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Abstract

Physics of phase transformations in finite systems has a long history, but there are many unresolved issues. Although there is a satisfactory qual-
itative picture of the phase transformations within an isolated small cluster, the experimentally observed dependence of the melting temperature
on the cluster size contradicts the prediction of classical results. No clear physical picture of such a transformation exists for a condensed cluster
in contact with gaseous environment. We propose a thermodynamic theory, which generalize previous results to the case of cluster with fluctuat-
ing number of constituent particles (open cluster). In this case, phase transition occurs because of size change during the nucleation/evaporation
process. This allows us to explain the underlying physics of recent simulations and experiments. Although we used the grand canonical ap-
proach, our main results can be applied to isolated clusters. Particularly, we give simple arguments to explain the deviations of the cluster melting

temperature dependence on cluster size from classical results.
© 2007 Elsevier B.V. All rights reserved.

PACS: 36.40.Ei; 64.70.Dv; 82.70.Dd

1. Introduction

Classical theory assumes that the nucleation process begins
with small solid clusters, which eventually reach some critical
size and subsequently grow into a bulk solid state [1,2]. In the
simple version it is supposed to be a process of direct homoge-
neous solidification from a gas-like or liquid-like surrounding
phase [3]. On the other hand, some systems with specific types
of interaction have a liquid-liquid transition before solidifica-
tion. This is particularly relevant to the system of colloids with
short-range attraction [4-8].

Naturally we can imagine two scenarios for this two-step
phase transition: (i) the bulk liquid;-liquid; transition leads to
a homogeneous state, and then a liquidy—solid transition de-
scribed by classical nucleation theory occurs; (ii) the nucleation
process in the bulk liquid; leads to the creation of solid clusters,
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but the evolution of each cluster contains two steps, creation of
liquidy nuclei, and then an order-disorder transition to become
a solid cluster.

The second type of solid phase growth is exotic, but can be
realized in systems with specific types of inter-particle inter-
actions. One example was recently reported for protein crystal
growth [6]. Lomakin et al. carried out the numerical simula-
tion of hard spheres with attractive square-well interaction to
study the growth of small clusters in a system with a fixed num-
ber of particles N and a volume V. Their study showed that
only liquid-like structures are stable for small clusters. To form
the crystalline structure, cluster must reach some critical size.
A two-stage nucleation process was also seen in simulations by
the Frenkel group [9,10].

To the best of our knowledge, there is no general thermody-
namic criterion to predict the appropriate nucleation scenario.
The aim of the present Letter is to study the thermodynamics
of a single cluster, assuming the second two-stage nucleation
scenario to occur. A theoretical investigation of order—disorder
transitions in finite systems has a long history [11]. The main
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concern in such systems is the character of the liquid—solid
phase change. We call it “phase change” or “phase transforma-
tion” because it’s not a phase transition in standard understand-
ing for the bulk matter with a divergence in the heat capacity. In
a finite system it would have some sharp but finite maximum.
Nevertheless the difference between liquid and solid states can
be well defined mechanistically. Previous theoretical investiga-
tions dealt mainly with a concept of dynamically coexisting
phases in equilibrium isolated clusters [11-16]. To enrich our
understanding, it is also interesting to study the open system,
where the number of particles within a cluster can change. We
address this problem in the present Letter.

2. Structure of the cluster

While the phase state in a bulk matter can be well defined
by a phase transition, determination of liquid or solid state
within a small cluster is more ambiguous. The heat capacity of
a cluster has a maximum at the transition point, but it’s not eas-
ily measurable for small aggregates and we need some simple
mechanistic criterion before formulating it more strictly from
thermodynamic arguments.

Additional difficulty of describing phase change in small ag-
gregate consists in the inhomogeneity of the process. To explain
that, it is more convenient to consider melting instead of solid-
ification. During melting, the volume of the system (with fixed
number of particles) increases, which leads to creation of va-
cancies, while interaction between particles does not change
(i.e. pair interaction), or changes not much. Surface atoms have
less nearest neighbors, so the melting process begins from the
“outer shell” [11]. Such clusters have a shell structure, so that
atoms in outer and inner shells are in different conditions. In
this sense melting of small clusters with pair interaction is re-
lated to a problem of 2D melting [7,17]. Due to such a shell-
by-shell mechanism the phase change in small aggregate is a
continuous process, that cannot be treated by the conventional
theory of phase transitions microscopically. To understand the
phase change within a cluster during the nucleation process we
need to build its thermodynamics and analyze the behavior of
heat capacity to define liquid and solid state of small cluster
more consistently.

Let us first describe a phase change within an open clus-
ter during nucleation/evaporation process first by analyzing
naively its microscopic characteristics. For definiteness, we
consider a system of colloids with short range attraction, which
is particularly relevant to a systems of globular proteins [6]. In
the equilibrium closed packed structure the potential of interac-
tion between two neighboring atom is u(a) = —e, where a is
the equilibrium inter-atomic distance for crystalline structure,
€ is the square-well potential depth. The total bond energy of
atoms within a cluster is then given by

1
E:—EZM(I‘U). (1)
iJ
For a closed packed structure, when r;; = a, each atom has 12
nearest neighbors, and it is easy to obtain the bond energy per
one atom being €, = 6¢.

Naive phenomenological method of distinguishing liquid
and solid states consists in estimation of number of nearest
neighbors. It can be done as follows. Considering a closed
packed system, let us choose the volume V containing nyV
atoms, where ng is the number density. As each atom has 12
nearest neighbors, the total number of bonds in the volume is
6n,V . Let n be the average density of cluster at some interme-
diate state (not close packed). Then the number of vacancies
within a volume V is approximately (n; —n)V. To remove one
vacancy we need to create 12 bonds, or, in other words, we
need to break 12 bonds to create a vacancy. This means the
number of bonds within volume V in some intermediate state
is 6(2n — ng)V and the average number of nearest neighbors is
q = 12(2 — ng/n). This last quantity can be used to distinguish
the liquid and solid state phenomenologically. This approach
however is obviously ambiguous. It does not provide us with
the well-defined phase change point.

There are also some more precise methods based on exam-
ination of radial distribution functions (see e.g. [18]), which
were successfully used in studies of various aspects of cluster
physics [19-22]. Also these methods are very useful in molecu-
lar simulations, all of them do not connect directly microscopic
characteristics with macroscopic measurable quantities.

To understand the physics of phase change in open clusters
we need to define a phase change point. For this purpose let us
first analyze thermodynamics of the cluster in vicinity of the
transition curve.

3. Thermodynamics of L-S transition within an open
cluster

We consider the thermodynamics of LS transition within
an open cluster using the concept of two-state approximation
proposed by Berry and Smirnov for a melting of isolated cluster
[16,23]. The main idea comes from the equilibrium state of the
cluster as the coexistence of two locally stable and thermally
equilibrated aggregate states, solid and liquid. This model can
be generalized to include more cluster states, associated with
the melting of different cluster shells [11,24].

To justify the two-state model we assume that there is large
enough free energy barrier to ensure the relation

'L'eq <L 118,

where T is the characteristic time of kinetic thermal equilibra-
tion within a cluster (no matter liquid or solid), and 7 ¢ is the
characteristic time for the cluster to occupy particular (liquid or
solid) state. Under this strong inequality we are able to intro-
duce two different temperatures, Ts for the solid state, and 77,
for the liquid state. In general they are not equal. Say, in the
simple Dulong—Petit limit we have

AE
3N -6’
where AE is the free energy difference and N is the number of
particles within a cluster.

In contrast with previous theories [16,23], we allow clusters
to grow and evaporate due to a gaseous environment, so that

AT =
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Fig. 1. Three subsequent MC steps close to the melting point.

the system must be represented through the grand canonical en-
semble instead of the canonical one. To illustrate this point we
refer to the simulation [6]. The authors of Ref. [6] used a canon-
ical ensemble of particles closed in the box. However the target
of our investigation is not the whole system they consider, but
the cluster itself. In Fig. 1 we show three subsequent MC steps
when the cluster is close to the melting point. It can be seen that
the number of particles in the cluster fluctuates. This means that
the system of interest (the cluster) is open to the environment,
so we have to apply the grand canonical approach. However,
our results can be applied to isolated clusters either, when we
fix the number of particles. We will show that our approach is
consistent with the canonical in this case.
The statistical weight of the liquid state is

A — AE
g(N):exp{N++AS}, ?)

where Apu = us — pr, AS =Ss — Sr, us,, and Sg 7 are
the corresponding chemical potentials of the cluster and its en-
tropies. The corresponding probabilities for the cluster to be
found in the solid or liquid state are

_ 1 _ 8
Ps—1+g, PL—1+g-

Following the idea of paper [23] we introduce also the con-
ditional probabilities, p\’’ (i, j = S, L) which is the probability
for the cluster to be in jth state, if it is first found in the i th state.
The total entropy of a two-state system is given by

S=—psy_ p§ n(psp{’) = prY_ py n(pLp”)
j j

= psSs+pLSL + Se, 3)

where

Ss=Y pd'mp.  Ssp=>p mpy, )
J J

are the corresponding “‘partial” entropies, and S, is the con-

figurational entropy. The latter can be expressed through the

statistical weight (2) as follows

glng
1+g
Using the notation of partial entropies (4), we specify the mean-

ing of the two temperatures Ts and 77, through the simple ther-
modynamic relations:

1 (0Ss 1 (38, ©
Ts  \9E )y T, \9E )y

Following Landau’s arguments [25], we express the thermo-
dynamic temperature appearing in the statistical weight (2)
through the derivative 1/7 = (dS/0E)y,n, which can be
rewritten as a sum

Se=—pslnps—prInp, =In(1+g) — &)

i _bs  pPL n ds.
T Ts T, dE
1 Ing d
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From Eq. (2) we derive
dg g Ap
= = > AAE—-NAp+CT—214, 8
dE CTZ{ por et ®

where the specific heat C and chemical potential u are given by

IE N
c=(=) ., u=-1(=) .
0T )y n N ) gy

On the other hand, the thermodynamic chemical potential can
be expressed through the “partial” chemical potentials

W= psus+ pLIL. )

Using the relations (3)—(9) we are able to obtain the general
expression for the heat capacity of cluster. The final expression
can be substantially simplified near the melting point, where we
setg~1,

1 1 AT(Ap Z) 1[Ax  Z)?
C Co M+;L+6} { }’

where we introduce the quantity

1
Z ==
T

4

c (10)

(AE — NAw).
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The physical solution to equation (10) is

C=4uT + uZAT —2TZAu

+ \/u[u(4T + ZAT)2 — 16T2ZAp] — 16T2u2Z2/Cy

x [8uT/Co+ 2T Ap — uAT)Ap/u]™ (11)

which represents the general expression of a specific heat
through the well defined thermodynamic quantities within the
framework of this semi-phenomenological model. In the case of
bulk system, phase transition point corresponds to divergence
of the heat capacity, but for the finite system C still has a maxi-
mum, which we define as the phase transformation point. In the
next section we analyze its behavior in more detail.

4. Critical size of the growing cluster

To obtain the general relation between the melting tempera-
ture and the critical melting number of atoms within a cluster,
i.e. the number of particles necessary for L—S transition to occur
for given temperature, we need to find an extremum of Eq. (11).
However, C is a function of two independent parameters, the
number of particles and the temperature. To approach the prob-
lem let us first fix N. In this case cluster is described by the
canonical ensemble and Eq. (11) simplifies to the following:

c_ Co - AEAT o AEAT\?> AEAT
T2 AT2 AT? a2 |’
(12)

Maximum value of C at the melting point is therefore given by

AE? 13
Cmax,N — W7 ( )
which is consistent with the previous results obtained by the
canonical approach [11,16,23].

Now we come back to the grand canonical relation (10) to
look at the dependence of the critical melting number of par-
ticles on the melting temperature (we drop the subscripts to
simplify the discussion). Eq. (10) represents heat capacity as
a function of two independent variables, u and N. However,
physically it is obvious that if we fix the number of particles,
then the heat capacity must reach the same maximum quantity,
as is determined from canonical ensemble calculations. This al-
lows us to use Eq. (13) in the grand canonical expression (10)
to obtain explicit relation between the number of particles and
the temperature at the melting point. Substituting Eq. (13) to
Eq. (10) and using AE = N Au at the melting point, we obtain

Ap (Ap AT AT 4T?

) =4—— -1, 14)
nw uw T NAu \ NAuAT

where N must be understood as the average number of parti-

cles (the actual number can fluctuate). It is the cubic algebraic

equation for the number of particles N. To obtain the explicit

dependence N(T) we generally need a particular relation of
AT to Ap and N. For example, in the Dulong—Petit limit we

obtain
Au? 2 Ap?
L S A W Y R VY
u? 3T 3 u?
T2 T2
—16——N+32—— =0. 15
Au? + Au? (15)

In general case this equation can be much more complicated
and depend on the particular properties of the system.

However, in the zeroth order in AT /T we obtain a very sim-
ple relation

2
T = N =2 (16)
v

We would emphasize that our approach deals with the chemi-
cal potential and the number of particles instead of the cluster
radius, as it was done previously in phenomenological classi-
cal theory of melting in spherical finite systems [26-28]. In
principle it allows the study of clusters of any shape, formed
by complex particles with various interaction energies. The ex-
pression only requires the temperature and size dependence of
the chemical potential.

5. Size dependence of the melting temperature

Previously we concentrated on the phase transformation in
an open cluster caused by the change of particles number. How-
ever, our results also determine the melting temperature once
the number of particles in the cluster is given. This allows us
to relate the melting temperature to the cluster size and explain
the deviation from the simple classical result.

For the bulk case, i.e. when N, — oo, we approach the true
phase transition point when Ap — 0, so that

b . 1
= i 7
Although it is impossible to calculate this limit explicitly, we

can use simple arguments to estimate the relation T,ffl)/ T,,(lb).
Let us write the chemical potentials of the solid and liquid clus-

ter as a sum g, = u(sb)L + u(;qu) of the bulk part M(Sb)L and the

surface part /L(SSLE) When N — oo, both surface parts tend to

zero, but the bulk parts approach each other. This means that
the bulk melting temperature can be represented by the same
relation as Eq. (16), but without the surface contribution in the
chemical potential. As a result the ratio Tn(fl) / T,S” is given by

TS
Tn(lb) M(b) + M(Sur)

where constant B depends only on the bulk properties of
solid and liquid systems through the chemical potentials, and
JTASE e M(Ssur) — M(Lsur). Note, the expression (17) is valid for
any shape of cluster. On the other hand there is well-known
classical result [26-28] for a spherical droplet

(cl)
T, C
I =1-= (18)
Ty, R
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where C is some positive constant and R is the cluster size.
Even at this step it can be seen that the ratio T,,(fl) T,f,b) ap-
proaches unity in a different way in Eqs. (17) and (18), because
of the pre-factor containing surface contribution to chemical po-
tential.

Experimental observations of a size-dependent melting (see
e.g. [29-31]) mainly concentrated on the identification of shell
closing and the corresponding variation of the melting tempera-
ture. However even if we only consider the closed shells there is
notable difference in behavior of the melting temperature with
changing cluster size. Experiment [29] clearly indicated that the
data cannot be fitted by the classical result (18), and the clus-
ter melting cannot be extrapolated to the bulk value. To address
this question we simplify Eq. (17) for the case of spherical clus-
ter using the simple Tolman formula for the surface tension of
a cluster [32-34]

(-%)
o =0y 1—;,

where oy is the tension of a plate surface and § is the Tolman
length. After some algebra, Eq. (17) takes the form

(ch) (b) 2

T, AS AS

s (b)“ e )<1—2B*—+B*2—>, (19)
T u® 4 plsur

R R?

where B* again contains only the bulk quantities, A§ =85 —3p,
and we neglected terms proportional to Aog/og. First notable
feature as compared to the classical formula is the last term in
the brackets, which can be quite essential for very small clus-
ters. But what is more important, there is a non-unity pre-factor
in Eq. (19), which is strongly dependent on the surface char-
acteristics. On Fig. 2 we show the best fit of our result (19)
to the experimental data [29], which could not be explained
by the simple formula (18). The explicit expression for ;")
essentially depends on the particular type of atoms, their inter-
action and experimental conditions. Of course ;") — 0 when
N — oo, but this term governs the deviation from the classi-
cal behavior for the intermediate size of clusters observed in
experiment.
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Fig. 2. The best fit of our theoretical result (19) to the experimental data from
Ref. [29].

6. Conclusions

It was suggested previously [6,8], that protein crystals
should nucleate to a stable disordered aggregate and crystalize
when some certain critical size is reached. To understand the
underlying physics of the simulation [6], we proposed a semi-
phenomenological model for a phase transformation within a
finite system with changing number of particles. It is partic-
ularly related to the study of nucleation processes in colloidal
systems, when the phase transformation within a cluster can oc-
cur [6,9,10]. In contrast with the bulk system, the liquid—solid
transition within a cluster is not a true first order phase tran-
sition, but a continuous one, characterized by maximum of its
specific heat. This phase transformation can be achieved in two
different ways. First, we can keep the cluster size fixed and
change temperature. The semi-phenomenological theory of this
kind of transition is well developed [11,16,23]. Second possi-
bility is the isothermal growth of a cluster, which is the object
of present study.

Extending the two-state cluster model [16,23], we treat clus-
ter as a grand canonical ensemble. This allows us to obtain the
general thermodynamic relation between the melting tempera-
ture of the cluster and its size, which resolves deviations from
the classical prediction of melting temperature behavior. Our re-
sults agree qualitatively with available experimental data [29].
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