-
ization.8 The dynamic transitions in vibrational behavior of
ABA-type molecules induced by thermal noise are the subject
of the present and two subsequent papers.

Vibrational dynamics of isolated polyatomic molecules can
be described in terms of normal modes (collective oscillations
of atoms) or local modes (independent bond oscillations). The
normal-mode description is usually applicable at low vibrational
energies where the small vibrations approximation is valid, while
the local-mode description better describes experimental spectra
at higher energies. The normal-mode dynamics is characterized
by strong bond-bond coupling and results in complete energy
exchange between bonds. The vibrational motion of atoms in
this regime is collective and bears the symmetry of the molecule.
In contrast, the local-mode regime is characterized by weak
coupling between bonds and thus allows us to consider bond
oscillations as being independent of each other. Because of the
weak coupling, the energy flow between bonds in this regime
is very slow, much slower than the normal-mode case,9 or even
absent from the classical point of view.10 In the local-mode
regime, once the bond is excited, the energy of the bond remains
localized in that bond, while in the normal-mode regime, this
energy will be transferred to another bond.

From the quantum mechanical point of view, no localization
of vibrational excitation (or, in other words, no local-mode

behavior) is possible since all eigenstates of the molecular
Hamiltonian should be invariant under the symmetry transfor-
mations of the Hamiltonian,11 and thus, in principle, all of them
should be of normal-mode type. In the case of isolated
molecules, the main difference between local-character and
normal-character11 quantum modes will be the time scale of
energy transfer between bonds; in case of local-character modes,
it is much slower than that in the case of normal character
modes.12 Yet, as shown in ref 11, local-character quantum modes
are extremely susceptible to the symmetry-breaking perturbation
and become localized even under small perturbation, while
normal-character quantum modes remain delocalized when the
same perturbation is added to the Hamiltonian. Such symmetry-
breaking perturbation may arise from fluctuations of the thermal
environment when the molecule is placed in a condensed phase.
In the present paper, we consider an ABA molecule at thermal
equilibrium with noisy environments and thus expect classical
analysis of the molecule’s vibrational dynamics to be generally
valid.

Classical dynamics of nonlinear systems has a long history
and was a subject of intense studies several decades ago, much
of which has been already published in monographs.1,13,14 The
theoretical methods for the description of dynamics of coupled
nonlinear oscillators were first developed and applied in the field
of celestial mechanics.15–17 They were then extensively applied
to a wide range of problems,14,18 including problems of chemical
physics such as vibrational dynamics of multiatomic molecules
and intramolecular vibrational energy transfer,10,19–21 semiclas-
sical quantization, calculation of vibrational eigenvalues,22–25 and
so forth. The most popular models for investigation of nonlinear
dynamics included weakly coupled oscillators or nonlinear
oscillators under resonant perturbation.14,18 In both cases, system
dynamics was shown to be governed by isolated linear or
nonlinear resonances,14,18,25 which appear between coupled
nonlinear oscillations. For a system of coupled identical
oscillators, dynamics is primarily guided by 1:1 resonance.
Coupled identical oscillators with 1:1 resonance were investi-* To whom correspondence should be addressed.
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gated by many authors10,18,23,25–30 and are also the central model
of the present paper.

The vibrational dynamics of isolated ABA-type molecules
has been studied extensively.9,10,12,26–29,31–33 The simplest model
of an ABA-type molecule used in the literature is two coupled
Morse oscillators, which represent local AB and BA bonds with
1:1 resonance coupling between them.9,10,18,20,29,34 From the
classical point of view, local AB and BA excitations that lie
within the width of the 1:1 resonance result in the normal-mode
stretching vibrational motion (either symmetric or antisymmet-
ric) and those that lie outside of the 1:1 resonance result in the
local-mode picture of stretching vibrations (see Figure 1). In a
particular energy range, an ABA molecule may exhibit two
different types of motion, normal-mode or local-mode, depend-
ing on whether or not there is a resonance between AB and BA
bonds, and may thus have a transition between these two
regimes. Transitions from normal modes to local modes have
been observed spectroscopically in molecules, such as in the
bending mode of C2H2.35 A clear local-mode behavior of the
H2S molecule at high energies was shown in experimental
studies.36 The local-mode vibrational behavior for highly excited
overtones of H2O26 and SO2

37 in their ground electronic states
was suggested from the analysis of experimental results.

Normal-to-local mode transitions and the phase space bifur-
cation structure were explored by many authors.27,28,38,39 Analysis
of local-to-normal mode transitions was generally applied to
isolated molecules, while the effects of the bath on small
molecules were generally studied ignoring bifurcation phenom-
ena. It is the goal of the present and subsequent papers to
combine bifurcation and dissipation phenomena and to study
the effect of the environment on the dynamics of a nonlinear
system with bifurcations.

The effect of noise on nonlinear systems is known to result
in many interesting phenomena such as activated barrier
crossing,40 stochastic resonance,41 noise-induced transport,42

noise-enhanced phase synchronization,43 noise-induced transi-
tions,44 and so forth. In the context of physical chemistry, noise-
induced dynamics was studied, for instance, in ref 45, where
the relaxation of nonlinear systems coupled to a bath of
environmental modes was examined, in ref 46, where chaotic
dynamics of internal molecular degrees of freedom was
considered as a bath to induce diffusion of the actions of the
high frequency modes, and in ref 47, in which the chaotic
dynamics of vibrational degrees of freedom in an ozone
molecule was shown to induce diffusion of the K projection of
the rotational angular momentum. The effect of chaos as a
perturbing noise has been also studied in the context of Arnold
diffusion,13,18 which results in nonconservation of adiabatic
invariants in weakly chaotic systems of more than two degrees

of freedom. The effect of noise on coupled nonlinear oscillators
was also studied for several mathematical models in numerical
studies in refs 48–51. Yet, to the best of our knowledge, no
theory has been proposed so far to describe noise-induced
dynamical transitions in coupled nonlinear systems, such as the
coupled Morse oscillator system studied here.

In a series of three papers, we discuss the effects of the thermal
environment on dynamic transitions in stretching vibrational
dynamics of ABA molecules. We show that under the influence
of thermal noise, the stretching vibrational dynamics of an ABA-
type molecule that is in thermal equilibrium with the environment
continuously switches between the symmetric normal-mode (paper
II,52), antisymmetric normal-mode, and local-mode dynamics (paper
III53). The present paper is organized as follows; in section II, we
consider the model of an isolated ABA model, which can be
reduced to the model of a hindered rotor. We discuss two types of
hindered rotor models, one with a momentum-independent poten-
tial, also known as a simple pendulum model, and the other with
momentum-dependent potential. For the present analysis of ABA
molecules in thermal equilibrium with the environment, only the
momentum-dependent model is valid. Different types of vibrational
modes in the ABA system, as well as their stability, are discussed
in section II. The model of the dissipative ABA molecule is
discussed in section III. Numerical integration of the dissipative
equation of motion and the statistics of dynamical transitions are
presented in section IV. We conclude with discussions in section
V.

II. Isolated ABA molecule

We first review the model of nondissipative ABA molecules.
The dynamics of isolated ABA molecules has been an important
subject extensively investigated by many authors.10,11,26,29 Much
of our review follows their formulations and notations.

A three-atom ABA molecule is usually represented as a
system of two coupled anharmonic Morse oscillators,9,10 where
each Morse oscillator represents the potential in the AB bond.
The ABA Hamiltonian reads

where Hi(xi, pi) ) (1/2)G11pi
2 + U(xi) is the Hamiltonian of a

particle with reduced mass 1/G11 ) 1/G22 ) mAmB/(mA + mB)
oscillating in the Morse potential U(x) ) D(1 - e-Rx)2. The
coupling between the Morse potentials is of momentum-
momentum type with the coupling strength G12 ) cos(θABA)/
mB, where mA and mB are masses of atoms A and B, respectively,
and θABA is the angle between chemical bonds AB and BA.

The coupling term in eq II.1 can be effectively represented
in action-angle variables {�1, J1, �2, J2}, keeping only the
important 1:1 nonlinear resonance10,29

where

Thus, the Hamiltonian for ABA molecules can be rewritten in
action-angle variables as

Figure 1. Stretching vibrational dynamics of ABA molecule; (a)
symmetric normal mode, (b) antisymmetric normal mode, (c) local
mode.

H ) H1(x1, p1) + H2(x2, p2) + G12p1p2 (II.1)

G12p1p2 ) V0 cos(�1 - �2) (II.2)
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where

As shown in ref 27, the same classical expression for the
Hamiltonian can be directly obtained from the quantum algebraic
Hamiltonian with a Darling-Dennison coupling term.

Introducing new canonical variables10

we reduce Hamiltonian (eq II.4) to the form

Physically J+ stands for the total number of vibrational quanta
in ABA molecules, while J- stands for the difference between
the vibrational quanta in AB and BA bonds. For low vibrational
energies, Ji/Jb , 1, we simplify V0 to the following expression

and thus obtain

J+ is a constant of motion since the Poisson bracket is {H, J+}
) 0; thus, the effective Hamiltonian to be considered is

where J+ enters as a parameter, which by definition (eq II.6) is
proportional to the total energy of the ABA molecule. Introduc-
ing W0 ) (|G12|/G11)(Ω/2) and M ) 4D/Ω2, the last expression
can be rewritten as

In principle, for some molecules, the constant W0 may also
include potential coupling; yet, in the model in eq II.1, we do
not consider potential coupling terms.

If J+ . J-, then eq II.11 can be simplified to the Hamiltonian
of the hindered rotor Hrot ) (p2/2M) + W0J+ cos(2ψ) and
recovers the simple pendulum model widely discussed in refs
9, 10, and 28. Yet, this is not the case in our problem. As it
will be shown below, the condition J+ . J- does not apply
when an ABA molecule is at thermal equilibrium with the
environment (J+ and J- are of the same order in this case), and
we need to consider momentum-dependent cosine potential
W0(J+2 - p2)1/2 cos(2ψ) explicitly, constituting the momentum-
dependent dynamic potential approach. The latter model has
been previously discussed in the literature in the context of
bifurcation analysis and semiclassical quantization.24,25,27,28,30,38

In the following subsections, we will consider these two cases
separately.

A. Simple Pendulum Model. We first review a simple
pendulum model. The Hamiltonian of a pendulum or a hindered
rotor is

where ψ is the rotation angle, J- ) Mψ̇ stands for the rotor’s
angular momentum, and U0 is a constant. Depending on the
value of energy Hrot, there are two kinds of motion, oscillation
and rotation.10,18 For Hrot < U0, the rotor will oscillate in the
cosine potential since it does not have enough kinetic energy
to overcome the potential barrier. For Hrot > U0, the motion of
the rotor is not constrained, and the type of motion is rotation.
The border trajectory between oscillations and rotations, the
separatrix, corresponds to Hrot ) U0 and follows the equation

The phase space representation of the hindered rotor model (eq
II.12) is illustrated in Figure 2.

As discussed previously, if J+ . J-, the ABA Hamiltonian
(eq II.11) has the form of eq II.12

The oscillatory motion of the rotor (eq II.14) (confined motion
in the cosine potential; see Figure 2) corresponds to the normal-
mode vibrational behavior of ABA molecules.10 In this regime,
J- (rotor’s momentum) periodically changes its sign, indicating
continuous energy exchange between AB and BA bonds. The
rotational motion of the rotor (eq II.14) corresponds to the local-
mode behavior of ABA molecules. In this regime, J- ≡ J1 -
J2 always has the same sign, indicating that there is no complete
energy exchange between bonds and thus each of them behaves
independently.10

From eq II.13, we thus find the maximum value of J- that
corresponds to the normal-mode behavior of ABA molecules

H ) H1(J1) + H2(J2) + V0 cos(�1 - �2) (II.4)

Hi(Ji) ) D(1 - (1 -
Ji

Jb
)2)

Ω ) √2DR2G11

Jb ) � 2D

R2G11

ωi ) Ω(1 -
Ji

Jb
)

(II.5)

J+ ) J1 + J2

J- ) J1 - J2

ψ+ ) (�1 + �2)/2
ψ- ) (�1 - �2)/2

(II.6)

H ) ΩJ+ -
Ω2J+

2

8D
-

Ω2J-
2

8D
+ V0(J+, J-) cos(2ψ-)

(II.7)

V0 ≈ 2D
G12

G11

1
Jb

√J1J2

)
G12

G11

Ω
2 √J+

2 - J-
2

(II.8)

H ) ΩJ+ -
Ω2J+

2

8D
-

Ω2J-
2

8D
+

G12

G11

Ω
2 √J+

2 - J-
2 cos(2ψ-)

(II.9)

H- ≡
Ω2J-

2

8D
-

G12

G11

Ω
2 √J+

2 - J-
2 cos(2ψ-)

(11.10)

H- ≡
J-

2

2M
+ W0√J+

2 - J-
2 cos(2ψ-) (II.11)

Hrot )
J-

2

2M
+ U0 cos(2ψ) (II.12)

J-
sx ) 2√MU0 sin(ψ) (II.13)

Hrot )
J-

2

2M
+ W0J+ cos(2ψ-) (II.14)
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The values of J- higher than J-max result in unconfined rotor
motion (local-mode behavior of ABA molecules). Equation II.15
stands for the width of 1:1 resonance (between AB and BA
oscillators) centered at J1 ) J2 ) Jres ) J+/2.18 In other words,
for a given value of J+ (for a given value of total energy of
ABA molecule), the molecule shows normal-mode behavior if
the values of J1 and J2 lie within the interval (J+/2) ( (MW0J+)1/2;
otherwise, the vibrational dynamics of the ABA molecule is of
local-mode type. Obviously, if (J+/2) < (MW0J+)1/2, AB and
BA bonds are always in resonance. Thus, we find the critical
value of J+ for the local-mode behavior18,29

The lower values of J+, J+ < J+c , do not allow any local
modes. In particular, the value of eq II.16 was used in ref 29 to
estimate the lowest local-type excitation in the molecule of H2O.

For actions J+ . J+c , we have J+ . J-max; thus, the
approximation J- , J+, which is necessary for the simple
pendulum model, is valid only for actions J+ sufficiently higher
than the critical J+c . Yet, as we show later, this condition does
not hold in the case of the dissipative ABA system at thermal
equilibrium with the environment (in this case, the situation is

just the opposite, J+ , J+c ), and we cannot approximate the
coefficient (J+2 - J-2 )1/2 in eq II.11 with J+; thus, the exact
treatment of momentum-dependent potential is needed.

B. Hindered Rotor with a Momentum-Dependent Poten-
tial. The Hamiltonian (eq II.11) has the following form

J+ is a constant. First, we note that the maximal kinetic energy
for a particle in this potential is Kmax ) J+2 /2M because of the
root in eq II.17. At energies lower than J+2 /2M, the particle
oscillates around the stable minimum (ψ, J-) ) (π/2 + πk, 0)
in the region bounded by ψa ) (1/2) arccos(J+/2MW0) + πk
and ψb ) π - (1/2) arccos(J+/2MW0) + πk (see Figure 3). Since
for the Hamiltonian (eq II.11) this minimum corresponds to ψ-
) π/2 + πk, the oscillations of ABAmolecules can be
considered as antisymmetric normal-mode motion. If the energy
of the rotor is higher than J+2 /2M (but lower than its maximal
energy W0J+), the cosine potential “flips” because of the
momentum dependence of its amplitude, and the oscillations

Figure 2. Phase space portrait of the hindered rotor model. As the
energy E increases, trajectories become unbounded. The separatrix
between oscillations (bounded motion) and rotations (unbounded
motion) is shown in bold.

Figure 3. Phase space representation of the hindered rotor with a
momentum-dependent potential, eq II.17 in the case when J+ < J+

c̃ .
The rotor energy E ) J+2 /2 corresponds to the separatrix (shown in
bold) between the stable oscillations around � ) π/2 + πk (antisym-
metric normal mode of ABA molecule) and the stable oscillations
around � ) πk (symmetric normal mode of ABA molecule). No
rotational motion (unbounded trajectory) is possible for J+ < J+

c̃ . Thus,
no local-mode behavior of ABA molecules is possible at this value of
J+; however, both symmetric and antisymmetric normal modes are
stable in this case.

J-
max ) 2√MW0J+ (II.15)

J+
c ) 4MW0

) 8D
Ω

|G12|

G11

(II.16)

H )
J-

2

2M
+ W0√J+

2 - J-
2 cos(2ψ) (II.17)
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of the rotor become trapped around ψ ) πk, which now
corresponds to the symmetric normal-mode oscillations of ABA
molecules (Figure 3). This can be seen from the linear stability
analysis38 of equations of motion

The system of differential eqs II.18 and II.19 has fixed points
J̇- ) 0, ψ̇ ) 0 at (J-, ψ) ) (0, πn/2), n ) 0, (1, (2, ..., and
(J-, ψ) ) (((J+2 - (MW0)2)1/2, πn). To analyze the stability of
fixed points, we study the eigenvalues of stability matrix

At points (J-, ψ) ) (0, π(k + (1/2))), k ) (1, (2, ..., the
eigenvalues of the stability matrix are λ1, 2 ) ((-4W0(J+ +
MW0)/M)1/2 and thus are purely imaginary. The point (J-, ψ) )
(0, π(k + (1/2))) is therefore an elliptic fixed point with purely
rotational phase space flow around it. For the Hamiltonian (eq
II.11), this point corresponds to antisymmetric normal-mode
oscillations, which are thus always stable. The fixed points
(J-, ψ) ) (0, πk), k ) 0, (1, (2, ..., correspond to the
eigenvalues λ1, 2 ) ((4W0(J+ - MW0)/M)1/2 and are purely
imaginary for J+ < MW0 and real for J+ g MW0 and are thus
either elliptic or hyperbolic (saddle) points, respectively. For
the Hamiltonian in eq II.11, this point corresponds to symmetric
normal-mode oscillations, which are therefore stable under
certain conditions (see below). We note that for a given J+ <
MW0, the Hamiltonian in eq II.17 has simultaneous stable points
at ψ ) πk/2 and πk. These points correspond to minima and
maxima (!) of the cosine potential cos(2ψ). Since a stable motion
is usually thought of as the motion around a minimum, we use
the term “potential flip” when describing switching of oscilla-
tions around the points ψ ) πk/2 to the oscillations around the
points ψ ) πk.

At the value of J+ ) J+
c̃ ≡ 2MW0, boundaries ψa and ψb (see

above) coincide, and the first unbounded trajectory appears (see
Figure 4). At greater values, J+ > J+

c̃ , free rotation of the rotor
(unbounded trajectory) becomes possible, which suggests the
appearance of local-mode behavior of ABA molecule. By
comparing J+

c̃ with J+c from eq II.16, one can see that the
model of the hindered rotor with a momentum-independent
potential overestimates the critical value of J+ 2-fold. The correct
value for the critical parameter is thus

and it is this parameter that determines whether the normal-to-
local mode transition for ABA molecules is possible.

Interestingly, the remaining two fixed points at (J-, ψ) )
(((J+2 - (MW0)2)1/2, πn) lead to the appearance of the islands
of stability, denoted in Figure 4 as QL. They obviously are
present only for the values of J+ which are greater than or equal
to

At values of J+ higher than J+
c̃̃ , the corresponding eigenvalues

of the stability matrix are λ ) ((4((MW0)2 - J+2 ))1/2/M, which
are purely imaginary in the considered range, and therefore, the
bounded motion will occur around the stable points (J-, ψ) )
((((J+)2 - (J+

c̃̃ )2)1/2, πk). These oscillations correspond to the
symmetric normal-mode oscillations of ABA molecule since
in this case, the equilibrium value of ψ- in the Hamiltonian in
eq II.11 is πk. However, the equilibrium value of J- in eq II.11

is now (((J+)2 - (J+
c̃̃ )2)1/2 * 0! Thus, an ABA molecule in this

regime maintains energy separation between AB and BA bonds,
and no energy exchange between AB and BA bonds is possible

Figure 4. Phase space representation of the hindered rotor with a
momentum-dependent potential, eq II.17, in the case when J+ ) J+

c̃ .
At this value of J+, the first unbounded trajectory becomes possible
(shown in bold), which corresponds to the appearance of local-mode
behavior of the ABA molecule. The region of phase space denoted as
QL corresponds to quasi-local-mode behavior of the ABA molecule
(see text).

dJ-
dt

) 2W0√J+
2 - J-

2 sin(2ψ) (II.18)

dψ
dt

)
J-
M

- W0

J-

√J+
2 - J-

2
cos(2ψ) (II.19)

M ) |- ∂
2H

∂ψ∂J-
- ∂

2H

∂ψ2

∂
2H

∂J-
2

∂
2H

∂J-∂ψ
|

J+
c̃ ) 2MW0

) 4D
Ω

|G12|

G11

(II.20)

J+
c̃̃ ) MW0

) 2D
Ω

|G12|

G11

(II.21)
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(i.e., J- ) J1 - J2 never changes its sign in this regime). We
thus call this regime the quasi-local-mode regime. The mech-
anism of confined motion with constant-sign momentum is
illustrated in Figure 5 and is due to the momentum dependence
of the potential surface. Both the local-mode regime and quasi-
local-mode regime provide spacial localization of the vibrational
energy within the bonds; see Figure 7.

The appearance of quasi-local modes and their dynamic nature
have been demonstrated in the studies of isolated nonlinear
systems.28,38 Quasi-local modes were observed in ref 38 in the
system of coupled Morse oscillators (see Figure 1) and cor-
respond to the stationary phase points fp(3) and fp(4) defined
there. Quasi-local modes were also observed analytically in the
bifurcation analysis of the algebraic model of an ABA mol-
ecule28 as the branches µ ) cos(R) in Figure 8 of ref 28; yet,
these modes were not discriminated there from the local modes.

We also emphasize that the critical value J+
c̃̃ of J+ for the

appearance of a local-mode type of dynamics in the momentum-
dependent hindered rotor model (eq II.17) is 4 times less than
the critical value J+c for the appearance of local modes in the
momentum-independent hindered rotor model (eq II.12) (i.e., a
simple pendulum model).

To summarize the discussion of the present section, in the
following two subsections, we characterize four different types
of modes that can be found in a system of two identical
anharmonic oscillators coupled via 1:1 resonance term (eq II.4).

C. Antisymmetric and Symmetric Normal Modes. The
system in eq II.4 oscillates in a normal-mode way if the local
excitations J1 and J2 lie within a particular resonance zone. This
resonance zone is determined by the inequality -W0J+ <
H-(ψ-, J-, J+) < W0J+, where H- is given by eq II.11. From
the point of view of a classical dynamic potential, such energies
H- of the rotor are insufficient to overcome the dynamic
potential barrier, and thus, only confined motion within the
dynamic potential is possible, which constitutes the normal-
mode dynamics.

If the total energy of the system is such that (J+2 /2M) < W0J+,
that is, J+ < J+c , then the resonance zone splits into two subzones
that correspond to the stable antisymmetric (-W0J+ <
H-(ψ-, J-, J+) < (J+2 /2M)) and the stable symmetric ((J+2 /2M)
< H-(ψ-, J-, J+) < W0J+) normal modes, respectively; see
Figure 6. The symmetric normal mode becomes unstable for
the total ABA energies when J+ > J+

c̃ .

In the normal-mode regime, the phases of both Morse
oscillators are constrained to oscillate either around ψ- ) π/2
in the case of the antisymmetric mode or around ψ- ) 0 in the
case of the symmetric mode; see Figure 7. In this regime, Morse
oscillators exchange their energies completely. The period of
one complete exchange of Morse oscillator energies can be
found as the period of oscillation in the momentum-dependent
cosine potential. This period is given by54

where E- is the energy of the rotor (eq II.4).
D. Local and Quasi-Local Modes. The system in eq II.4

oscillates in the local-mode regime if the local excitations J1

and J2 of the Morse oscillators lie outside of the resonance zone,
that is, if W0J+ < H-(ψ-, J-, J+). The last inequality can be

satisfied only for total energies such that J+ > J+
c̃̃ ; therefore,

the local-mode behavior is available only for particular values

Figure 5. An illustration of the quasi-local mode. It is a motion around
the closed loop, which consists of an oscillation in the potential along
the horizontal axis and an oscillation of the amplitude of the cosine
potential along the vertical axis. When combined together, these
oscillations produce confined periodic motion with a constant-sign
momentum.

Figure 6. The allowed energies E- of the hindered rotor system (eq
II.17) and the corresponding vibrational dynamics of an ABA molecule

for different values of parameter J+; (a) J+ < J+
c̃̃ , (b) J+

c̃̃ < J+ < J+
c̃ , (c)

J+
c̃ < J+. The capital letters in the figure denote stable vibrational

modes, antisymmetric (A), symmetric (S), quasi-local (QL), and local

(L). The maximum allowed energy for the rotor is E-
max ) (J+2 + J+

c̃̃ 2

/2M, M ) 4D/Ω2.

Figure 7. The typical behavior of ψ- ≡ (�1 - �2)/2 and J1 and J2 for
different types of vibrational modes, normal antisymmetric (A), normal
symmetric (S), quasi-local (QL), and local (L). Here, �i and Ji, i ) 1
and 2, are action-angle variables of AB and BA local bond oscillators.
Solid lines in the top plots represent J1(t), and dashed lines represent
J2(t). One can observe localization of J1 and J2 in the case of local-
mode (L) and quasi-local-mode (QL) oscillations. The values of
parameters were chosen from the appropriate intervals of Figure 6.

T(E-) ) 1
2 I

dJ-

�W0
2(J+

2 - J-
2 ) - (E- -

J-
2

2M)2

(II.22)
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of J+. In this way, J+ plays a role of control parameter (see
Figure 6). There are two types of local modes that we define.
One is the true local mode that corresponds to the oscillations
with unconstrained phases of Morse oscillators (see the bottom
right plot in Figure 7), which we call the local (L) mode. The
other is the type of local mode that still allows for the lo-
calization of J1 and J2 within the corresponding Morse oscillators
(no complete exchange between J1 and J2) while the phases of
the Morse oscillators remain constrained as in the case of the
symmetric normal mode, oscillating around ψ- ) 0; see Figure
7. We therefore call this mode a quasi-local (QL) mode. In early
ref 28, this type of mode was not distinguished from the local
mode.

QL modes correspond to the islands in phase space with the
energy H- in the range of max{W0J+, (J+2 /2M)} < H-(ψ-, J-, J+)

< E-
max, where E-

max ) (1/2M)(J+2 + J+
c̃̃ 2) is the maximum value

of H-(ψ-, J-, J+) for a given J+ > J+
c̃̃ 2. L modes correspond to

the energy interval W0J+ < H-(ψ-, J-, J+) < (J+2 /2M). While
the phase space available for the QL modes (small islands) is
much smaller than the phase space available for the L modes
(unbounded trajectories), the inclusion of QL modes is important
since they allow the local-mode behavior to appear at total

energies of an ABA system (J+min ) J+
c̃̃ ) approximately twice as

low as the minimum total energy required for the L mode to

appear, J+min ) J+
c̃ ) 2J+

c̃̃ .

III. ABA Molecule Coupled to the Thermal Environment

Now, we consider a dissipative ABA molecule in thermal
equilibrium with the environment. One may think that at thermal
equilibrium, the vibrational dynamics of ABA molecules will
be of the normal-mode type since both AB and BA oscillators
relax to the same thermal energy kT and thus should be always
in resonance with each other. On the other hand, as we have
discussed earlier, the normal-mode behavior of ABA molecules
is equivalent to the confined motion in the cosine potential. It
is well-known that addition of noise will lead to the escape from
any potential of finite depth;40,55 therefore, ABA molecules
will switch its dynamics between normal- and local-mode
behavior.

We describe the coupling to the bath in terms of a set of
Harmonic oscillators56

We assume that AB and BA bond oscillators are subjected to
independent noises from the environment. The resulting equa-
tions of motion for ABA molecules, that is, for x1, p1, x2, and
p2 are

We consider thermal noise as a white noise with friction
kernel Γ(t) ) γδ(t)/G11 and thus having equations of motion

where

In the present problem, we assume that the dissipative ABA
molecule retains well-defined oscillating dynamics. This imposes
a restriction to the allowed values of friction and temperature;
both of them should be small in order to not disturb the
oscillatory nature of the system, that is, kT , D and γ , Ω, or
more precisely52 kT , 4D(|G12|/G11) and γ , Ω[(|G12|/G11)(kT/
2D)]1/2. The last two inequalities result in (J+)/J+c ) 2kT/ΩJ+c

, 1, indicating nonapplicability of a simple pendulum model.
In the following paper,52 we further simplify the stochastic eq
III.3 and derive the effective Langevin equation in action-angle
variables. In this paper, we present the numerical results obtained
from the integration of eq III.3.

IV. Numerical Results

Under the influence of noise, the rotor escapes from the cosine
potential, and therefore, an ABA molecule escapes from its
dynamic coupling potential, breaking the symmetry of oscilla-
tions or resulting in a normal-to-local mode transition. Once in
the local mode, the local excitations relax to equilibrium energies
and again form a normal mode. Thus, a molecule continuously
switches its type of vibrational behavior. The typical dynamic
transitions can be seen in Figures 8-10, which were obtained
from the integration of stochastic eq III.3 for the model of the
water molecule in eq II.1. These figures represent individual
types of transitions, and a single long stochastic trajectory
contains all of the shown types of dynamic transitions.

The Euler integration scheme57 was used to numerically solve
the stochastic differential eq III.3. The parameters of the ABA
molecule were chosen to be those of the H2O and D2O models
given in ref 10. The parameters of the thermal environment
varied from 1/75 to 1/1000 for kT/D and from 1/2000 to 1/12000
for γ/Ω, in accordance with the discussion at the end of the

H ) H1(x1, p1) + H2(x2, p2) + G12p1p2 +

∑
j

(Pj
2

2
+ 1

2
ωj

2(Qj -
γj

ωj
2
x1)2) +

∑
j

(Pj′
2

2
+ 1

2
ωj′

2(Qj′ -
γj

ωj′
2
x2)2) (III.1)
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t
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dx2
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) -
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dx2
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dx1
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) G11p1 + G12p2
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) -

dU(x1)

dx1
- γp1 - γ

G12

G11
p2 + F1(t)

dx2
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) G11p2 + G12p1

dp2
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) -

dU(x2)

dx2
- γp2 - γ

G12
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p1 + F2(t)

(III.3)

〈F(t)F(t')〉 ) 2γkT
G11

δ(t - t') (III.4)
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previous section. The initial value of the total energy and the
initial value of J+ were always placed at thermal equilibrium,
that is, J+(0) ) 2kT/Ω. The initial values of J- and ψ-, although
not so important, were chosen to correspond to the purely
antisymmetric normal mode, ψ- ≡ (ψ1 - ψ2)/2 ) π/2, with J-
) 0. The initial conditions for the original phase space
coordinates x1(0), x2(0), p1(0), and p2(0) were obtained using
the transformations xi ) xi(ψi, Ji) and pi ) pi(ψi, Ji) for the Morse
potential.29 The typical behavior of parameters ψ-(t), J-(t), and
J+(t) along the stochastic trajectory of the antisymmetric normal

mode of the H2O model is shown in Figure 11; the periodic
oscillations of J-(t) represent normal-mode energy exchange
between AB and BA bonds, and the stable oscillations of ψ-(t)
around π/2 indicate the antisymmetric normal mode. Figures
8-10 were obtained in a similar way.

In these figures, the dynamic transition events were recorded
along a single stochastic trajectory for fixed values of T and γ.
The normal-to-local mode transitions were observed using two
different methods. The first method is a straightforward “visual”
observation, based on recording the moments of time when the

Figure 8. A typical trajectory that shows normal-to-local mode transitions in ABA molecules. The type of local mode here is the L mode. This
type of local-mode behavior corresponds to free rotations of the hindered rotor above the cosine potential (see discussion in section II), which can
be observed in the bottom plot for ψ-(t). The value of the action variable that corresponds to thermal energy is indicated in the top plot with an
arrow.

Figure 9. A typical trajectory that shows normal-to-local mode transitions in ABA molecules. The type of local mode here is the QL mode (see
section II). In this case, bond vibrational energies become localized; yet, the oscillations of AB and BA bonds are cooperative as ψ- oscillates
around π (in this figure), implying equal phases of AB and BA bond oscillations. The value of the action variable that corresponds to thermal
energy is indicated in the top plot with an arrow; the localized vibrational energy is twice the thermal energy.
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Figure 10. A typical trajectory that shows antisymmetric-to-symmetric normal-mode transitions in ABA molecules. The top plot represents the time
dependence of the local action variables J1 and J2, while the bottom plot shows the corresponding time dependence of the angle variable ψ-. The value
of ψ-, that is, half of the difference between the phases of oscillations of AB and BA bonds, changes from oscillations around ψ- ) π/2 to oscillations
around ψ- ) 0, indicating the transition from antisymmetric normal-mode to symmetric normal-mode vibrations of the ABA molecule.

Figure 11. A typical trajectory for the antisymmetric normal-mode oscillation of ABA molecules. The time dependence of the AB bond action J1

and the BA bond action J2 is shown in the top plot; as can be seen from the plot, bonds continuously exchange their energies. The middle plot
represents the difference between the bond’s angle variables; stable oscillations around ψ- ) π/2 indicate antisymmetric normal-mode behavior.
The bottom plot represents equilibrium fluctuations of J+ along the trajectory.
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local bond actions J1(t) and J2(t) do not intersect for more than
1.5 of their characteristic oscillation period (eq II.22). The

moments when they stop to intersect correspond to the normal-
to-local mode transitions, and the moments when they start to
intersect correspond to local-to-normal-mode transition (see
Figures 8 and 9). The other method to observe normal-to-local
mode transitions is to trace the rotor’s energy E-(t) (eq II.4)
and to record the moments of time when it becomes larger than
W0J+(t). This method by itself turns out to be noisy and less
reliable than the previous one. In the numerical simulations,
we used the combination of two methods to trace normal-to-
local mode transitions.

The antisymmetric-to-symmetric (A-S) normal-mode transi-
tions (Figure 10) were observed by tracing the angle variable
ψ-(t) and checking whether the vibrational dynamics is still of
the normal-mode type (described in the previous paragraph).
The value of ψ- in the normal-mode vibrations oscillates either
around π/2 + πk (antisymmetric mode) or around the values π
+ πk (symmetric mode). Therefore, every time ψ-(t) oscillating
around πk/2 crosses the points π(k ( 1)/2, the A-S or S-A
normal-mode transition occurs, depending on whether k is even
or odd. By keeping track of every k, it is possible to coarse-
grain the A-S and S-A transitions, preserving only the
equilibrium values of ψ-(t), as shown in Figure 12. This allows
for easy collection of the statistics of the lifetimes of S and A
modes by collecting the statistics of time intervals represented
by straight lines in Figure 12. The typical distribution densities
of the lifetimes of the A and S modes are shown in Figure 13.
One can see a nonexponential decay of the distribution densities,
which points to a possible underlying diffusion mechanism that
governs dynamic transition. The statistics of times for the local-
to-normal-mode transitions were collected using the method
described in the previous paragraph. Their typical distribution

Figure 12. ψ-(t) and its equilibrium values ψ-
eq(t) for symmetric-

antisymmetric normal-mode transitions; the unit of time is 1/Ω.

Figure 13. Probability distribution densities for the lifetimes of symmetric (S) and antisymmetric (A) normal modes for the model of H2O at kT/D
) 1/75 and γ/Ω ) 1/12000. Solid lines are the guiding lines for the eye. The unit of time is 1/Ω.

Figure 14. Probability distribution densities for the intervals of time that the H2O molecule spends in the normal-mode regime (N), that is, in
either the antisymmetric or symmetric normal mode, and local-mode regime (L), that is, in either the local or quasi-local mode. The parameters of
the simulation were kT/D ) 1/75 and γ/Ω ) 1/12000. Solid lines are the guiding lines for the eye.
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densities are shown in Figure 14. Different from the normal-
mode distribution density of the lifetimes, the local-mode
probability density can be approximately described by a single
exponential decay.

We can also calculate the mean lifetime of a particular mode
as a function of temperature T and friction coefficient γ. The
average times that the H2O molecule spends in a particular mode
along a single trajectory are shown in Figure 15 for different
temperatures and friction strengths. The mean lifetime of the
antisymmetric and symmetric normal modes monotonically
grows with 1/γ, as one should have expected at low frictions.
The dependence of the lifetimes on the temperature is weak
and is weaker for the antisymmetric normal mode than that for
the symmetric normal mode. In the next two papers, we
analytically derive the observed numerical results.

V. Discussion

In the present paper, we consider classical vibrational
dynamics of an ABA-type molecule represented as the coupled
two anharmonic oscillators. The stretching dynamics of the ABA
molecule can be effectively reduced to the dynamics of a
hindered rotor. Yet, different from the widely used simple
pendulum model with a momentum-independent potential, the
low-energy regime of the ABA molecule at thermal equilibrium
requires explicit consideration of the momentum-dependent rotor
potential. The momentum-dependent rotor model not only
completely describes the local- and normal-mode behavior of
ABA molecules but also captures several interesting phenomena
such as the conditional stability of the symmetric normal-mode
and the appearance of quasi-local modes. Both local modes and
quasi-local modes correspond to the classical localization of
vibrational excitations within the AB and BA bonds of the ABA
molecule, which remain localized an infinitely long time in the
absence of external noise. Yet, while phases of AB and BA
bond oscillations are unconstrained in the local-mode regime,
they are constrained in the quasi-local-mode regime, similar to
the phase locking in the normal-mode case (the reason for

“quasi”). The appearance of quasi-local modes is the result of
momentum dependence of the potential in the hindered rotor
model and is not a result of a higher-order coupling resonance,
which otherwise would result in a different relation between
local phases �1 and �2.

The coupling to the environment disturbs the ABA molecules
to change its vibrational dynamics. The effect of noise can be
viewed from the perspective of Kramers escape mechanism.40

The normal-mode dynamics of an ABA molecule effectively
corresponds to the oscillation of the rotor in the cosine potential.
Under the influence of noise, the rotor is perturbed to leave its
bounding potential and escapes from it. Since the motion of
the rotor above the cosine potential corresponds to local-mode
dynamics of an ABA molecule, the effect of noise thus results
in the transition from the normal-mode behavior to the local-
mode behavior. Once in a local mode, local excitations relax
back to their equilibrium energies kT, again forming a normal
mode. In this way, switching between normal- and local-mode
dynamics is observed in our numerical experiments. In a similar
and yet less transparent way, the noise from the environment
induces symmetric-to-antisymmetric normal-mode transitions,
breaking the symmetry of normal-mode oscillations. The
statistics of these transitions was found to be nonexponential,
which may indicate an underlying diffusion mechanism. Non-
exponential statistics of intramolecular dephasing has been
previously observed experimentally58,59 and in quantum simula-
tions of polyatomic molecules.60

In the two subsequent papers,52,53 we analytically describe
the observed noise-induced symmetry-breaking and normal-to-
local mode transitions and explicitly derive their statistics.
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