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a b s t r a c t

The second paper of the series discusses the effect of thermal noise on the stretching vibrational dynam-
ics of symmetric triatomic ABA molecules. In particular, noise-induced transitions between symmetric
and antisymmetric normal-mode vibrations are discussed, in the context of symmetry breaking of vibra-
tional dynamics. The statistics of symmetry breaking transitions and the average lifetimes of normal
modes of different symmetries are derived analytically and compared with direct numerical simulations.
The average lifetimes of symmetric and antisymmetric normal modes are found to be inversely propor-
tional to bath friction strength and depend on the dimensionless parameter j which is the combination of
bath temperature, bond anharmonicity and bond–bond coupling strength. Antisymmetric normal mode
depends weakly on j and is always stable. Symmetric normal mode depends significantly on j and
becomes unstable at j ¼ 1. Higher temperatures destabilize symmetric normal mode and therefore
decrease the ratio of symmetric-to-antisymmetric normal mode populations contrary to intuitive
expectation.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction For a non-dissipative ABA system, the parameter J , which stands
In the previous paper [1], hereafter referred to as paper I, we
considered a model of ABA molecule in the form of two linearly
coupled Morse oscillators. We refer reader to the paper I for discus-
sion of the model and review of the literature. We have numeri-
cally observed, that ABA model coupled to the bath of harmonic
oscillators switches intermittently between the four distinct vibra-
tional modes along its dynamic trajectory, resulting in blinking of
vibrational bond energy. The statistics of these dynamic transitions
(i.e., ‘vibrational blinking’) such as noise-induced symmetry break-
ing [2,3] and activated barrier crossing [4] is the subject of theoret-
ical analysis in the present and the following papers, respectively.
The observed rich dynamic behavior can be relevant for under-
standing the stochasticity of energy localization in complex sys-
tems ranging from polyatomic molecules to nano-structures and
micro-mechanical oscillators [5].

The classical stretching vibrational dynamics of ABA molecules
at all energies can be effectively described by the hamiltonian of a
hindered rotor [6–8] with momentum-dependent potential
[1,9,10]

Hrot ¼
p2

2M
þW0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2
þ � p2

q
cosð2wÞ: ðI:1Þ
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þ
for the total number of vibrational quants in AB and BA Morse
oscillators, is a constant. This parameter determines the probability
of a particular type of vibrational dynamics in ABA molecules, i.e. lo-
cal- or normal-mode dynamics. If Jþ < MW0, only normal-mode
dynamics is possible for ABA molecules and both symmetric and
antisymmetric normal modes are stable. If MW0 < Jþ < 2MW0 anti-
symmetric and symmetric normal modes are stable and a special
type of stable local mode termed ‘‘quasi-local” mode appears. If
Jþ > 2MW0 all vibrational modes (local, quasi-local and antisym-
metric normal) are present except for symmetric vibrational mode,
which is unstable in this energy range. The stability analysis of dif-
ferent types of modes in isolated ABA molecules were also studied
extensively in [9–11]. The dynamical picture of ABA vibrations be-
comes much more interesting if we consider ABA molecules sub-
jected to external noise from thermal environment, which defines
the purpose of this study.

The local mode dynamics of ABA molecules corresponds (disre-
garding the special case of ‘‘quasi-local” modes) to free rotation of
rotor (I.1) above its cosine potential, Erot > W0Jþ [1,6,7]. Normal
mode dynamics of ABA molecules corresponds to hindered motion
of rotor, i.e. oscillations in cosine potential, Erot < W0Jþ. Since the
normal-mode dynamics of ABA molecule corresponds to the con-
fined motion in dynamical cosine potential, noise from environ-
ment should result in the escape from the confining cosine
potential according to the Kramers mechanism of noise-driven es-
cape [12]. When escaping from the cosine potential, the dynamics
of ABA molecules therefore switches from normal-mode vibrations
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to local-mode vibrations. This simple picture illustrates how exter-
nal noise can influence vibrational dynamics of ABA molecules. In
fact, the noise from environment induces the ABA system to switch
between all possible types of vibrational motion, i.e. antisymmetric
normal modes, symmetric normal modes, local and quasi-local
modes, as we showed numerically in paper I. These noise-induced
transitions are stochastic dynamical transitions (SDT) of vibra-
tional modes and will be analyzed in papers II and III.

In the present paper, we discuss a particular type of SDT, which
is symmetric-to-antisymmetric normal mode transitions and will,
in paper III, discuss the other types of SDT and the overall analyt-
ical picture of SDT. As we show below, these SDTs are the dominant
dynamical transitions in the temperature range of interest. In pa-
per I, we have numerically observed a non-statistical distribution
of the lifetimes of symmetric and antisymmetric normal modes
as well as weak dependence of the lifetime of antisymmetric nor-
mal mode on the bath temperature and AB–BA bond coupling
strength. In paper II, we present an analytical theory to explain
the observed effects. The paper is organized as follows: in Section
2, we derive the effective Langevin equations that describe the
noise-induced dynamical symmetry breaking. In Sections 3 and
4, we reduce the obtained Langevin equations to the one-dimen-
sional energy-diffusion equation. In Sections 5 and 6, we solve
the derived diffusion equation to obtain the statistics of symmetry
breaking dynamical transitions and compare it with the direct
numerical simulations. We discuss the obtained results in Section
7.

2. The effective Langevin equation

In paper I, we described a dissipative ABA molecule as a system
of two coupled anharmonic oscillators individually coupled to a
bath of harmonic oscillators (Gaussian bath)

H ¼ HABA þ Hb1 þ Hb2; ðII:1Þ

where

HABA ¼
1
2

G11p2
1 þ Uðx1Þ þ

1
2

G11p2
2 þ Uðx2Þ þ G12p1p2 ðII:2Þ

is the Hamiltonian of the two kinetically coupled Morse oscillators
with UðxÞ ¼ Dð1� e�axÞ2; G11 ¼ ðmA þmBÞ=mAmB; G12 ¼ cosðhABAÞ

mB
and

Hbi ¼
X

j

P2
j

2
þ 1

2
x2

j Q j �
cj

x2
j

xi

 !2
0@ 1A ðII:3Þ

is the Hamiltonian of a Gaussian bath. For the Ohmic distribution of
bath frequencies, the dynamics of an ABA molecule is governed by a
set of stochastic equations

dx1

dt
¼ G11p1 þ G12p2;

dp1

dt
¼ � dUðx1Þ

dx1
� cp1 � c

G12

G11
p2 þ F1ðtÞ;

dx2

dt
¼ G11p2 þ G12p1;

dp2

dt
¼ � dUðx2Þ

dx2
� cp2 � c

G12

G11
p1 þ F2ðtÞ;

ðII:4Þ

where

hFðtÞFðt0Þi ¼ 2ckT
G11

dðt � t0Þ: ðII:5Þ

Here c is the friction coefficient and T is the temperature. We now
write down the Kramers/Smoluchowski equation for the probability
density qðt; x1; x2;p1; p2Þ that corresponds to the Langevin equation
(II.4):
@q
@t
¼ �ðG11p1 þ G12p2Þ

@

@x1
þ U0ðx1Þ

@

@p1
� ðG11p2 þ G12p1Þ

@

@x2

�
þ U0ðx2Þ

@

@p2
þ c

G12

G11
p1

@

@p2
þ c

G12

G11
p2

@

@p1

þ c
@

@p1
p1 þ

kT
G11

@

@p1

� �
þ c

@

@p2
p2 þ

kT
G11

@

@p2

� ��
q: ðII:6Þ

The first four terms in Eq. (II.6) is the Louville operator bL ¼
�if. . . ;HABAg which in the absence of noise c ¼ 0 propagates deter-
ministic (reversible) classical trajectories @q=@t þ ibLq ¼ 0. The last
two terms are one-dimensional irreversible operators bLirr ¼
c @
@p pþð kT

G11

@
@pÞ. Eq. (II.6) can thus be rewritten in a simpler form:

@q
@t
¼ �bLqþ ðbLirr1 þ bLirr2Þqþ c

G12

G11
p1

@

@p2
þ p2

@

@p1

� �
q; ðII:7Þ

where the last term appears due to the specific form of coupling in
our problem – momentum coupling. In fact, as shown below, this
term can be neglected if G12=G11 � 1.

For the problem of SDT, we assume that the dissipative ABA
molecule retains well-defined oscillating dynamics, which means
that both the friction c and the temperature T should be small in
order not to disturb system’s oscillatory nature, i.e. kT � D; c�
X. Since we are considering the low-friction case, the appropriate
variables for the diffusion problem (II.7) are the action-angle vari-
ables [12]. The following canonical transformations

Jþ ¼ J1 þ J2;

J� ¼ J1 � J2;

wþ ¼ ðu1 þu2Þ=2;
w� ¼ ðu1 �u2Þ=2;

ðII:8Þ

convert the ABA Hamiltonian to [1]

HABA ¼ XJþ �
X2J2

þ
8D
�X2J2

�
8D
þ G12

G11

X
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2
þ � J2

�

q
cosð2w�Þ; ðII:9Þ

where Ji ¼ Jiðxi;piÞ and ui ¼ uiðxi; piÞ are the action-angle variables
of the Morse oscillator [13]. We now use these transformations to
replace phase space variables fx1; p1; x2;p2g in (II.7) with action-an-
gle variables fw�; J�;wþ; Jþg. In doing so, we note that our system’s
Hamiltonian (II.9) does not depend on wþ, so we can average
Eq. (II.7) over wþ. The possibility of averaging the Fokker–Planck
equation over wþ is the central result of this section. We perform
this averaging over each of three terms in (II.7) as shown in Appen-
dix A and obtain:

@�q
@t
¼ �fHABA; �qg� þ c

@

@Jþ
Jþ �

2kT
X

� �
�qþ c

@

@J�
ðJ��qÞ

þ ckT
X

@2

@J2
þ
ðJþ�qÞ þ 2

@2

@Jþ@J�
ðJ��qÞ þ @2

@J2
�
ðJþ�qÞ

 !
; ðII:10Þ

From here we now restore stochastic equations for fw�; J�; Jþg.
In this case the diffusion matrix is

D ¼ ckT
X

0 0 0
0 Jþ J�
0 J� Jþ

0B@
1CA:

Since J� can take negative values, the square root of matrix ele-
ments is not well-defined. We use the method of orthogonal trans-
formation of diffusion matrix described in [14] (see Eq. (3.124)).
Diagonalizing diffusion matrix D, taking positive root and trans-
forming it back, we get:



Table 1
Critical decoupling temperatures 4D jG12 j

G11
for different ABA molecules.

Molecule he (deg) jG12 j
G11

D (K) 4D jG12 j
G11

(K) Ezp (K)

SO2 119 0.014 66,300 3750 800
D2O 104.5 0.028 60,300 6720 1950
H2O 104.5 0.015 64,000 3770 2660
CH2 102 0.016 50,000 3200 2090
H2S 92 0.001 45,200 200 1850

(a) he is the equilibrium value of bending angle; (b) jG12 j
G11

is the bond–bond coupling
strength; (c) D is the bond dissociation energy expressed in Kelvins; (d) the critical
temperature from Eq. (III.4) above which the oscillations of AB and BA bonds can be
considered decoupled; (e) Ezp ¼ 1

2 �hx0 – approximate value of zero-point energy of
quantum oscillations in AB-bond potential expressed in Kelvins.
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D1=2 ¼ 1
2

ffiffiffiffiffiffiffiffi
ckT
X

r 0 0 0
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jþ þ J�

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jþ � J�

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jþ þ J�

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jþ � J�

p� �
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jþ þ J�

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jþ � J�

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jþ þ J�

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jþ � J�

p� �
0B@

1CA
�

0 0 0
0 g11 g12

0 g12 g11

0B@
1CA:

Therefore, the resulting stochastic equations (in Ito representation)
are

dw�
dt
¼ @HABA

@J�
; ðII:11Þ

dJ�
dt
¼ � @HABA

@w�
� cJ� þ g11C1ðtÞ þ g12C2ðtÞ; ðII:12Þ

dJþ
dt
¼ �cJþ þ c

2kT
X
þ g12C1ðtÞ þ g11C2ðtÞ; ðII:13Þ

where random forces CiðtÞ obey hCiðtÞCjðt0Þi ¼ 2dijdðt � t0Þ and
g11; g12 are functions of both J� and Jþ. Since Eqs. (II.11) and
(II.12) contain partial derivatives of HABA only over J� and w� we
can replace HABA in (II.9) with �Hrot to have:

dw�
dt
¼ � @Hrot

@J�
; ðII:14Þ

dJ�
dt
¼ @Hrot

@w�
� cJ� þ g11C1ðtÞ þ g12C2ðtÞ; ðII:15Þ

dJþ
dt
¼ �cJþ þ c

2kT
X
þ g12C1ðtÞ þ g11C2ðtÞ; ðII:16Þ

where

Hrot �
X2J2

�
8D
� G12

G11

X
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2
þ � J2

�

q
cosð2w�Þ; ðII:17Þ

is the last two terms in Eq. (II.9) and corresponds to the hindered
rotor Hamiltonian (I.1).

Eqs. (II.14)–(II.16) describe all dynamic behavior of the dissipa-
tive ABA molecule in the interesting limit of weak friction limit. To
proceed further with the analysis we need to specify the character-
istic scales of the physical quantities and parameters that appear in
Eqs. (II.14)–(II.16).

3. The magnitudes of parameters

The Langevin equations (II.14)–(II.16) correspond to the dissipa-
tive motion of a hindered rotor in the momentum-dependent co-
sine potential discussed in paper I. To estimate the magnitudes
of the parameters of this dissipative motion we restrict ourselves
to the case when the rotor oscillates in the cosine potential near
its minimum at w� ¼ p=2 (antisymmetric normal mode). In this
case we can set J� � Jþ, which simplifies Eqs. (II.14) and (II.15) to:

dw�
dt
¼ �X2J�

4D
; ðIII:1Þ

dJ�
dt
¼ �cJ� þ

XG12

G11
Jþ sinð2w�Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ckTJþ

X

r
C1ðtÞ: ðIII:2Þ

Combining these equations we obtain the reduced Langevin
equation:

4D

X2
€w� ¼ �c

4D

X2
_w� �

G12

G11
XJþ sinð2w�Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ckTJþ

X

r
C1ðtÞ: ðIII:3Þ

Although Jþ is a stochastic variable for the purpose of estimation,
we can take it to be its average value, which from Eq. (II.16) is
hJþi ¼ 2kT

X . Eq. (III.3) describes dissipative oscillations of a particle
of mass M ¼ 4D

X2 in the cosine potential well of the depth

Eb ¼ XJþ
G12
G11
� 2kT jG12 j

G11
with friction coefficient c and effective tem-
perature keT ¼ kTJþX
4D �

ðkTÞ2
2D . If the temperature keT is comparable or

higher than the barrier height Eb (i.e. kT
4D

G11
jG12 j

> 1) then the particle

can almost freely escape from the cosine potential so that no con-
fined motion inside the cosine potential is possible or no normal-
mode dynamics of an ABA molecule can exist at this temperature.
At these temperatures, thermal energy is greater than the coupling
strength between AB and BA bonds, and thus these bonds will oscil-
late independently. For the normal-mode behavior of an ABA mole-
cule, the rotor needs to spend considerable time in the cosine

potential well, that implies, the condition keT � Eb, or in other
words:

kT
D
� 4

jG12j
G11

: ðIII:4Þ

The physical values of the critical temperature 4D jG12 j
G11

in (III.4) that
corresponds to the strength of AB–BA bond coupling for different
ABA molecules are shown in Table 1, indicating that condition
(III.4) is valid for room temperatures. Yet, since, quantum mechan-
ically, the energy of an ABA molecule cannot be lower than the zero-
point energy the better agreement of the present classical analysis
with quantum systems is expected for temperatures comparable
to zero-point energies (the right column of Table 1).

As we have discussed in Section 1, the value of parameter Jþ,
which is now a stochastic variable for a dissipative ABA molecule,
determines whether the normal-to-local mode transition is possi-
ble. The values of Jþ, at which local modes can appear, were found
to be Jþ > MW0 ¼ 2D

X
jG12 j
G11
� feJc

þ . Given (III.4) we can now compare
the typical value of Jþ with its critical value:

hJþifeJc
þ

¼
2kT
X

2D
X
jG12 j
G11

¼ kT
D

G11

jG12j
� 1: ðIII:5Þ

Therefore (see Section 1) most of time the rotor will be trapped in
the cosine potential without the possibility to escape. Thus the
majority of SDT will be the transitions between the symmetric
and antisymmetric normal modes, which we can also call dynami-
cal symmetry breaking, see Fig. 1.

The normal mode motion of an ABA molecule corresponds to a
oscillatory motion of the rotor in the cosine potential. To observe
the periodic oscillations in the cosine potential (III.3) (and there-
fore to observe a normal-mode dynamics of an ABA molecule)
we should have friction coefficient c, smaller than the characteris-

tic frequency eX of oscillation in the well. From (III.3), we findeX ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jG12 j
G11

X3 Jþ
4D

q
� X

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jG12 j
G11

kT
2D

q
and thus

c� X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jG12j
G11

kT
2D

s
: ðIII:6Þ

Now we can compare the time scales of evolution of variables Jþ
and J� (see for instance Fig. 1). The characteristic time scale of the
evolution of stochastic variable Jþ can be found from Eq. (II.16):



Fig. 1. A typical trajectory in action-angle variables that shows antisymmetric-to-symmetric normal mode transitions in ABA molecules as a function of dimensionless time
Xt (if divided by 2p it gives the number of normal-mode vibrations of the model H2O molecule). The plot (a) represents the time-dependence of AB and BA bond phase
difference w� ¼ ð/1 � /2Þ=2: the stable oscillations around w� ¼ p=2;3p=2 indicate antisymmetric normal mode behavior, while the stable oscillations around p correspond
to symmetric normal-mode behavior. Plot (b) shows the corresponding time-dependence of the local action variables J1 and J2: the complete energy exchange between J1 and
J2 indicates the normal-mode behavior. Plot (c) represents the difference of local actions J� ¼ J1 � J2, while plot (d) represents the sum of local actions Jþ ¼ J1 þ J2. Note the
different timescales between J� of (c) and Jþ of (d).
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sþ ¼
1
c
: ðIII:7Þ

The characteristic time scale of evolution of J� is 1=eX, i.e.

s� ¼
1
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G11

jG12j
2D
kT

s
: ðIII:8Þ
From the inequality (III.6) we can see that

s�
sþ
� 1; ðIII:9Þ

indicating that Jþ changes much slower than J�, thus we can consider
Jþ as a slow variable that changes adiabatically with respect to fast
variable J�.
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4. Reduction of stochastic equations

4.1. Decoupling of Langevin equation for Jþ

Because of the difference in time scales, Eq. (III.9), the evolution
of Jþ governed by Eq. (II.16) is decoupled from the evolution of J�
governed by Eqs. (II.14) and (II.15). Indeed, since J� changes very
rapidly, we can set its value in the equation for Jþ (II.16) to be equal
to its average value hJ�i, which is zero since J� changes its sign.
Therefore, for gij in Eq. (II.16) we can set

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jþ � J�

p
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Jþ � hJ�i
p

�
ffiffiffiffiffi
Jþ

p
resulting in g12 ¼ 0, and g11 ¼

ffiffiffiffiffi
Jþ

p
. This finding

decouples the system of Eqs. (II.14)–(II.16) into a self-consistent
equation for Jþ:

dJþ
dt
¼ �cJþ þ c

2kT
X
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ckTJþ

X

r
C2ðtÞ; ðIV:1Þ

and equations for J� in which Jþ plays the role of a modulation
parameter:

dw�
dt
¼ � @Hrot

@J�
; ðIV:2Þ

dJ�
dt
¼ @Hrot

@w�
� cJ� þ g11C1ðtÞ þ g12C2ðtÞ: ðIV:3Þ

The independent noise-term g11C1ðtÞ þ g12C2ðtÞ in (IV.3) can be

approximated with a random force
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

11 þ g2
12

q
CðtÞ ¼

ffiffiffiffiffiffiffiffiffi
ckTJþ

X

q
CðtÞ,

resulting in equations:

dw�
dt
¼ � @Hrot

@J�
; ðIV:4Þ

dJ�
dt
¼ @Hrot

@w�
� cJ� þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ckTJþ

X

r
CðtÞ: ðIV:5Þ

Stochastic equations (IV.1), (IV.4) and (IV.5) constitute the basic re-
sult of the paper, which we use to further analyze dynamical tran-
sitions in ABA molecules. To check their accuracy we compare the
results of numerical simulations of the original stochastic equations
(II.4) with those of Eqs. (IV.1), (IV.4) and (IV.5). The numerical re-
sults for the average life time of the antisymmetric normal mode
averaged over 1000 trajectories are shown in Fig. 2. Very good
agreement is observed between these results. Thus, we use original
stochastic equations (II.4) for numerical simulations presented in
this paper and compare them with analytical results derived from
Eqs. (IV.1), (IV.4) and (IV.5).
Fig. 2. Mean life time of the antisymmetric normal mode of H2O molecule at
kT=D ¼ 1=100 as a function of inverse friction in units of X. Squares stand for the
numerical results obtained from the integration of Eq. (II.4), circles represent the
numerical results obtained from the integration of Eqs. (IV.4) and (IV.5).
From Eq. (IV.1) one can find the equilibrium probability distri-
bution WþðJþÞ for the stochastic variable Jþ. Eq. (IV.1) corresponds
to the Fokker–Planck equation in the form:

@qþ
@t
¼ c

@

@Jþ
Jþ �

2kT
X

� �
þ @2

@J2
þ

kTJþ
X

" #
qþ; ðIV:6Þ

which has the following stationary solution:

qþstðJþÞ ¼
JþX

2

ðkTÞ2
exp � JþX

kT

� �
: ðIV:7Þ

Eq. (IV.7) coincides with the energy distribution function of two-
dimensional harmonic oscillator, which results from the approxi-
mations made so far: the effective decoupling of the equation for
Jþ and linearization of anharmonic frequencies (in Appendix for
the simplification of expressions of non-resonant terms). Since we
consider an ABA molecule in thermal equilibrium with bath, Jþ is
assumed to have reached the stationary distribution (IV.7). One
can see that Jþ is a random non-Gaussian variable with the average
value hJþi ¼ 2kT=X and it plays the role of additional non-Gaussian
noise in Eqs. (IV.4) and (IV.5). The distribution function for Jþ from
the numerical simulations of stochastic equations (II.4) is given in
Fig. 3 and agrees with Eq. (IV.7).

4.2. Reduced coordinates

We now focus on Eqs. (IV.4) and (IV.5). These equations
describe dissipative motion of a rotor in the momentum-depen-
dent cosine potential with Hamiltonian

Hrot ¼
J2
�

2M
þW0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2
þ � J2

�

q
cosð2w�Þ; ðIV:8Þ

where M ¼ 4D
X2 ; W0 ¼ jG12 j

G11

X
2; and parameter Jþ is a stochastic vari-

able. In this and following sections, we will extensively use the term
‘‘oscillations of rotor” in a cosine potential, which should not be
confused with the vibrations of ABA molecules: the former stands
for the oscillatory motion in energy space, i.e. one oscillation of
rotor corresponds to one complete energy exchange between AB
and BA bonds in ABA molecule, while the latter corresponds to
the oscillatory motion in coordinate space, i.e. during a single period
of rotor’s oscillation ABA molecule can perform hundreds of high-
frequency vibrations.
Fig. 3. Probability distribution of Jþ. The histogram represents the result of
numerical simulations of Eq. (II.4), and the solid line is the analytical result (IV.7).
The values of parameters are chosen to model H2O: kT=D ¼ 1=75; c=X ¼ 1=4000.



Fig. 4. Theoretical values jtheor of transition point j versus its numerical values
jnum , obtained from direct integration of stochastic equations (II.4). Dashed line
represents bisectrix for comparison.
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As discussed in paper I, the range of rotor energies that corre-
spond to the antisymmetric normal-mode behavior of an ABA mol-
ecule is �W0Jþ 6 Erot < J2

þ=2M and the range of energy for the
symmetric normal-mode behavior is J2

þ=2M < Erot 6W0Jþ. When
in the presence of dissipation, thermal noise forces the rotor
energy Erot to diffuse. When the rotor energy reaches the value
Ec

rot ¼ J2
þ=2M the cosine potential flips and the antisymmetric-to-

symmetric normal mode transition occurs. Noise driven dynamics
is governed by stochastic equations (IV.4) and (IV.5). These equa-
tions can be further simplified by introducing reduced parameters
j� � J�=Jþ and hrot � Hrot=W0Jþ, which instead of original variables
J� and Erot , defined on �Jþ 6 J� 6 Jþ and �W0Jþ 6 Erot 6W0Jþ,
respectively, are now defined on intervals with non-fluctuating
boundaries �1 6 j� 6 1 and �1 6 erot 6 1. The symmetric-to-anti-
symmetric normal mode transition occurs at Erot ¼ J2

þ=2M or equiv-
alently at erot ¼ Jþ=2MW0 ¼ Jþ=

eJc
þ . Using the transformations of

stochastic variables [14,15], Eqs. (IV.4) and (IV.5) now read (in
the Ito form of stochastic calculus)

dw�
dt
¼ �W0

@hrot

@j�
;

dj�
dt
¼W0

@hrot

@w�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2

�

q ffiffiffiffiffiffiffiffi
ckT
XJþ

s
CðtÞ:

ðIV:9Þ

Once Jþ has reached equilibrium (see discussions in the previous
section) we can set its value in the noise term in Eq. (IV.9) to its
equilibrium value 2kT=X. Also, since j� oscillates around zero and
its magnitude is always jj�j 6 1 (reaching �1 only at the point of
symmetric-to-antisymmetric normal mode transition) and thus
1þ j2

� < 1þ 1
2, we can set 1þ j2

� in the noise term to be approxi-
mately equal to 1. Stochastic equation (IV.9) then take a very simple
form

dw�
dt
¼ �W0

@hrot

@j�
;

dj�
dt
¼W0

@hrot

@w�
þ

ffiffiffi
c
2

r
CðtÞ;

ðIV:10Þ

where

hCðtÞCðt0Þi ¼ 2dðt � t0Þ; ðIV:11Þ

hrot ¼ jj2
� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2

�

q
cosð2w�Þ; ðIV:12Þ

j � kT
MW0X

ðIV:13Þ

with antisymmetric normal mode corresponding to �1 < erot < j
and symmetric normal mode corresponding to j < erot < 1. The
transition point erot ¼ j, an important parameter of the theory,
can be compared with direct numerical simulations of original
equations (II.4) to check the validity of the approximations made
so far. The distribution of energies recorded within a period of ro-
tor’s oscillation after the event of symmetric-to-antisymmetric
normal mode transition should be obviously peaked at
e ¼ j. Numerical simulations of stochastic equations (II.4) showed
that the transition point (the peak) agrees well with expression
(IV.13), yet to make it precise the expression, (IV.13) should be
slightly modified with coefficient 0.7 (see Fig. 4), giving

j ¼ 0:7kT
MW0X

: ðIV:14Þ

Below in the text we use this expression for j to compare the re-
sults of analytical theory with numerical calculations.
4.3. The diffusion equation for reduced rotor energy e

In Section 3, we have imposed restrictions to the allowed values
of bath temperature T and friction strength c, which are set weak
enough not to disturb the oscillatory nature of ABA molecule. In
the limit of low temperature and friction, the rotor energy Erot

changes very slowly during a period of oscillation, so that during
a single period of oscillation the motion of rotor can be described
by non-dissipative equations dw�

dt � �
@Hrot
@J�

and dJ�
dt �

@Hrot
@w�

and are inte-
grated in Appendix B. We therefore can apply the Kramers energy
diffusion approach [12]. Following Kramers derivation we write
down the Fokker–Planck equation corresponding to stochastic
equations (IV.10) and average it over a period of rotor’s oscillation,
giving

@�q
@t
¼ � @

@w�
�W0

@hrot

@j�

� �
� @

@j�
W0

@hrot

@w�

� �
þ c

2
@2

@j2
�

" #
�q: ðIV:15Þ

In the energy diffusion regime, the distribution density depends
only on energy and time, thus �q ¼ qðe; tÞ. The first two terms on
the right side disappear since they correspond to constant-energy
motion and the remaining third term results in

@qðe; tÞ
@t

¼ c
2

@2e
@j2
�

 !
@qðe; tÞ
@e

þ @e
@j�

� �2
@2qðe; tÞ
@e2

24 35: ðIV:16Þ

The averages of derivatives are performed in Appendix B which
transform (IV.16) into

@qðe; tÞ
@t

¼ � @

@e
Dð1ÞðeÞ þ @2

@e2 Dð2ÞðeÞ
" #

qðe; tÞ; ðIV:17Þ

where drift Dð1Þ and diffusion Dð2Þ coefficients are

Dð1ÞðeÞ ¼ � c
4

1þ 1

ðe� jÞ2

 !
signðe� jÞ; ðIV:18Þ

Dð2ÞðeÞ ¼ c
2

1
2

1� ðe� jÞ2

je� jj

 !
� jsignðe� jÞ

( )
: ðIV:19Þ

This diffusion equation completely describes the statistics of sym-
metric-to-antisymmetric normal mode stochastic transitions, and
thus is the central result of the present paper.



Table 2
The slopes a for the expression of the mean lifetime hsi ¼ a=c of symmetric and
antisymmetric normal modes, formed at e ¼ 1 and e ¼ �1, respectively.

kT=D anum atheor

Antisymmetric
1

100
1.44 1.77

1
200

1.33 1.52
1

10;000
1.22 1.23

Symmetric
1

100
0.78 0.52

1
200

1.05 0.86
1

10;000
1.26 1.22

The numerical results anum were obtained by plotting mean lifetimes of normal
modes versus the inverse friction similar to Fig.2 and the slope of best fit line was
taken as anum . The theoretical slopes atheor are given by Eqs. (V.4) and (V.8).
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5. The lifetime of symmetric and antisymmetric normal modes

5.1. Antisymmetric normal mode

The lifetime of the antisymmetric normal mode is the average
time tA that rotor spends in the cosine potential well with the en-
ergy Erot < J2

þ=2M or equivalently with energies erot ¼ e in the range
�1 6 e 6 j. The mean life time of the antisymmetric mode is then
the mean first exit time of diffusion process (IV.17) from the region
�1 6 e 6 j with the absorbing boundary condition at e ¼ j and
reflecting boundary condition at e ¼ �1. The drift and diffusion
coefficients in the case of antisymmetric mode are

Dð1ÞðeÞ ¼ c
4

1þ 1

ðe� jÞ2

 !
; ðV:1Þ

Dð2ÞðeÞ ¼ c
2

1
2
ðe� jÞ2 � 1

e� j

 !
þ j

( )
: ðV:2Þ

At this point we note that the drift coefficient Dð1ÞðeÞ is always
positive, and therefore

de
dt

	 

¼ Dð1ÞðeÞ > 0; ðV:3Þ

i.e. noise drives up the energy of the rotor (which is just the Kra-
mers mechanism of noise-driven escape), or in other words, the
ABA molecule tends to escape from antisymmetric normal-mode
dynamics.

From (V.1) and (V.2) we immediately find the mean escape time
from the interval �1 6 e 6 j with reflecting boundary at e ¼ �1
and absorbing boundary at e ¼ j. If the rotor has initial energy
e ¼ e0 ð�1 6 e0 6 jÞ, then the mean first passage time is given by
[15]

tAðe0Þ ¼ 2
Z j

e0

dy
WðyÞ

Z y

�1

WðzÞ
2Dð2ÞðzÞ

dz ¼ 4
c

Z j

e0

ð1þ yÞðj� yÞ
1þ j2 � y2 dy

¼ 1
c

(
4ðj� e0Þ þ 2ðj� 1Þ ln 1þ j2 � e2

0

� �

þ 2
j� 1� j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j2
p

� �
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2
p

þ j

 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j2
p

� e0


 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2
p

� j

 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j2
p

þ e0


 �
24 359=;;

ðV:4Þ

where WðxÞ ¼ exp
R x Dð1Þðx0 Þ

Dð2Þðx0 Þ
dx0

h i
¼ jþ xþ ð1=ðj� xÞÞ. tAðe0Þ is the

lifetime of antisymmetric normal mode formed at energy e ¼ e0 in
a thermal bath of temperature T and friction strength c. The expres-
sion is valid for values of j up to 0.5, and improves if the condition
(III.5), i.e. j� 1, is satisfied.

If we prepare the antisymmetric normal mode at e0 ¼ �1,
which corresponds to the bottom of rotor’s cosine potential, i.e.
the case of perfect antiphased oscillations of AB and BA bonds in
ABA molecule, w� ¼ p=2, then this antisymmetric mode according
to Eq. (V.4) will last for the duration tAð�1Þ � ð1:24þ 2:34j�
0:76j2Þ=c, which is approximately tA � 1:5=c for temperatures
j < 0:2. The weak dependence of tA on j is the reason for the tem-
perature invariance and AB–BA coupling strength ðW0Þ invariance
of antisymmetric mode lifetime observed in paper I. The numerical
simulations [16] of dissipative dynamics of ABA molecule governed
by Eq. (II.4) with initial condition e0 ¼ �1 (see Table 2) are in good
agreement with the analytical result (V.4). Analytical Fokker–
Planck equation (IV.17) with diffusion coefficients (V.1) and (V.2)
also allows to compare the statistics of lifetimes of antisymmetric
normal mode. The comparison of analytical distribution curve
pðtÞ ¼ �

R j
�1 de@qðe; tÞ=@t with the numerical results is shown in

Fig. 5 and finds a very good agreement.
5.2. Symmetric normal mode

The lifetime of symmetric normal mode is the mean time tS that
the rotor spends in the cosine potential well with energy
Erot > J2

þ=2M or equivalently with energies erot ¼ e in the range
j 6 e 6 1. The average lifetime of symmetric mode is the mean
first exit time of the diffusion process (IV.17) from the region
j 6 e 6 1 with absorbing boundary condition at e ¼ j and reflect-
ing boundary condition at e ¼ 1. The drift and diffusion coefficients
in case of the symmetric mode are now

Dð1ÞðeÞ ¼ � c
4

1þ 1

ðe� jÞ2

 !
; ðV:5Þ

Dð2ÞðeÞ ¼ c
2

1
2

1� ðe� jÞ2

e� j

 !
� j

( )
: ðV:6Þ

Again, we see that the drift coefficient is always negative, i.e.,

de
dt

	 

¼ Dð1ÞðeÞ < 0; ðV:7Þ

which suggests that noise drives e toward the transition point e ¼ j
and thus plays the role of driving force for the symmetry-breaking
(i.e. symmetric-to-antisymmetric normal mode) transition. If the
rotor has initial energy e ¼ e0 ðj 6 e0 6 1Þ, then the lifetime of sym-
metric normal mode is

tSðe0Þ ¼ 2
Z e0

j

dy
WðyÞ

Z 1

y

WðzÞ
2Dð2ÞðzÞ

dz

¼ 1
c

4ðe0 � jÞ � 2ðjþ 1Þ ln 1þ j2 � e2
0

� ��
þ 2

1þ jþ j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2
p

� �
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2
p

þ j

 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j2
p

� e0


 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2
p

� j

 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j2
p

þ e0


 �
24 359=;:

ðV:8Þ

where WðxÞ is the same as in the case of antisymmetric mode. The
expression for tSðe0Þ improves as the condition (III.5), i.e. j� 1, is
satisfied.

If the symmetric normal mode is formed at e0 ¼ 1, which corre-
sponds to the top of rotor’s cosine potential and to the case of per-
fect in-phase oscillations of AB and BA bonds in ABA molecule,
w� ¼ 0, then such a symmetric mode according to Eq. (V.8) lasts
for the duration tSð1Þ � ð1:24� 3:54j� 2:6j2Þ=c.

5.3. Populations of symmetric and antisymmetric normal modes

From the above analysis, one can also make an important obser-
vation that with the increase of temperature (i.e. j) the range of



Fig. 5. Lifetime distribution function for antisymmetric (A) and symmetric normal mode (S) at kT=D ¼ 1=1000 and c=X ¼ 1=10;000. The antisymmetric normal mode was
formed at e ¼ �1, i.e. perfect antiphase oscillations of HO and OH bonds, while the symmetric normal mode was formed at e ¼ 1, i.e. perfect inphase oscillations of OH and HO
bonds. The unit of time is 1=X. Dots represent numerical results obtained by integration of stochastic equations (II.4) for the model of H2O molecule, while solid lines are the
analytical distribution functions.
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allowed energies for antisymmetric normal mode ð�1 < e < jÞ in-
creases, while the range of allowed energies for symmetric normal
mode ðj < e < 1Þ decreases and vanishes as j reaches 1. Therefore,
one should expect that higher temperatures destabilize symmetric
normal mode and thus depopulate it. This can be shown explicitly
by solving the diffusion equation (IV.17). Its stationary (thermal
equilibrium) solution is qðeÞ ¼ 1

2 ; �1 < e < 1. Since antisymmetric
(A) normal mode corresponds to �1 < e < j, and symmetric (S)
normal mode corresponds to j < e < 1, the ratio of their popula-
tions nA and nS is

nS

nA
¼ 1� j

1þ j
: ðV:9Þ

This simple relation agrees well with the direct numerical simula-
tions of stochastic equations (II.4), see Fig. 6, which was obtained
as the ratio between the total amount of time that the model ABA
molecule spends in (S) and (A) modes, respectively. One can see,
Fig. 6. Ratio of equilibrium populations of symmetric and antisymmetric normal
modes nS=nA of H2O molecule obtained by integration of Eq. (II.4) (dots) and
analytical equation (V.9) (solid line) as a function of inverse temperature.
that higher temperatures, i.e. j, reduce the ratio (V.9), which is just
the opposite to the effect expected in noise-free quantum system
(ABA molecule) in which higher temperatures should equilibrate
populations of antisymmetric and symmetric normal modes.
6. Statistics of symmetry breaking from a single trajectory
calculation

In Section 6, we have discussed symmetric-to-antisymmetric
normal mode transitions for trajectories with a given initial condi-
tion. The statistics of first exit times were collected on a set of tra-
jectories, all with the same initial conditions. Yet, it is more
interesting to collect the statistics of the symmetric or antisym-
metric state by counting the events along a single trajectory, as
in the single molecule experiment. In paper I, a single trajectory
of w�ðtÞ was observed and analyzed. The statistics of time intervals
in either symmetric normal mode or antisymmetric normal mode
was then collected and the distribution was found to be of non-
Poissonian form. In this section, we provide analytical derivation
of the observed statistics.

The statistics of symmetry breaking is governed by diffusion
equation (IV.17). Yet, this diffusion equation now needs to be
solved with different initial conditions. In this case rotor jumps
in and out of its antisymmetric mode region and symmetric mode
region entering ‘‘from the top”, i.e. from the symmetry breaking
transition point e ¼ j (whereas in the previous section we formed
normal mode ‘‘near the bottom” of the cosine potential and re-
corded the times when it jumped out at the transition point
e ¼ j). From the numerical experiment, we can observe only those
events that have timescales longer than the period of rotor’s oscil-
lation s ¼ p=W0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2je
p

(see Appendix B). The distribution of
q0ðe; sÞ over the time s in the vicinity of transition point e ¼ j will
be the initial distribution density for the diffusion equation (IV.17)
for the comparison with the numerical experiment. We cannot ob-
tain this initial distribution density from the diffusion equation
(IV.17) since this equation was obtained by averaging over the per-
iod of rotor’s oscillation s, i.e. it does not have enough resolution
for times less than a single period of oscillation. Yet, we know that
by definition, reduced energy e is the ratio of two fluctuating ran-
dom variables e ¼ Erot=W0Jþ. For the time s, we can assume Erot and
Jþ to be Gaussian random variables. Then the ratio of the two
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normal variables follows the Lorentz distribution and we can
therefore immediately get the general form of q0ðe; sÞ

q0ðe; sÞ ¼
1
p

De
ðe� jÞ2 þ De2

; ðVI:1Þ

which is centered around the transition point j and has the width
De. This width is obviously determined by the diffusion of e during
the time s and therefore De2 � cs, thus giving the final form of the
initial distribution q0ðe; sÞ

q0ðe; sÞ ¼
1
p

ffiffiffiffiffiffiffiffiffi
Ccs

p
ðe� jÞ2 þ Ccs

: ðVI:2Þ

We identify the constant coefficient C as the best fit of the theoret-
ical mean life time of antisymmetric normal mode

htAi ¼
R j
�1 tAðeÞq0ðe; sÞdeR j
�1 q0ðe; sÞde

; ðVI:3Þ

where tA is given by (V.4) and q0ðe; sÞ is given by (VI.2), to the
experimentally observed from numerical simulations of a single tra-
jectory [17] (see Fig. 7). The best fit result gives C ¼ 3:1. The lifetime
htAi in (VI.3) is the average time that the ABA molecule spends in the
antisymmetric normal mode regime obtained by averaging over the
events along a single trajectory (see paper I). Similarly, the mean
time that molecule ABA spends in symmetric normal-mode dynam-
ics is

htSi ¼
R 1
j tSðeÞq0ðe; sÞdeR 1

j q0ðe; sÞde
; ðVI:4Þ

where tSðeÞ is given by (V.8). The analytical results (VI.3) and (VI.4)
with the fixed value C ¼ 3:1 agree well with the whole set of
numerical results obtained for different temperatures T and cou-
pling strengths W0.

We can now derive the analytical distribution functions of the
lifetimes tA and tS. First, we solve the diffusion equation (IV.17)
on the interval �1 6 e 6 j with the boundary conditions @qð�1;
tÞ=@e ¼ 0; qðj; tÞ ¼ 0 and initial condition qðe;0Þ ¼ q0ðe;
sÞ
R j
�1 q0ðe; sÞde

�
. To set the initial condition in accord with the

boundary conditions we introduce small correction to the curva-
ture of qðe;0Þ at e ¼ �1 and set qðe; 0Þ ¼ 0 for je� jj < 0:01. The
distribution function of first exit times through the boundary
e ¼ j, i.e. qðtAÞ, is then
Fig. 7. The mean lifetimes of antisymmetric (A) and symmetric (S) normal modes obser
1=X. Solid circles represent numerical results for the H2O model and kT=D ¼ 1=5000, op
results with best-fit coefficient C ¼ 3:1: solid line stands for kT=D ¼ 1=5000, dashed line
qðtÞ ¼ �
Z j

�1

@qðe; tÞ
@t

de: ðVI:5Þ

In principle, the diffusion equation (IV.17) with coefficients (V.1)
and (V.2) can be solved by separation of variables, the solution
can be then substituted in (VI.5) to get the analytical expression.
Yet, the analytical expression is not much simpler than the direct
numerical integration of (IV.17) and (VI.5). The obtained result is
shown in Fig. 8 and results in a good agreement with the statistics
of lifetimes obtained by direct integration of the original stochastic
equations (II.4) (see paper I).

The analytical distribution function for the lifetimes of symmet-
ric normal mode is obtained in a similar way by solving the
diffusion equation (IV.17) on the interval j 6 e 6 1 with the
boundary conditions @qð1; tÞ=@e ¼ 0; qðj; tÞ ¼ 0 and initial condi-
tion qðe; 0Þ ¼ q0ðe; sÞ

R 1
j q0ðe; sÞde

.
. The results are presented in

Fig. 8.
7. Discussions

In the present paper, we have analyzed the statistics of symme-
try-breaking dynamical transitions in ABA molecules, i.e. the noise-
induced transitions between the symmetric and antisymmetric
normal modes. Normal mode oscillation of ABA molecules formed
at thermal equilibrium with bath is forced to switch its symmetry
under the influence of noise. The dynamical ‘‘blinking” phenomena
therefore originates.

The mean lifetimes of both normal modes were obtained ana-
lytically as a function of AB–BA bond coupling strength and the
parameters of environment such as temperature and friction. At
the temperatures much lower than the critical decoupling temper-
ature (the temperature which decouples AB and BA bonds, see
text) the lifetimes of both normal modes do not depend either on
temperature T of the thermal environment or AB–BA coupling
strength W0 and are equal to 1:24=c, where c is a friction strength.
At higher temperatures, yet still lower than the decoupling tem-
perature, the lifetime of symmetric normal modes decreases and
may eventually become zero, while the lifetime of antisymmetric
normal mode increases very slowly. The later observation illus-
trates the result discussed in paper I that symmetric normal mode
is stable only at moderate temperatures, while antisymmetric nor-
mal mode is stable at any temperature. We have also studied ana-
lytically the statistics of symmetry breaking transitions and
ved from a single trajectory as a function of inverse friction 1=c. The unit of time is
en circles represent numerical results for kT=D ¼ 1=200. Lines represent analytical
stands for kT=D ¼ 1=200.



Fig. 8. Lifetime distribution functions for antisymmetric (A) and symmetric normal modes (S) at kT=D ¼ 1=1000 and c=X ¼ 1=10;000 along a single trajectory. The units of
time is 1=X. Dots represent numerical results obtained by integration of stochastic equations (II.4) for the model of H2O molecule, while solid lines are the analytical
distribution functions.
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obtained non-Poissonian lifetime distribution observed in paper I.
The reason for non-Poissonian statistics is the underlying energy
diffusion mechanism, which results in multiple exponential decays
of the first passage time statistics.

The theory developed in the present paper, although being clas-
sical, may have an important implications in modern chemistry
that deals with single molecule experiments suggesting a possible
mechanism of blinking phenomena from the first principles.
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Appendix A

In this appendix, we perform the averaging of Eq. (II.7) over wþ.
Everywhere below the bar means averaging over wþ:

(I)

bLq ¼ q;Hsf g ¼ @q
@w�

@Hs

@J�
� @q
@J�

@Hs

@w�
þ @q
@wþ

@Hs

@Jþ

¼ @�q
@w�

@Hs

@J�
� @�q
@J�

@Hs

@w�
� �q;Hsf g�; ðA:1Þ

where the ABA-molecule’s Hamiltonian in action-angle variables Hs

is given by Eq. (II.9).
(II) To average irreversible terms in (II.7) over wþ we recall that

the parameters of thermal bath that we are considering are
weak kT � D and c� X and thus each period of oscillation
occurs almost at constant energy (or constant action vari-
able), therefore we can follow Kramers derivation to express
averaged irreversible terms in action variables:

ðbLirr1 þ bLirr2Þq ¼ c
@

@p1
p1qþ

kT
G11

@q
@p1

� �
þ c

@

@p2
p2qþ

kT
G11

@q
@p2

� �
¼ c

@

@p1
p1 �qþ kT

G11

@E1

@p1

@�q
@E1

� �
þ c

@

@p2
p2 �qþ kT

G11

@E2

@p2

@�q
@E2

� �
¼ c

@

@J1
J1 �qþ kTJ1

x1

@�q
@J1

� �
þ c

@

@J2
J2 �qþ kTJ2

x2

@�q
@J2

� �
;

ðA:2Þ
where in the last step we used the fact that averaging over wþ for
one-dimensional operators Lirr1 and Lirr2 is the same as averaging
over u1 and u2, respectively. We also used that @

@pi
¼ G11pi

@
@Ei

.
(III) Using the relation @

@pi
¼ G11pi

@
@Ei

we write down the average of
the last term in (II.7):

c
G12

G11
p1

@

@p2
þ p2

@

@p1

� �
q ¼ cG12 p1p2

@

@E2
þ p2p1

@

@E1

� �
�q

¼ cG12p1p2
1
x1

@

@J1
þ 1

x2

@

@J2

� �
�q

¼ cV0

� cosð2w�Þ
1
x1

@

@J1
þ 1

x2

@

@J2

� �
�q;

ðA:3Þ

where, see paper I,

G12p1p2 ¼ V0 cosðu1 �u2Þ ðA:4Þ

and

V0 ¼
4DG12

X2G11
x1x2

1� x1
X

1þ x1
X

� �1=2 1� x2
X

1þ x2
X

� �1=2

: ðA:5Þ

Combining (A.1)–(A.3) we get the following averaged over wþ
Kramers equation (II.7):

@�q
@t
¼ �fHs; �qg� þ c

@

@J1
J1 �qþ kTJ1

x1

@�q
@J1

� �
þ c

@

@J2
J2 �qþ kTJ2

x2

@�q
@J2

� �
þ cV0 cosð2w�Þ

1
x1

@

@J1
þ 1

x2

@

@J2

� �
�q: ðA:6Þ

We are considering the case of thermal equilibrium of our ABA
system, which means that energy of each oscillator Ei � kT � D
and therefore the equilibrium motion will occur mostly in the bot-
tom of Morse potential, therefore to a good degree of accuracy we
can set frequencies xi ¼ X 1� J

Jb


 �
in Eq. (A.6) to be equal to X,

which would simplify further analysis of (A.6) a lot:

@�q
@t
¼ �fHs; �qg� þ c

@

@J1
J1 �qþ kTJ1

X
@�q
@J1

� �
þ c

@

@J2
J2 �qþ kTJ2

X
@�q
@J2

� �
þ cV0

X
cosð2w�Þ

@

@J1
þ @

@J2

� �
�q: ðA:7Þ
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Using transformations (II.8) we express (A.7) in fw�; J�;wþ; Jþg
variables:

@�q
@t
¼ �fHs; �qg� þ c 1þ 1þ G12

G11
cosð2w�Þ

� �
Jþ

@

@Jþ
� 2kT

X
@

@Jþ

� �
�q

þ c
@

@J�
J��qð Þ þ ckT

X
@2

@J2
þ
ðJþ�qÞ þ 2

@2

@Jþ@J�
ðJ��qÞ þ @2

@J2
�
ðJþ�qÞ

 !
:

ðA:8Þ

Since G12=G11 � 1 (for H2O it is approximately 1/62), then we can
set 1þ G12

G11
cosð2w�Þ


 �
¼ 1 in the above equation and thus obtain:

@�q
@t
¼ �fHs; �qg� þ c

@

@Jþ
Jþ �

2kT
X

� �
�qþ c

@

@J�
ðJ��qÞ

þ ckT
X

@2

@J2
þ
ðJþ�qÞ þ 2

@2

@Jþ@J�
ðJ��qÞ þ @2

@J2
�
ðJþ�qÞ

 !
; ðA:9Þ
Fig. 9. Exact (dots) and approximate (solid lines) averaged derivatives as a function
of e for j ¼ 0:2. (a) average of second derivative; (b) average of squared first
derivative.
Appendix B

In this appendix, we derive equations for constant-energy oscil-
lations of hindered rotor and provide expressions for several deriv-
atives averaged over a period of rotor’s oscillation.

The Hamiltonian under consideration (IV.12) is

h ¼ jj2
� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2

�

q
cosð2w�Þ ðB:1Þ

with non-dissipative equations of motion (IV.10)

dw�
dt
¼ �W0

@h
@j�

;

dj�
dt
¼W0

@h
@w�

:

ðB:2Þ

Equation for j�ðtÞ can be integrated substituting cosine function
from the expression of Hamiltonian at constant energy h ¼ e. This
results in the approximate expression for j�ðtÞ valid to the order
of oðj2Þ

j�ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

1� 2je

r
sin 2W0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2je
p
 �

t þ d0

h i
; ðB:3Þ

where d0 is some initial phase. Coordinate w�ðtÞ then changes as

cosð2w�ðtÞÞ ¼
e� jj�ðtÞ

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j�ðtÞ

2
q : ðB:4Þ

The period of rotor’s oscillation is therefore

sðeÞ ¼ p
W0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2je
p : ðB:5Þ

One can see that for negative e period s decreases with increasing j,
while for positive e period s increases with increasing j. It is inter-
esting that since j is proportional to temperature (see text) then
higher temperature increases the rate of AB–BA bond energy ex-
change in antisymmetric normal mode oscillation and decreases it
in symmetric normal mode oscillation.

Below we list expressions for averaged over the period sðeÞ
derivatives ð@h=@j�Þ

2 and @2h=@j2
� used in text. These averages

can be obtained analytically only for j ¼ 0, yet do not have explicit
analytical form for j > 0. It is interesting though, that their
approximate analytical form can be obtained by shifting singular-
ity point of expressions obtained for j ¼ 0 from e ¼ 0 to e ¼ j.
For j ¼ 0 we can easily get
@2h

@j2
�

 !
j¼0 ¼

1
s

Z s

0

@2h

@j2
�

 !
dt ¼ �W0

p

Z s

0

edt

1� ð1� e2Þ sin2ð2W0tÞ
h i2

¼ �1
2

1þ 1
e2

� �
signðeÞ ðB:6Þ

with signðeÞ ¼ e=jej. For non-zero j we simply replace e with e� j
to get the approximate expression

@2h

@j2
�

 !
¼ �1

2
1þ 1

ðe� jÞ2

 !
signðe� jÞ: ðB:7Þ

This approximate expression reproduces exact integral very well,
see Fig. 9a. In the same way we find expression for the averaged
over the period squared first derivative

@h
@j�

� �2

j¼0 ¼
1
s

Z s

0

@h
@j�

� �2

dt ¼ 1
s

Z w�ðsÞ

w�ð0Þ

@h
@j�

dw�

¼ � 1
p

Z w�ðsÞ

w�ð0Þ

ej�
1� j2

�

dw� ¼
1
2

1� e2

jej

� �
: ðB:8Þ

And for non-zero j’s

@h
@j�

� �2

¼ 1
2

1� ðe� jÞ2

je� jj

 !
� jsignðe� jÞ; ðB:9Þ

where the last term appears to keep the expression non-negative on
the order of OðjÞ . The approximate result (B.9) is compared to exact
in Fig. 9b for j ¼ 0:2. It should be also noted here that expression
(B.7) can be obtained by differentiation of Eq. (B.9) over e (except
at the point e ¼ j, which we can exclude from our analysis).
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