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The large amount of statistical data collected by single biomolecule experiments often demonstrates complex
and non-Markovian relaxation over many time scales. Analyzing and interpreting these data is a major challenge
because of the inherently statistical noise and the lack of definite theoretical descriptions or computer simulations
on biologically relevant time scales. This paper reports one of the first complete sequence analyses of a
single photon experiment on the flavin protein to determine an underlying physical picture for protein motions
on the millisecond to second regimes. The robustness of Bayesian information analysis combined with the
nonparametric maximum entropy method (MEM) incorporates all available information of the single-molecule
data sequence and maximizes our ability to test the legitimacy of possible models. Our analysis of the
experimental data is consistent with the stochastic Gaussian diffusion model where the slow protein motions
are modeled as a collection of over-damped diffusive normal modes and reveals non-universal and distinct
dynamic features that are specific for protein functions.

I. Introduction

Single-molecule methods are widely applied to the study of
biomolecules.1-11 The dynamics of biomolecules revealed by
these single-molecule techniques are complex with fluctuations
on many time scales. Data collected from these experiments
are inherently noisy with contributions from background
photons, the photon statistics of the system (shot noise), and
the stochastic nature of protein dynamics.12-17 These stochastic
contributions to the data cause difficulties in interpreting single-
molecule data and necessitates the applications of robust
statistical methods.

This paper uses a Bayesian/information theory framework18

to examine a possible model for a flavin protein (Fre) experiment
by Xie and co-workers.19 The experiment collects single photons
emitted from the system and shows photon correlations up to
100 ms time scales. Maximum entropy analysis (MEM) shows
long-time multiexponential relaxation.20,21The MEM fit avoids
using a predetermined functional form, so it does not introduce
artificial physics through a parametric fit. Since many models
may result in the same correlation functions, such as a Gaussian
diffusion model or a two-state model with complex waiting
times, the correlation function only contains a limited amount
of information relevant to understanding the mechanisms of
biomolecules. Confirmation of the validity of the physical
picture motivates the examination of the entire data sequence.
By combining physical insight with statistical methods, this
paper shows that modeling the protein’s motion as a collection
of over-damped diffusive normal modes is consistent with the
entire data sequence. Although diffusion in multidimensional
Gaussian potentials can be cast into a generalized Langevin
equation with a smooth relaxation spectrum for the correlation
function of the random force, the picture of a connected network
of amino acids has physical appeal since it explains the Gaussian
nature of the long-lived correlations. This harmonic diffusion
picture is a dynamic analogue of the elastic network models

used in determining the static root-mean-squared (rms) displace-
ments of functional groups in proteins.22-25

This analysis is one of the first to utilize the entire data
sequence of a single photon experiment on a single protein to
determine a physical picture. Since the model fit incorporates
all of the available information, one maximizes the ability to
test the legitimacy of models. The robustness of Bayesian
analysis combined with the nonparametric MEM analysis gives
a complete description of the probed dynamics of Fre. After
discussing the experiment in Section II, we perform simple
preliminary statistical analysis in Section III to extract the limited
information contained in correlation functions. This information
is used to explore possible models in Section IV. We establish
the Gaussian diffusion model as an appropriate model for the
system and discuss the reasons that anN state or trapping model
is not a natural choice. In Section VI, we determine the adequacy
of the Gaussian diffusion model to fit all possible statistics
through Bayesian analysis of the entire sequence.

II. Description of Experiment

The Fre experiment examines a single flavin protein attached
to a cover slip by exciting an electron in the flavin with a
repetitive sequence of laser pulses. As shown in Figure 1a, the
excited electron can relax through the emission of a photon or
through a two-step electron-transfer process between a nearby
tyrosine, tyr35, and the flavin molecule. The kinetic scheme
associated with this system is shown in Figure 1b. The
fluorescence rate iskf ≈ 0.2 ns-1. The first electron-transfer
rate is a dynamic quantity that fluctuates aroundkET(t) ≈ 1.0
ns-1. The second electron-transfer rate does not affect the ability
to fluoresce and can be neglected. The experiment continually
excites the flavin molecule with a pulse train separated by 13.2
ns, (Figure 1c). As depicted in Figure 1c, the experiment detects
the first photon and records the arrival time of this photon,ti,
and the fluorescence lifetime,τi. The arrival time is the time
difference between the excitation pulse time and the photon
arrival time. Figure 1d is a record of the arrival time versus
chronological time for a short piece of the time sequence. This
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sequence demonstrates the anticorrelation between the inter-
arrival timeti - ti-1 (the inverse photon density) and the arrival
time, τi. The probability of detecting a photon is proportional
to the photon arrival time,19

Experiments reveal the exponential dependence of the electron-
transfer rate on the distance between the flavin and a specific
tyrosine, tyr35, τET(t)/ns) eâr(t)-âr0 ) eR(t)-R0, whereR0 accounts
for the prefactor, andâ ≈ 1.4 Å-1 is the empirically determined
scaling coefficient.19 Following Xie and co-workers,τET , τf

implies

The objective of this paper is the determination of the equations
of motion for this coordinateR(t).

III. Analysis with the Maximum Entropy Method (MEM)

To gain insight into viable models forR(t), we visualize the
data through one-dimensional measurements. The data is
preprocessed to remove systematic errors, including monotonic
intensity fluctuations in a peak corresponding to scattered
photons from the laser source and a drift in the zero time

baseline for the lifetime. Then, the photons are binned in 1 ms
time bins. The lifetime is assumed to be static on this time scale.
The background photon rate ofλb ≈ 0.414 photons/bin was
measured after the experiment, and the rate for the molecule
plus background is〈λs〉 + λb ≈ 0.781 photons/bin. After
preprocessing, measurements with different segments of the
sequence are consistent (stationary), and the background
measurements show no correlations.

A. Static Lifetime Distribution. The photon statistics are
complicated by the background counts contributing over half
of the photons (≈ 58%), and by the photon’s arrival time,τi,
being a random variable that depends stochastically on the
lifetime of the system

which is convolved with the instrument response. These
complications necessitate the examination of several averaged
measurements to develop insight into possible models for this
system. The first averaged measurement is the static distribution
of the fluorescence lifetimes. We perform this measurement for
both the experiment and the background measurement to
determine the typical lifetimes of photons emitted by the
chromophore. The photon lifetime distributions for the experi-
ment and background measurements are histogrammed in Figure

Figure 1. (a) The two competing mechanisms for relaxation of an excited electron to the ground-state-photon emission and electron transfer. (b)
The corresponding kinetic scheme. (c) Schematic of the pulse trail that defines the chronological time,ti, and the photon arrival time,τi. (d) Trace
of the photon arrival time as a function of chronological time from the experiment.

Pphoton(t|τ(t)) ∝
τ(t)
τf

)
(τf

-1 + τET
-1(t))-1

τf
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τ(t)/ns≈ e(R(t)-R0) (2)
Ps(τi|τET(t)) ≈ 1

τET(t)
e-τi /τET(t) (3)
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2, which shows maximum entropy fits (MEM) to sums of
exponentials.20,21MEM attempts to balance the ability to fit the
data with the desire to have a featureless spectrum. This fitting
scheme does not impose an arbitrary functional form on the
data.

The distributions and MEM fits of the single-molecule
experiment and background measurement differ quantitatively,
but no strong features differentiate the two lifetime distributions
(See Figure 2). Both MEM fits show a small peak at short
lifetimes, τ , 1 ns and a broad peak atτ ≈ 10 ns caused by
the instrument response with a shoulder at shorter lifetimes. The
shoulder is larger for the single-molecule experiment’s data and
indicates that many of the photons from the protein occur on
the short-time side of this peak, 0.1 ns< τ < 1.0 ns. Our MEM
fits differ from those of Xie and co-workers, which show well-
defined peaks corresponding to several different times. The
disparities are the result of different data truncations and possible
differences in the definition ofσi used in theø2 statistics. The
differentσi values result in different stop criteria and affect the
resolution of features. The lifetime analysis reveals the important
range of lifetimes and the short-time shoulder of the distribution,
but obvious signatures of the fluorophore remain hidden.
Histogramming all of the lifetimes and performing a MEM fit

is a more robust estimate of the lifetime than estimating the
lifetimes from bins of 100 photons.19 Binning every 100 photons
reduces temporal resolution to approximately 0.1 seconds, and
much of the photon correlation decays in this time period.
Similar considerations of photon statistics and data binning have
been addressed by Talaga and co-workers.26

B. Intensity Correlation Function. To gain insight into the
dynamics of the system, we examine the 1 ms discretized
trajectory to determine correlations between the number of
photons in each bin. The objective of this paper is to relate
these temporal correlations in the intensity to the underlying
dynamics, which is dominated by the fluorophore-quencher
distance,R(t).19 If the fluorophore-quencher distance,R(t )
j∆t) ) Rj is constant over the∆t ) 1 ms bin, the number of
photons is Poisson, with parameterλ(j) ) λb + λs(j),

whereλb accounts for the background counts, andλs(j) ) A0eRj

with prefactorA0. Instrument considerations slightly modify
these expressions. For a Poisson process, the second moment
for the number of photons in any two bins,i and j, has the
form

with Kronecker deltaδjk denoting an additional white noise term,
and 〈...〉 is the expected value. After preprocessing to remove
systematic instrument errors, the data is translationally invariant
and allows time averaging. Subtracting the squared average,〈λ〉2

andδjk〈λ〉 gives theλ-correlation function, plotted in Figure 3a.

To identify the time scales in this system, we perform a
maximum entropy fit (MEM). The MEM fit avoids using
parametrized models that can hide certain features in the data.
The resulting spectrum reveals three time regimes (Figure 3c)
The fastest time scales correspond to correlations that fall off
within a few time bins (less than 20 ms). This time scale appears
to be broadly distributed since few data points contribute to
determining these parameters. A less broadly distributed second
time scale decays around 50-100 ms, and a third narrowly
distributed time scale decays around 400 ms. The narrow
distribution at long times demonstrates an exponential decay
of the correlation function at longer times. A fit to the fractional
Gaussian noise (FGN) model to the first 3000 data points shows
poor agreement, especially for the short-time behavior (t < 100
ms)27 (see Figure 3a). Theø2 ) N-1∑(xi - µi)2/2σi

2 ) 1.3 for
the FGN model, which shows that the fit is outside the 95%
confidence interval,ø2 ) 1, used to choose the MEM solution.
The large number of data points in the tail force the FGN model
to neglect the short-time correlations. The parameters predict
that the mean squared (MS) fluorophore-quencher distance
fluctuation is approximately 1.2 Å2, which is significantly larger
than experimental measurements.19,28 This large MS displace-
ment reduces the amplitude of the long-time power-law tail to
less than 2% of the correlation function. As a result, exponential
long-time relaxation fits the data better, but FGN has reasonable
long-time agreement (see Figure 3b). As discussed in Section
VI, multiple diffusive Gaussian modes are consistent with this
MEM spectrum and gives MS displacements of 0.32( 0.021
Å2, which agrees with experimental measurements. It is possible

Figure 2. (a) The MEM fit to the experimental (squares) data, black
solid line) fit) and background photon lifetime measurements (circles
) data, gray dashed line) fit). The two curves show similar long
lifetime behavior, but differ in the intermediate times. The scatter in
the data gives a good indication of the error bars that are not plotted
for visual clarity due to the large number of measurements. (b) The
MEM spectrum for the fits. The fits differ in the amplitudes of the
intermediate time shoulders, 0.1e τ/ns e 1.0.

P(n|Rj) ) λ(j)n/n!e-λ(j) (4)

Mλ(j,k) ) 〈njnk〉 ) 〈λ(j)λ(k)〉 + δjk〈λ〉 (5)

Cλ(j) )
Mλ(0,j) - δ0,j〈λ〉 - 〈λ〉2

Mλ(0,0)- 〈λ〉 - 〈λ〉2
(6)
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to achieve a better fit with the FGN model to the first few
hundred data points (up to tenths of a second), but not the entire
time range of interest. We emphasize that the MEM fit does
not assume a functional form and favors a less structured
relaxation spectrum, such as a power-law or stretched expo-

nential, over a structured spectrum. As a result, one should have
confidence that the data reflects these structures.

Millisecond motions such as those captured by the MEM
analysis have been observed in several fluorescence and NMR
experiments and have been attributed to loop rearrangements,
breathing motions inâ sheets, rigid body motions ofR-helices,
and internally hindered rotations.23,24,29 These low-frequency
millisecond motions often play pivotal roles in protein function,
so the ability to resolve and model these motions is important.30

Although the tyr35-flavin distance may not play a key role in
functionality, other motions coupled to this displacement may.
The MEM analysis suggests that any physical model for the
tyr35-flavin coordinate must reflect both the small-scale fluctua-
tions of R(t) and the structured relaxation spectrum. It is also
important to capture the non-Markovian fluctuations in the
intensity and fluorescence lifetimes (as demonstrated in Figure
1d). The model must also account for the distribution being
stationary after preprocessing the data, and no aging effects are
present. Armed with these insights, we are now able to explore
physically feasible models for this system in Section IV.

IV. Slow Motions in Proteins: N State Models, Trapping
Models, and the Gaussian Diffusion Model

Many candidate models can reproduce the intensity correla-
tion function and the lifetime distribution, so the other physical
attributes discussed above also need to be considered in selecting
a model. The physical basis of a model depends on the level of
coarse graining required to capture the essential physics of a
system. This point is illustrated by the hierarchical tier picture
of protein energy landscapes/surfaces (PESs).31 The potential
energy landscape is high dimensional and complex with motions
on many length and time scales. The motions on tierm are
generally faster than motions on tiern > m, but slower than
motions on tiern < m, and time separation arguments generally
apply. If the motions that we are monitoring occur at tierm,
we can homogeneously average over the degrees of freedom
associated with the lower tiersn > m and need to perform a
quenched average over the higher tiersn < m. The quenched
average would result in heterogeneity in the behavior of single
molecules. As shown in Figure 5, averaging over faster time
scales results in a free energy potential instead of a detailed
microscopic potential.24 Considering that the experimental time
scales of the Fre experiment range from milliseconds to tenths
of seconds, these motions occur on the slowest time scales of
the protein (no tiersn < m), so we do not expect additional
slower motions that must be heterogeneously averaged over.

Three models that result from different coarse graining
procedures include theN state model, the trapping model, and
the Gaussian diffusion model. These models originate from
different topologies of the protein potential energy surface. As
elaborated below, theN state model results from the time scale
of interest corresponding to motions over high-energy barriers,
while the trapping model corresponds to hopping over many
smaller structures. For the Gaussian diffusion model, the smaller
scale structures result in a diffusion tensor.

A. The N State Model.The N state model results from the
tier of interest containing multiple minima separated by high
barriers (see Figure 5e,f). Averaging over the faster degrees of
freedom results in Kramer’s barrier crossing kinetics,

wherePR(t))Ri is the probability that the particle is in minimai
with a corresponding tyr35-flavin distance ofRi. One may also

Figure 3. (a) Comparison of the MEM fit (solid line) to the FGN
model (dashed line). The FGN model correlation function has the form,
Cλ ) A(eCFGN(t) - 1) with CFGN ) B(∑n((t/τ)γn/Γ[nγ + 1])). The FGN
fit gives τ ) 263 ms,γ ) 0.84,B ) 2.32 andA ) 0.084. (b) The tail
of panel a. (c) Comparison of the MEM spectrum (dashed) to the Bayes
spectrum averaged over the MC data (solid). Except for the fast
fluctuations that cannot be captured by the simple correlation analysis,
the Bayesian peaks overlap with the peaks in the MEM spectrum,
showing that they are consistent. We normalize the spectrum to the 1
ms bin contribution since the zero time correlation cannot be accurately
measured.

ṖR(t))Ri
) -KPR(t))Ri

(7)
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add fluctuating barrier heights that make K(t) time dependent.32

The presence of three relaxation time scales suggests that a
minimum of four states is necessary, but some of the kinetic
rates would be slow,τ ∼ 100 ms, and one would expect
deviations from Gaussian behavior that are not seen in the data.
Instead, the data analysis below suggests that the additional non-
Markovian fluctuations inR(t) can be captured by a Gaussian
model, although a model with both barrier crossing kinetics and
intra-well relaxation may also be viable. These additional non-
Markovian fluctuations can be captured by the inclusion of
additional states. If enough states are included, theN state model
can approximate any other model, but attempts to fit the data
through complete sequence analysis with a reasonable number
of states,N > 6, did not achieve a desired fit to the data. The
identity of these states is also ambiguous since the apparent
fluctuations in the chromophore quencher distance is rather
small, on the order of tenths of an angstrom, compared to the
larger scale motions that anN state model attempts to capture,19

although these motions may simply have a weak projection onto
the probed coordinate.

B. The Trapping Model. Unlike theN state model, where
the barriers that dominate the dynamics occur on the same tier
as the motion of interest, the trapping model has important
contributions from the smaller scale motions (see Figure 5c,d).
These small-scale structures trap or hinder the motions of the
coordinates of interest, and the fluorescence lifetime becomes
static for long periods of time. Fractional diffusion is an ex-
treme example of this scenario, where the traps have energetic
barriers that are exponentially distributed for large energy
barriers,P(E†) ∼ Re-RE†.33 The exponential decay of the energy
barrier distribution is the result of extreme value arguments with
a strong emphasis on the functional form in the tail of the
distribution. This formulation is hindered by the tails being slow
to converge to the universal form.33 The scenario results in a
long-time power-law decay and aging effects that are not seen
in the data or the MEM fit.33 We examined truncating the
distribution of energy barriers,P(E†), but this truncation im-
poses an interrupted aging effect that removes contributions
from the short-time trapping behavior and prevents the in-
clusion of a broad distribution of time scales in the stationary
correlation function.34 The trapping models also depend on
the system being large so that correlations in the trapping times
can be ignored, which probably does not apply to finite
sized proteins. As a result, the data does not support a trapping
model.

Since the exact distribution of configurations or traps that
lead to trapping are unknown, one introduces the traps stochasti-
cally. The trapping model makes an annealed disorder assump-
tion that neglects correlations in the trapping times or energy
barriers. The assumption requires the degrees of freedom other
thanR(t) to be weakly correlated to the coordinate of interest,
except during trapping events. The trapping scenario is possible
for the myoglobin experiments, where the CO molecule is
moving in a cavity of the protein and occasionally encounters
a site in the pocket that traps it for a period of time, but the
FAD and tyrosine in this protein are connected through the
scaffolding of the protein.19,32 It is more appropriate to discuss
motions of the entire protein including the FAD and tyrosine
as a whole. Small-scale motions can create the a rough potential
energy surface, which retards the motion of the protein, but
allowing the lower tier structures to trap the system for extended
periods of time is an extremely strong emphasis on these small-
scale fluctuations.

C. Gaussian Diffusion Model.If the barriers are not high
within the tier of interest, the system demonstrates a diffusive
behavior. Averaging over faster degrees of freedom results in a
smooth convex free energy landscape (see Figure 5a,b),22,35and
the slow motions of the protein can be approximated by
diffusion of a collection of independent normal modes whose
correlation function is a simple exponential〈Rµ(t)Rν(0)〉 ) δµν-
(aµ

2/bµ
2)e-t/γµ. The motion of interest is a weighted sum of

modes,R(t) ) ∑µbµRµ(t), and the process becomes Gaussian
with correlation function〈R(t)R(0)〉 ) ∑µaµ

2e-t/γµ. By defining
F(γ) ) ∑µaµ

2δ(γ - γµ), we can define a relaxation spectrum
and write

The probability distribution ofR(t) becomes a simple functional
integral

Figure 4. (a) The correlation function form ) 493 andn ) 507
for a Rouse chain with 1000 beads, and the same correlation
function averaged over random cross-linking of the Rouse chain
polymer of 1000 beads with approximately 1 cross-link per poly-
mer. These correlation functions are compared with the correlation
function for the opposite corners,i ) j ) k ) 1,10, of a 10× 10× 10
cube. The cube also has 1000 beads, but it is a small object. The
diffusivity, D and the force constants for all connected beads,k, are
assumed to be unityD,k ) 1. Except for the Rouse chain, the smal-
lest relaxation ratesλ1 ≈ 0.1, and the contribution of long-time
exponential relaxation is significant. (b) The lowest eigenvalues for
the Rouse (triangle), cross-linked polymer (square), and the cube
(circle).

〈R(t)R(0)〉 ) CR(t) ) ∫ dγF(γ)e-t/γ (8)

P({R(t)}) ) 1

xDet(2πCR(t))
e-(1/2)∫dt1dt2R(t1)CR

-1(t1-t2)R(t2)

(9)
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This model can be cast into anN state model with many states,
but the kinetic rates have simple relationships with each other,
which reduces the number of parameters. Unlike the trapping
model, which puts strong emphasis on small-scale fluctuations,
the Gaussian diffusion model accounts for small-scale motions
through the more modest means of a renormalized diffusion
tensor. The diffusion tensor for a Gaussian distribution of energy
barriers can be shown to be isotropic withDeff ) D0e-〈â2V(0)2〉/d,
where â is the inverse temperature, andV(0) is the random
potential. With this assumption forR(t), the fluorescence
intensity correlation function is approximately

whereA is a prefactor that accounts forA0 and R0, and the
asymptotic relations result from the decay of the correlation
function. This expression would be exact, except for experi-
mental considerations such as instrument response and the finite
detection window, but these deviations are small.

Large-scale coarse-grained normal modes have been used to
study the dynamics and statistics of several systems.24,36,37The
fast motions in proteins deviate from this model’s simple
harmonic motion, but the larger scale motions have been found
to be independent of small-scale anharmonicities due to laws
of large numbers and motional narrowing effects.22,38A Gauss-
ian model is also the minimal information model consistent with
the measured observables (the correlation function).39 Even if
deviations from harmonicity exist, the current data is not able
to resolve characteristics of these deviations. As a result, the
important features are characteristic relaxation times and the
magnitude of the displacements ofR(t), which can be captured
by a harmonic approximation.

1. Spectrum of the Correlation Function.The MEM analysis
showed three time scales contributing to the system, which
suggests that the major contribution to the long-time relaxation

of the system can be captured by a Gaussian diffusion model
with three relaxation time scales. Concurrent with our work,
Kou and Xie suggested a Gaussian diffusion model with a
power-law distribution of relaxation times, which they capture
with the FGN model.27 This model is interesting, but even
ignoring the difficulty in fitting the dynamics, its application
to proteins needs to be justified.

Gaussian noise assumptions have two possible sources. An
unlikely source for this protein system is the bath being much
faster than the time scales of interest, which leads to multiple
collisions and a large number arguments. In this case, the
structure of the bath does not matter, but long-lived correlations
in the random force cannot be introduced. The other possibility
is that the bath has an intrinsically harmonic structure, as argued
above for coarse-grained descriptions of the protein. This coarse
graining will add many time scales to the relaxation spectrum,
and the major issue becomes the expected structure of the
spectrum of relaxation times.

2. Power-Law Spectrum and Scaling.A power-law spectrum
has been suggested for this system.27 This power-law may be
the result of the protein showing a self-similar structure. The
simplest self-similar structure is the Rouse polymer chain ofN
beads at positionsxn with local connectivities.40 The beads
undergo diffusion in a potential of the formVRouse) ∑i,a)x,y,z-
(k/2)(ai - ai+1)2. In the large monomer limit,N f ∞, the
eigenmodesaω(t) ) (1/N)eiωnan(t) have a correlation function

whereD is the diffusion constant,k is the spring constant of
the Rouse chain, the friction coefficientú ) 1, and the end
effects were ignored.40,41 The correlation function foran - am

is

Figure 5. Schematic illustrations of the different potential energy surfaces (PESs) after averaging over faster time scales. (a) A PES with a global
curvature and Gaussian roughness. Homogeneously averaging over the smaller length scales results in normal diffusion with a renormalized diffusion
constant,Deff ) D0e-〈V2(0)〉/d, as shown in panel b. (c) A PES with an exponential distribution of traps,P(E†) ) Re-RE†, which results in deep spikes.
Averaging over the smaller length scales replaces normal diffusion by a trapping process with a waiting timeψ(t), as depicted in panel d. (e) A
more complicated PES with several local minima. Averaging over small length scales results in anN state model with Poisson kinetics depicted in
panel f.

Cλ(t) ) A(eCR(t) - 1) ∼ ACR(t) + ACR
2(t)/2! + ... (10)

Cω(t) ) 〈a-ω(t)aω(0)〉 ≈ D
2k(1 - cos(ω))

e-2k(1-cos(ω))t

(11)
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which decays ast-(1/2) (see Figure 4).40 More generally, the
lattice could have a self-similar fractal structure, and the
correlation would be expected to asymptotically decay ast-d/2,
whered is the fractal dimension. A physical model for fractal
dimension was recently constructed by Klafter and co-workers
to explore the dispersive dynamics of protein relaxation.42 The
power-law arises from the scale invariance of the system. By
only having local connectivities, there is a translational invari-
ance (if end effects are ignored). As a result, the relaxation times
correspond to differing length scales resulting in the power-
law. The power-law results will not be altered by adding bending
rigidity or any other local interaction since the translational
invariance will still hold in the largeN limit.

3. Nonlocal Contacts, Finite Sizes, and Nonscaling BehaVior.
Proteins have additional interactions that are nonlocal with
respect to the position along the protein sequence, so these self-
similar structures are probably not a good model for a protein.
These nonlocal interactions destroy the scale invariance, so a
power-law spectrum cannot be universally applied to proteins.
Although proteins may be large objects in terms of the one-
dimensional sequence, the three-dimensional structure is much
smaller than a crystal, so edge effects destroy the scale
invariance necessary for a power-law. A protein with 1000
amino-acids (Rouse beads) would only form three-dimensional
structure around 10 amino-acids across (on the order of
nanometers).43

The smallest eigenvalues for the relaxation spectrum of a
1000-bead Rouse chain shows a near power-law behavior with
very small eigenvalues, whereas the spectrum of an elastic body
that is a 10 unit cube (also 1000 beads) shows a lower bound
in the relaxation rates, (see Figure 4). The cube undergoes the
same diffusion process as the Rouse chain, but the potential
for the cube is

whereai,j,k,i,j,k+1
0 denotes the equilibrium distance. In the largen

limit, this expression is also exactly solvable with at-1 power-
law dependence, but the edge effects forn ) 10 are quite
significant. If force constantk and the diffusion constantD are
assumed to be unity (unitless time and distance), the cube’s
spectrum (excluding rigid body motions) is bounded away from
zero,λ1 ≈ 0.1, and long-time exponential relaxation is expected.
Even a less structured connectivity such as the average
eigenspectrum of a randomly cross-linked Rouse chain (1000
beads) shows an eigenspectrum that is bounded away from zero
(Figure 4).44 In this model, the potential is random withVcross-link

) VRouse + ∑i>j;a)x,y,zpij(k/2)(ai - aj)2, wherepij ) 0,1 with
probabilities (N - 1)/N and 1/N, respectively. This random
linking results in a collapsed structure, so finite size effects are
expected.44 Proteins have specific nonlocal connectivities to
allow them to perform their function, so a greater variety of
behaviors and, subsequently, structures in the relaxation spec-
trum is expected relative to those discussed above. As a result,

it should not be surprising if the relaxation spectra of proteins
show structures that are unique to the protein.

V. Implementation of Bayesian Statistics

Applying Bayesian methods to physical systems often
presents difficulties since models convenient for Bayesian
analysis do not always have a desirable physical interpretation.
We examine the diffusive harmonic model because it is
physically justified, is computationally feasible, and does not
require dramatic assumptions about the system. The model
implies that the lifetime of the system at timet ) j∆t is given
by a sum of harmonic modes,τj ) e-R0+∑aµRµj, and the intensity
from the molecule during time binj is λs(j) ) e-R′+∑aµRµj, where
aµ is the weight of modeµ andRµj is the displacement of mode
µ during time binj. For this process, theCλ correlation function
is related to the correlation function ofRj, Cλ(j) ∝ eCR(j) - 1,
whereCR(j) ) ∑aµ

2e-j/γµ is the correlation function forR, and
the γµ values are the relaxation times. This expression is not
valid for an N state or hopping model since they are not
Gaussian. For the rest of the paper,i refers to a photon,j refers
to a bin, andµ refers to a mode. Each mode has a relaxation
time γµ. Our goal is to find the appropriate number of modes,
M, their weights,{aµ}, their lifetimes,{γµ}, and other param-
eters,R0 andR′ to best represent the data. We will denote these
parameters byθM and perform the optimization through a
Bayesian framework.18 Following standard Bayesian modeling
assumptions, the probability of a model,M, given the data,D
) {Dj} ) {τij}, is

In the above expression,Dj denotes all photons in binj, andsj

is the state during binj. The probability for the data in a bin is
the product of two components, the measured lifetimes of the
photons (Section IIIA), and the number of photons in a bin
(Section IIIB). These two contributions have complicated
expressions due to background photon counts, the instrument
response, and the truncated time windows, but numerically
computing these probabilities can be implemented.18

If the Gaussian diffusion model is correct, the MEM analysis
suggests that Gaussian diffusion with three distinct time scales
can capture the long-time relaxation of the data. One can model
the three time scales with three modes without introducing
statistically significant errors. The remaining issue to address
is the verification of the consistency of the model with the data
set as a whole. Additional coarse-grained measures, including
multiple time correlation functions, are too noisy to assess the
model adequately, but the results are consistent with a Gaussian
diffusion model for the motions ofR(t). Concurrent with our
work, Kou and Xie also demonstrated this consistency by
examining these averaged quantities, so we will not go into detail
about these tests of the Gaussian hypothesis.27 To strengthen
the legitimacy of Gaussian diffusion, a full sequence Bayesian
analysis is necessary.

The Bayesian analysis is implemented by fixing the number
of modes,M, and performing a Monte Carlo (MC) simulation
to sample the parameters of the model (the weights,aµ, the
relaxation times,γµ, and auxiliary parameters such asA and
R0) that determine the statistics of the system. For given
parameters, the probability of havingnj photons with lifetimes
τj1...τjn in bin j for R(t) ) Rj is computed as

Cnm(t) ) 〈(an(t) - am(t))(an(0) - am(0))〉 )

∫ dω
2π

D
k

1 - cos(ω(m - n))

1 - cos(ω)
e-2k(1-cos(ω))t ∼ D

k
(m -

n)2e-2ktI0(2kt) (12)

Vcube) ∑
i,j,k)1...n;a)x,y,z

k

2
[(ai,j,k - ai+1,j,k - ai,j,k,i+1,j,k

0 )2 +

(ai,j,k - ai,j,+1,k - ai,j,k,i,j+1,k
0 )2 +

(ai,j,k - ai,j,k+1 - ai,j,k,i,j,k+1
0 )2] (13)

P(M|D) ∝ ∑
sj,θM

P(D,{sj}, θM, θ, M) ∝

∑
sj,θ

[∏
j

P(Dj|sj)] P({sj}|θMM)P(M) (14)
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whereP(n|Rj) is the probability of gettingn photons as defined
in eq 4, andP(τjm|Rj) is the probability of the arrival time of
the photons given byRj,

Both sources of photons, the system,Psys, and the background,
Pb, are accounted for in this expression. The exact form of these
probabilities is complicated by convolution with instrument
response and other instrument considerations. Without these
considerations,Psysis equal toPs in eq 3. Given the probabilities
of the photon emission events for allRj, the mode positions
Rµ(t ) j∆t) are varied by randomly choosing one mode and
statistically choosing its positions{Rµ(t ) j∆t)}, keeping the
other modes fixed through a forward-backward algorithm.45

From this simulation we estimate the Bayesian score (log of
the probability that the model produced the data) to determine
the optimal parameters.45 The score includes how well the
sampled paths fit the data and the probability that the paths are
produced by the diffusion model. The fit to the data is estimated
from the log of eq 15 for the selected sequence{Rj}, and the
fit to the model is estimated from the Fourier components of
Rµ(t ) j∆t), ∑ Rµ(t ) j∆t)eiωj. The Bayesian score was computed
for a different number of diffusive harmonic modes and
compared to determine the appropriate number of modes.

VI. Results

The simulation found that a fourth mode is necessary to
account for fast fluctuations that are not consistent with the
stochastic fluctuations (including the background) and would
not be represented in the correlation function. The time constants
and weights of the four oscillators areaµ

2 ) 0.595( 0.023,
0.293( 0.040, 0.292( 0.028, and 0.324( 0.041 forγµ )
0.42( 0.10, 5.9( 2.8, 28.0( 8.2, and 400.( 57, respectively.
The exponential components discovered by the Bayesian
simulation fall into the time scales revealed by the maximum
entropy fits, which shows that Gaussian diffusion agrees with
the basic features of the data and the Bayesian approach
identifies the important time scales. The Bayesian spectrum is
determined by averagingCλ over the MC simulation and is
compared against the MEM simulation in Figure 3c.

For â ) 1.4 Å, the MS displacement ofr(t) is 〈r2(t)〉 ≈ 0.32
( 0.02 Å2, which is in agreement with other measurements.19,28

Crystal structure data show that tyr35 has an MS displacement
of 0.25 Å2 and that the isoalloxazine portion of FAD has an
MS displacement of 0.10 Å2, so fluctuations around 0.35 Å2

are expected. For four modes, we predict that the average arrival
time is around〈τ〉 ≈ 0.310( 0.011 ns. Since the number of
photons emitted depends onτ(t), we must weigh the probability
of τ(t) by the expected number of photons givenτ(t) to
determine the average arrival time of a photon emitted by the
FAD, 〈τphoton〉 ≈ 0.410( 0.028 ns. As expected, this distribution
suggests that the photons from the system occur on the short-
time shoulder peak of the MEM distribution in Figure 2b.

Additional modes, beyond four, slightly improve the fit to
the data and the correlation function, but the improvement
cannot be justified statistically. For less modes, the paths selected

by two- and three-mode models have similar likelihoods to the
paths of the four-mode model, but the probability of these paths
being produced by the harmonic model was much lower. In
other words, following the variation in the data with less than
four modes resulted in unlikely paths. The Fourier components
of the sequence for the four-mode model,∑Rµ(t ) j∆t)eiωj, are
within the expected variances of the model, so Gaussian
diffusion is consistent with the paths that fit the data. Similarly,
the photon emission events are consistent with the model. The
Bayesian scores and parameters for four oscillators show time
translational invariance, so the model is not over-fitting the data.

VII. Conclusion and Discussion

This paper examines a single photon experiment with a
complex data set that is difficult to interpret from correlation
analysis. Nonparametric fits by the MEM demonstrate a wide
distribution of time scales with distinct structures in the
relaxation spectrum that are neglected by phenomenological fits
using smooth predetermined functional forms. The evidence for
these structures (especially at long times) is strong, so it is
appropriate to discuss distributed lifetimes, but the existence
of a stretched exponential, power-law, or other phenomenologi-
cal functional form cannot be fully supported by the data. Our
analysis demonstrates the importance of introducing nonpara-
metric methods into single-molecule data analysis and the need
for caution in interpreting model features such as power-law
tails. Models without these features may also be consistent with
the data, so it may be difficult to assign a physical meaning to
the predicted power-law. From the nonparametric analysis of
coarse-grained measures, such as correlation functions, one can
develop legitimate models to describe the behavior of the
system. Although models should be consistent with the cor-
relation analysis, correlation functions provide only one- or two-
dimensional information and generally fail to distinguish
different models. The desire for a comprehensive test motivated
the use of Bayesian methods in analyzing the entire data
sequence. These tests are more time-consuming than the
correlation analysis, but the conclusions are more reliable.27

However, one must remember that the excellent agreement
between the data and the harmonic diffusion experiment may
simply be the result of the insensitivity of measurements to non-
harmonic features. Through a complete sequence analysis on a
single molecular trajectory, this paper demonstrates that the
Gaussian diffusive model with a few well-defined long time
scales is a viable candidate for describing this system. These
slow time modes may correspond to motions that influence
protein structure and function.

Proteins are specific entities that perform specific tasks. The
complexity of proteins may cause a broad distribution of time
scales, but it is important to understand how the motions are
associated with the specific tasks of the protein. Coarse-grained
diffusive harmonic modes incorporate the universality of large
numbers by averaging over small scale fast fluctuations while
maintaining features that are specific to the protein’s structure
and function. The fact that coarse-grained models and simula-
tions can capture these slower time scale motions while also
being computationally tractable is a desirable feature that may
allow comparison of simulation to experiment.
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