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Abstract

In charged colloidal suspensions, the competition between square-well attraction and long-range Yukawa repulsion

leads to various stable domains and Wigner supercrystals. Using a continuum model and symmetry arguments, a phase

diagram of spheres, cylinders, and lamellae is obtained as a function of two control parameters, the volume fraction and

the ratio between the surface tension and repulsion. Above a critical value of the ratio, the microphase cannot be supported

by the Yukawa repulsion and macroscopic phase separation occurs. This finding quantitatively explains the lack of pattern

formation in simple liquids because of the small hard sphere diameter in comparison with the size of macromolecules. The

phase diagram also predicts microphase separation at zero value of the ratio, suggesting the possibility of self-assembly in

repulsive systems.

r 2006 Elsevier B.V. All rights reserved.
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Microphase separation is ubiquitous in soft matter systems [1–11]. For example, microphase separation in
block copolymers results from mixing of two or more chemically different polymer segments [3,4].
Competition of hydrophobic and hydrophilic head-groups of amphiphiles leads to micelles in the water
solution [5]. The self-assembly processes in charged colloidal suspensions and protein solutions can lead to the
formation of stable domains and Wigner supercrystals (see Fig. 1) at low temperatures. The investigation of
charged colloids and protein solutions is particularly interesting because they can be approximated as one-
component systems with an effective isotropic pairwise interaction after averaging out the degrees of freedom
of dispersing medium. This effective interaction is composed of a hard-core potential, a long-range
electrostatic repulsion, and a short-range attraction. The screened Coulomb repulsion is described by a
Yukawa potential [12,13]. Since more complicated potential forms qualitatively lead to the same phenomena
[14–16], for simplicity, we model the short-range attraction by a square-well potential. The overall pairwise
interaction between two colloidal particles separated by r is given by
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Fig. 1. Super structures of domains: (A) BCC lattice of spherical domains, (B) FCC lattice of spherical domains, (C) a cylindrical domain

and the resulting 2D triangular lattice, (D) a lamellar domain and the resulting 1D lattice.
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where s is the colloidal diameter. The attraction depth e and repulsion strength A are temperature-dependent,
and e is usually greater than the average thermal fluctuation. For convenience all the length variables in this
letter are dimensionless in units of the screening length z. The pairwise and isotropic interaction in Eq. (1)
represents one of the simplest self-assembly systems that can be studied explicitly.

At low temperatures, shapes and sizes of colloidal domains are narrowly distributed, and their
arrangements in space are highly ordered. A perfect superlattice composed of identical colloidal domains is
an ideal reference (ground) state. In this letter we concentrate on domain patterns in the ground state.
Entropic effects induced by thermal fluctuations will be studied elsewhere. Without thermal effects, we
determine the most stable (optimal) shape, size, and superlattice (see Fig. 1) for ground-state domain patterns
by globally minimizing the energy density. At low temperatures, this evaluation is simplified by a continuum
approximation: colloidal particles are closely packed inside a domain and the characteristic domain size is
much larger than the particle size. Similar models have been used in the study of two-dimensional (2D) lipid
domains [2]. In our continuum model, the short-range attraction gives rise to bulk adhesion and surface
energy. The density of the adhesive energy is a constant in the leading order for a given colloidal number
density r or equivalently a given volume fraction, f ¼ prs3=6. The bulk adhesion does not affect the domain
shapes and is not included in this letter. For a domain with area S, the surface energy is US ¼ gS, where the
surface tension g is proportional to the attraction depth � in the lowest order approximation. Throughout this
letter, g is assumed to be independent of domain shapes. The sum of the long-range Yukawa potential is
separated into two parts,
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where U
ð1Þ
Y ðmÞ is the intra-domain repulsion for domain m, U

ð2Þ
Y ðm; nÞ is the inter-domain repulsion between

domains m and n, and Nd is the total number of domains. Here r1 is the colloidal number density within
domains and larger than the overall number density r. The self energy of a single domain is the sum of the
intra-domain repulsion and the surface energy, E1 ¼ US þU

ð1Þ
Y . The sum of the inter-domain repulsions

results in the lattice energy, UL ¼ ð1=2Þ
PNd

nða1ÞU
ð2Þ
Y ð1; nÞ. In the ground state, all the domains in one phase are

identical so that the energy of each domain is given by Etot ¼ E1 þUL. In our continuum model, the
morphologies of domain patterns are thus determined by minimizing Etot=vd, where vd is the domain volume.

We now apply the continuum model to study various domain patterns shown in Fig. 1. Spheres have the
smallest surface energy and highest spatial symmetry. For a spherical domain with radius R, the intra-domain
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Fig. 2. The optimal radius Rm and the energy minimum E1;m (Etot;m) of a spherical domain in the isolated case (dotted lines) and in FCC

lattices at finite volume fractions, where the dashed lines are for f ¼ 0:1 and the solid lines are for f ¼ 0:3.
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Yukawa contribution U
ð1Þ
Y is simplified using the Fourier transform technique. The summation of the surface

energy US and the intra-domain repulsion U
ð1Þ
Y results in the self energy of a spherical domain,

E1 ¼
E0

R3
½2R3 þ 3ða� 1ÞR2 þ 3� 3ð1þ RÞ2e�2R�, (3)

where E0 ¼ vde0 arises from a constant energy density e0 ¼ pr21Az3 and the domain volume vd ¼ 4pR3=3. As
shown in Eq. (3), the competition between the surface tension and the Yukawa repulsion is described by a
single control parameter, a ¼ g=pr21Az4. In the low density limit, domains are far apart from one another so
that an individual domain can be treated as an isolated system and the lattice energy can be neglected. The self
energy has a minimum at a finite radius for ao1, whereas E1 is a monotonously decreasing function of R for
aX1. Thus, ac ¼ 1 is a critical point: spherical domains with finite sizes are stable for aoac, whereas the phase
separation occurs for aXac. The self energy minimum E1;m and the associated radius Rm are plotted in Fig. 2.
In the limit of strong repulsion (a! 0), we obtain two asymptotic forms, Rm�

ffiffiffiffiffiffiffiffi
15a3
p

=2 and
E1;m=E0�3

ffiffiffiffiffiffiffiffiffiffiffiffi
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p
. The size of the spherical domain grows as a increases. In the phase separation limit

(a! a�c ), the stable radius and energy minimum are asymptotically given by Rm�
ffiffiffi
3
p

1� a=ac
� ��1=2

and
E1;m=E0�2½1� ð1� a=acÞ

3=2=
ffiffiffi
3
p
�, respectively. These asymptotic relations can be tested experimentally.

For a finite density (volume fraction), the balance of the self energy E1 and the lattice energy UL from inter-
domain repulsions leads to a 3D supercrystal, e.g., body centered cubic (BCC) and face centered cubic (FCC)
lattices of spheres (see Fig. 1A and B). The lattice energy UL depends on the inter-domain repulsion and the
lattice structure. Using the spherical harmonic expansion method, the inter-domain repulsion between two
spheres separated by r is derived as

U
ð2Þ
Y ðrÞ ¼

3E0

R3
½ðRþ 1Þe�R þ ðR� 1ÞeR�2

e�r

r
. (4)

The spatial periodicity of a Wigner lattice is related to the volume fraction. For example, the lengths of
primitive cells for BCC and FCC lattices (see Fig. 1A and B) are given by a ¼ Zf�1=3R, where we have
ZFCC ¼ ð16p=3Þ

1=3 for the FCC lattice, and ZBCC ¼ ð8p=3Þ
1=3 for the BCC lattice. Using the spatial periodicity,

we sum the inter-domain repulsions of the FCC (BCC) lattice and obtain the lattice energy as
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. (5)
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The reduced distance x~n in the above equation is given by x~n ¼ ½2ðn
2
1 þ n2

2 þ n2
3 þ n1n2 þ n2n3 þ n3n1Þ�

1=2 for
the FCC lattice, and x~n ¼ ½3ðn

2
1 þ n2

2 þ n2
3Þ � 2ðn1n2 þ n2n3 þ n3n1Þ�

1=2 for the BCC lattice, where ni can be any
integers except for that all the ni are zero. The total energy of a domain is the sum of the self energy in Eq. (3)
and the lattice energy in Eq. (5). Minimization of the energy density for a given lattice using qRðEtot=E0Þ ¼ 0
leads to the stable radius Rm. Fig. 2 shows that both Rm and the energy minimum Etot;m increase with the
volume fraction. By examining the subtle difference ð�10�4Þ of Etot;m between FCC and BCC lattices, we
obtain the phase diagram displayed in Fig. 3. It demonstrates that the FCC lattice is usually more stable than
the BCC lattice except for small values of a. Our results extend the previous studies on the FCC–BCC
transition in Wigner particle solids with the Yukawa potential [17].

Dispersing medium surrounded by colloidal particles can be considered as cavities. For f40:5, cavities are
dispersed in the sea of colloidal particles so that various shapes and structures of cavities can form in the same
way as domains. The intrinsic mirror symmetry between conjugate colloidal domains and cavities requires that
the optimal shape and structure of cavities at fð40:5Þ are the same as those of colloidal domains at 1� f. As
a result, the cavity phase and the domain phase must be equivalent at f ¼ 0:5, which can be achieved by the
lamellar shape and its topological variations. Following the same domain-cavity symmetry argument, lamellae
are expected to be preferred in the phase separation limit ða! a�c Þ.

Next we investigate lamellar domains. For a lamellar domain with a finite width h, and infinite length and
height ðL!1Þ, its surface energy is given by U s ¼ 2gðL2 þ 2LhÞ � 2E0ah�1, where E0 ¼ vde0 ¼ L2he0.
Following Eq. (2), we obtain the intra-domain repulsive energy,

U
ð1Þ
Y ¼ 2E0h

�1
½h� 1þ e�h�. (6)

In the ground state, all lamellar domains are parallel and form a 1D supercrystal (see Fig. 1D). To obtain the
lattice energy, we calculate the repulsion energy between two parallel lamellar domains separated by r,

U
ð2Þ
Y ðrÞ ¼ 2E0h

�1e�rðeh þ e�h � 2Þ. (7)

At the volume fraction f, the distance between two arbitrary lamellar domains is given by jnjf�1h, where n is a
nonzero integer. The lattice energy for each lamellar domain is given by
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Fig. 3. The phase diagram for FCC and BCC supercrystals composed by spherical domains.
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Fig. 4. A phase diagram for spherical, cylindrical, and lamellar shapes. The optimal structure formed by cavities for f40:5 is the mirror

of that by colloidal domains at 1� f.
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We determine the optimal width hm from minimization of Etot=E0. Similar to spherical domains, lamellar
domains with a finite width can exist only for aoac. In the limit of strong repulsion (a! 0) at a finite volume

fraction, the lamellar width and the total energy are asymptotically given by hm�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6fa=ð1� fÞ23

q
and

Etot;m=E0 ¼ 2fþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ð1� fÞ2a2=ð2fÞ3

q
, respectively. By comparing Etot;m of spheres and lamellae, we obtain

their relative stability, as shown in Fig. 4. As expected, lamellar shapes are more stable than spheres when a
approaches the critical value ac, or when the volume fraction approaches 0:5.

The spatial symmetry of spheres is the highest and that of lamellae is the lowest. It is natural to speculate
that intermediate phases exist between these two limiting structures. One typical example is the 2D triangular
lattice formed by cylindrical domains with the azimuthal symmetry (see Fig. 1C). Notice that other domain
shapes and superlattice structures are also possible [3,4,18]. For a cylindrical domain with a finite radius R and
the infinite height (L!1), the surface energy is given by U s ¼ gð2pR2 þ 2pRLÞ � 2E0aR�1 where
E0 ¼ vde0 ¼ pR2Le0. The intra-domain repulsion is derived from the Neumann addition theorem as

U
ð1Þ
Y ¼ 2E0½1� 2I1ðRÞK1ðRÞ�, (9)

where InðxÞ and KnðxÞ are the modified Bessel functions of the first and second kinds, respectively. We apply
the Neumann addition theorem to calculate the effective repulsion between two domains separated by r as

U
ð2Þ
Y ðrÞ ¼ 8E0½I1ðRÞ�

2K0ðrÞ. (10)

The length of the primitive equilateral triangle shown in Fig. 1C is related to the volume fraction as
a ¼ ð2p=

ffiffiffi
3
p

fÞ1=2R. Using this relation, we calculate the lattice energy UL from the lattice summation of the
inter-domain repulsion. By solving qRðEtot=E0Þ ¼ 0, we obtain the optimal radius Rm and the energy minimum
Etot;m. Similar to other shapes, cylindrical domains are stable for aoac.

Comparing Etot;m calculated from different shapes and structures yields the global energy minimum and
thus the optimal ground-state domain morphology. The central result of this letter is the phase diagram in
Fig. 4, which describes the shape transformation between spherical, cylindrical, and lamellar domains. The
ratio a between the surface tension and repulsion, and the volume fraction f, are the two control parameters.
Finite size domains can be stabilized for aoac ¼ 1, whereas phase separation is observed for aXac. Domain
patterns stabilized in the small attraction limit (a! 0) suggest the possibility of self-assembly processes in
repulsive systems [19]. The basic features of shape transformation are consistent with symmetry arguments. In
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the low density limit (f! 0), spheres are preferred at small values of a, whereas lamellae are preferred as the
system approaches phase separation. At larger volume fractions, structures in low dimensions (2D and 1D)
become increasingly more stable. Spheres are unstable for f40:19, while cylinders are unstable for f40:35.
At the equal volume fraction of colloidal domains and cavities (f ¼ 0:5), only the lamellar phase is stable. The
mirror symmetry between domains and cavities is used to produce the right half of the phase diagram for
f40:5. The cylindrical regime completely separates spherical and lamellar regimes, demonstrating that 3D
spheres undergo a transformation to 1D lamellae via 2D phases. Although we only compute cylinders, other
intermediate shapes may exist.

In this letter we predict the shape transformation (see Fig. 4) of colloidal domain patterns in the ground
state. Our study presents a simple and exactly solvable model system for understanding self-assembling
phenomena based on a pairwise and isotropic potential. Ground-state domain patterns do not incorporate
entropic effects induced by thermal fluctuations at finite temperatures. Temperature effects can be partially
included in the current model by introducing the temperature-dependent surface tension gðTÞ and domain
density r1ðTÞ. At higher temperatures, a more systematic treatment should involve the calculation of
interphase free energies, where the distribution of shapes and distortion of structures are accounted. Along
this direction, the stability of domains with small distortions, the liquid–solid transition of particles within
spherical clusters, and the formation of stable clusters at finite temperature are under investigation [20].

This work is supported by the NSF Career Award (Che-0093210) and the US Army through the Institute of
Soldier Nano-technologies at MIT. The results of the paper were first reported by one of the authors in the
summer of 2004 at the Telluride workshop on condensed phase dynamics.
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