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Classical Divergence of Nonlinear Response Functions
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The time divergence of classical nonlinear response functions reveals the fundamental difficulty of
dynamic perturbation based on classical mechanics. The nature of the divergence is established for
systems in regular motions using asymptotic decomposition of Fourier integrals. The asymptotic analysis
shows that the divergence cannot be removed by phase-space averaging such as the Boltzmann
distribution function. The implications of this study are discussed in the context of the conceptual
development of quantum-classical correspondence in dynamic response.
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Introduction.—Response theory predicts the response of
a physical system to an external disturbance perturbatively
and forms the theoretical basis of describing many experi-
mental measurements. It was first pointed out by van
Kampen that even a weak perturbation leads to the failure
of classical nonequilibrium perturbation theory at suffi-
ciently long times [1]. Despite this argument, the applica-
tion of linear response theory does not lead to practical
difficulties because phase-space averaging over the initial
density matrix with Boltzmann distribution cancels the
divergence at long times. Yet, thermal distribution may
not remove the divergence of nonlinear response functions.
The purpose of this Letter is to study the divergence of
classical response functions of quasiperiodic systems. The
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analytical treatment of the behavior of the classical re-
sponse function has not been studied except for a few
exactly solvable anharmonic systems such as quartic [2]
and Morse [3,4] oscillators, showing that in some cases
classical response functions diverge at long times.
However, the divergent behavior in the general case of
systems with regular dynamics has not been systematically
investigated. The proof of the divergence has important
implications for the conceptual development of quantum-
classical correspondence in response theory and can be
established by employing the methods of Fourier expan-
sion and asymptotic decomposition.

The response function is well defined quantum mechani-
cally in eigenstate space and is expressed by a set of nested
commutators
R�n�q �tn; . . . ; t1� �
�
�
@

�
n
h��. . . ��̂��n�; �̂��n�1��; . . . ; �̂��1��; �̂�0��i; (1)

where �n �
Pn
i�1 ti and �̂�x̂�t�; p̂�t�� is the system polarizability or dipole momentum operator. The classical limit of the

quantum response function (1) is usually obtained in the limit of @! 0 by replacing quantum commutators with Poisson
brackets and neglecting higher order terms in the Plank constant,

R�n�c �tn; . . . ; t1� � ��1�nhff. . . f���n�; ���n�1�g; . . . ; ���1�g; ��0�gi; (2)
where f. . .g are Poisson brackets. Yet, thus defined, classi-
cal response theory has several difficulties. The expres-
sion (2) contains stability matrices which grow in time
linearly for integrable systems [2] and exponentially for
chaotic systems [5]. The growth results in the diver-
gent behavior of classical response functions for a given
initial condition in phase space. In particular, Noid et. al.
showed analytically [4] that the third-order nonlinear
response function R�3�c �t; 0; t� of thermally distributed
Morse oscillators grows linearly with time. However, the
third-order response functions R�3�c �t3 � const; 0; t1� and
R�3�c �t3; 0; t1 � const� were found to converge for the
thermally distributed Morse [4] and quartic [2] oscilla-
tors, respectively. In this Letter we generalize the above
results to all systems with quasiperiodic dynamics and
show that there always exists a direction in �tn; . . . ; t1�
space along which the nonlinear response function
R�n�c �tn; . . . ; t1� diverges and no smooth distribution func-
tion of phase-space initial conditions can remove this
divergence.

Regular dynamics allow simple analytical description
and have a convenient representation in action-angle var-
iables [6–9]. Making use of the quasiperiodicity, we ex-
pand a dynamic function ��t� in Fourier series [6]
��t� �

P
n�ne�n’, where’ � !t� ’0 are angle variables

and !�J�; �n�J� are functions of actions J only. For the
purpose of simplicity, we consider one-dimensional sys-
tems. The discussion can be easily extended to a system
with an arbitrary number of degrees of freedom, replacing
scalars with vectors. Substituting a one-dimensional form
of Fourier series into the expression (2) for the classical
response function and using the identity Tr�fA;BgC� �
Tr �AfB;Cg�, we get the following results for the three
lowest order response functions
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FIG. 1. The linear response function for the 1D Morse oscil-
lator with the dipole moment � � x. The solid line represents
the exact calculation with the classical formula (3); the dashed
line corresponds to the first asymptotic term O�1=t� from Eq. (8).
where Fk�J;’0� � ��kk
@�
@J �

@�k
@J

@�
@’0

. Classical expres-
sions for nonlinear response functions (4) and (5) contain
terms with time-dependent preexponential factors that can
diverge at long times. Below we prove that nonlinear
response functions indeed diverge at tn ! 1 and no
phase-space distribution density can remove the diver-
gence. Obviously, the presence of these terms in the above
expressions is a consequence of the anharmonicity @!

@J � 0
whereas harmonic systems @!

@J 	 0 do not encounter any
difficulties in application of classical response theory [4]
(it should mentioned that for a completely harmonic sys-
tem, nonlinear response functions treated here are identi-
cally zero if the dipole moment depends linearly on
position). In the rest of the present Letter we assume that
the system is anharmonic and does not have stationary
points @!

@J � 0.
We start with the linear response function (3). After the

integration over ’0 is carried out, the expression for R�1�c �t�
takes the form

R�1�c �t� � �
X
n;k

Z
fnk�J�e

�n!tdJ: (6)

The integrals in Eq. (6) have a form of the Fourier integral
G�t� �

R
b
a f�x�e

�tS�x�dx, which has well-known asymptotic
decompositions at large values of parameter t. For physical
applications, the interval �a; b� can always be chosen to be
finite and the distribution density ��J;’�, potential surface
U�r�J; ’��, and anharmonic frequency !�J� are usually
smooth functions (2 times continuously differentiable
functions at least). Thus, the following asymptotic decom-
position at large values of parameter t is valid

G�t� �
f�b�
�tS0�b�

e�tS�b� �
f�a�
�tS0�a�

e�tS�a� �O�t�2� (7)

which for the linear response function (6) results in

R�1�c �t� �
1

t

X
nk

�C�1�nk e
�n!1t � C�2�nk e

�n!2t� �O�t�2�; (8)
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where C�1�nk , C�2�nk , !1, and !2 are constants. From Eq. (8)
one can see that the linear response function decays to zero
asO�1=t� or faster for any smooth phase-space distribution
density �. The latter justifies the convergence of the linear
response function for thermal distributions � � 1

Z e
��H

[2]. The direct application of Eq. (7) to the Morse potential
with thermal distribution results in the asymptotic behavior
shown in Fig. 1. The exact numerical calculation agrees
with the asymptotic expression (8) at long times.

Next, we examine the behavior of the classical second-
order response function (4). Integrating out ’0 the expres-
sion (4) can be written in the following form

R�2�c �t2; t1� �
X
n;m;k

Z
fnmk�J�e��n�m�!t1��n!t2dJ

� t2
X

n�0;m�0;k

Z
gnmk�J�e��n�m�!t1��n!t2dJ:

(9)

The first term in Eq. (9) will converge at large t1 and t2
similar to the linear response function discussed previ-
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ously. The problem is the second term. Different from the
linear response function, the expression for the second-
order response function has directions in �t1; t2� plane,
along which the power of the exponent in (9) is zero or
time independent. These directions are defined by

�n�m�t1 � nt2 � C; (10)
FIG. 2. The second-order classical response function for the
1D Morse oscillator with the fourth-order polarization � � �b�
b��4 is shown in (a). The spectrum of ��t� is presented in the top
right corner (b), where !0 is the fundamental frequency. The
behavior of the classical second-order response function along
the direction t2 � t1 � 1 is shown in the inset (c).

03040
and obviously depend on the type of polarization function
��t� in the way that a particular polarization function has
particular spectral components �k and thus a particular set
of values of n and m. We now consider one of these
directions by fixing n and m at values n
 and m
, and
assume that n
 � 0, then t2 � ��

n
�m

n
 �t1 �

C
n
 . Along this

direction the second-order response function (9) becomes
R�2�c �t2�t1�; t1� �
X
n;m;k

Z
dJ�fnmk�J� �

C
n

gnmk�J��e

��1=n
��mn
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�!t1���n=n
�!C

�

�
n
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n


�
t1
X
n;m;k

Z
dJgnmk�J�e��1=n


��mn
�nm
�!t1���n=n
�!C; (11)
where C is a constant from the expression (10). In summa-
tion over n and m in Eq. (11), all the integrals with �mn
 �
nm
� � 0 in the exponent will decay as O�1=t1� or faster,
as discussed for the linear response function, and thus the
first part of the expression (11) will decay at t1 ! 1, while
the second part will remain bounded O�1�. Yet, the inte-
grals with �mn
 � nm
� � 0 result in the linear divergence
O�t1� of the second term in the expression (11). There will
be at least one such term (n � n
, m � m
) in the summa-
tion over n and m while all such terms must satisfy the
condition m=n � m
=n
. Taking the above arguments into
account, the expression (11) at large t1 behaves as

R�2�c �t2�t1�; t1�� t1
Z
dJ

X
�m=n���m
=n
�

~gnm�J�e��n=n

�!C:

(12)

The case when the summation in Eq. (12) can be exactly
zero is when ~g�n;�m � �~gn;m andC � 0. Yet ifC � 0, the
right side of the expression (12) does not disappear. Then
there exist infinitely many lines �n�m�t1 � nt2 � C in
�t1; t2� plane, along which the second-order classical re-
sponse function diverges in a nonoscillatory manner as
O�t1� and there is no smooth phase-space distribution
function that can remove this divergence. One should
also note that R�2�c �t2 � const; t1� and R�2�c �t2; t1 � const�
are bounded, as follows directly from Eq. (9) using decom-
position (7).

The numerical examples of the classical second-order
response function are shown in Fig. 2 for the thermally
distributed Morse and in Fig. 3 quartic oscillators. The
obvious difference of the divergent behavior in both figures
comes from the fact that polarizations ��t� have different
spectral components as shown in Figs. 2(b) and 3(b). Thus,
the direction of the most intensive divergence is t1 � t2 �
C1 in Fig. 2(b) for the Morse oscillator with polarization
���b�by�4 [3] and 2t1 � t2 � C2 in Fig. 3(b) for the
quartic oscillator with polarization � � x.

The same line of reasoning can be applied to analyze the
behavior of the classical third-order response function
R�3��t3; 0; t1�. Rewriting Eq. (5) in the form

R�3�c �t3; 0; t1� �
X
n;m;k;l

Z
bnmkl�J�e

��n�m�l�!t1��n!t3dJ

� t1
X
n;m;k;l

Z
fnmkl�J�e

��n�m�l�!t1��n!t3dJ

� t3
X
n;m;k;l

Z
gnmkl�J�e

��n�m�l�!t1��n!t3dJ

� t1t3
X
n;m;k;l

Z
hnmkl�J�e

��n�m�l�!t1��n!t3dJ;

(13)

the directions �n�m� l�t1�nt3�C;C� 0 result in non-
oscillatory quadratic divergence O�t21� of R�3��t3�t1�; 0; t1�
for any smooth phase-space distribution density. Again,
using the decomposition (7) one can see that R�3�c �t3; 0; t1 �
const� and R�3�c �t3 � const; 0; t1� are bounded functions of
time. The latter agrees with the results reported in
Refs. [2,4] for the quartic and Morse potentials.

The numerical results for R�3��t3; 0; t1� are presented in
Fig. 4 for the system of thermally distributed quartic
oscillators. The numerical calculations observe the linear
divergence along the diagonal t1 � t3 � t due to the small-
ness of the quadratic terms O�t21� along the directions
3-3



FIG. 4. The third-order classical response function
R�3��t3; 0; t1� for the 1D quartic oscillator with polarization � �
x is shown in (a). The linear divergent behavior of R�3��t; 0; t� is
shown in the inset (b) with the quadratic divergence of
R�3��t3; 0; t1� along the direction t3 � t1 � 1 presented in the
inset (c).

FIG. 3. The second-order classical response function for the
1D quartic oscillator with polarization � � x is shown in (a).
The typical spectrum of ��t� is presented in the top right corner
(b), where !0 is the fundamental frequency. The behavior of the
classical second-order response function along the direction t2 �
2t1 � 1 is shown in the inset (c).
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�n�m� l�t1 � nt3 � 0 within the length of the numeri-
cal calculation. The same divergence was observed in [4]
for the thermally distributed Morse oscillators. The low
temperature approximation �D� 1 used in [4] means
that the motion of the system takes place in nearly har-
monic region, resulting in almost a single spectral compo-
nent j�1j of ��t� � x�t� [like that in Fig. 3(b)]. Thus the
term, quadratic in time, is exactly zero as it follows from
Eq. (5)

R�3�c �t; 0; t� ’ t
Z  X

n�
1

n4j�nj4
!
@!
@J

@2�

@J2 dJ

� t2
Z  X

n�
1

n5j�nj4
!
�
�
@!
@J

�
2 @�
@J
dJ: (14)

It is possible now to generalize the discussion to the nth
order response function. Substituting Fourier decomposi-
tions of ��t� into the expression for the classical response
function R�n�c �tn; . . . ; t1�, one obtains the terms containing
exponents e�!�k1t1�����kntn� with the time-dependent prefac-
tors t�1 t

�
2 . . . t�n; �� �� � � � � � � n� 1. These terms

diverge in time as O�t�1 t
�
2 . . . t�n� on the plane k
1t1 � � � � �

k
ntn � const in �t1; . . . ; tn� space. In particular, the direc-
tion tn � Cn; tn�1 � Cn�1; . . . ; t3 � C3; k



2t2 � k



1t1 � C

allows the same range of discussions as for R�2��t2�t1�; t1�
and R�3��t; 0; t� stated above, showing that no phase-space
distribution function can remove the divergence of
R�n��Cn; . . . ; C3; �C� k
1t1�=k



2; t1� along this direction.

In the present Letter we have studied the divergent
behavior of the classical response function for a system
with regular dynamics and demonstrated that no smooth
phase-space distribution function of the initial conditions
can remove the divergence of the classical nonlinear re-
sponse function for quasiperiodic systems. Our analysis
generalizes the analytical and numerical results obtained
earlier for Morse and cubic oscillators [2–4]. It shows the
conceptual difficulty of taking the classical limit of the
quantum response theory because the quantum nonlinear
03040
response function is finite and the classical nonlinear re-
sponse function diverges for systems with regular dynam-
ics. One possible reason was pointed out by van Kampen
[1], who argued the validity of the application of classical
time-dependent perturbation theory. Another reason re-
sides in the fact that, while both infinite quantum mechani-
cal and classical perturbation series represent the same
physical quantity, which is polarization P�t�, individual
expansion terms are not necessarily equivalent. In contrast
to the quasiperiodic motion, the chaotic and dissipative
dynamics [5,10–13] appear to observe the convergence of
the classical response functions. The correspondence of the
classical limit with the quantum and experimental quanti-
ties remains a challenge and is a subject for future study.
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