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Semiclassical modeling of Rydberg wave-packet dynamics in diatomic molecules:
Average decoupling theory

S. N. Altunata, J. Cao, and R. W. Field*
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 12 November 2001; revised manuscript received 11 February 2002; published 10 May 2002!

The semiclassical dynamics of Rydberg electronic wave packets in diatomic molecules is investigated using
a sum over classical trajectories method, which is based on the semiclassical form of Feynman’s path integral.
Our approach allows us to calculate intramolecular energy redistribution rates based on averaging of coupling
parameters over classical trajectories associated with time-dependent parts of the overall system that exhibit
different periodicities. The accuracy of our method is tested against perturbation theory and good agreement is
obtained. A resonance structure in the computed autocorrelation function has also been observed in the case of
rotating nuclei, when the periods of the classical trajectories of the electron match an integer multiple of the
rotational period. This has previously been called the ‘‘stroboscopic’’ effect.

DOI: 10.1103/PhysRevA.65.053415 PACS number~s!: 33.80.Rv
a
in
h
e
nu
e
e

di
rin
e

m
av
vi
ou

th

n
th

ro
nl
u
t

ge
t
tr
ic

ic
he

te

the
y

of
n be
tra-
n-

ent
en-
en-

d to
re-
ere
p-
cil-

vel-
am-
o-
ool
ned

ue
igh
. In

n

I. INTRODUCTION

Rydberg wave-packet dynamics in diatomic systems is
interesting subject from experimental and theoretical po
of view. This arises from the fact that in the limit of hig
principal quantum numbern electronic orbit periods becom
comparable to vibrational and rotational periods of the
clei. This results in the reduction of the Born-Oppenheim
picture to the status of a crude approximation. Several th
ries @2,3# have been developed to correct for these nona
batic effects, based on the formalisms of the variational p
ciple and scattering theory. However, in a time-depend
approach, evidence from experiment@4# with regard to ob-
served recurrences at the classical periods of the syste
the measured autocorrelation function of a Rydberg w
packet suggests that a semiclassical method might pro
insights that are not immediately accessible by the previ
treatments.

Our semiclassical model rests on the observation
when the electron is excited to a Rydberg state it starts
exchange energy with the ion core much like the compone
of a system of coupled pendula and springs. As a result of
electronic excitation, the expectation value of the elect
distance from the origin in the molecular frame is sudde
increased to a value several times larger than the molec
size and the electron transfers energy and momentum to
internal states of the diatom primarily through long ran
electrostatic interactions.1 Since the ion core is in general no
spherical, these interactions are not spherically symme
and the Hamiltonian is off diagonal in products of electron
and rovibrational basis states.

There are parallels between this situation and the class
problem of a pendulum coupled to a linear spring in t
earth’s gravitation field~Fig. 1!.

In general, the trajectories of the pendulum-spring sys

*Author to whom correspondence should be addressed.
1We neglect the electrodynamic interactions, as corrections ca

obtained using perturbation theory.
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are not analytically solvable and one must approach
problem numerically@5#. However, if the natural frequenc
of the pendulum is much larger than the natural frequency
the mass-spring system, then the equations of motion ca
separated using the adiabatic approximation in which the
jectory for the pendulum is solved for, given a fixed exte
sion or compression of the spring. One cancorrect for the
adiabatic approximation by replacing the time-depend
tension force applied by the spring-mass system on the p
dulum by an average value over one period of the indep
dent oscillation of the spring-mass system, as oppose
assuming that the spring-mass system is ‘‘frozen’’ with
spect to the motion of the pendulum. It should be noted h
that this argument could equally well be applied to the o
posite limiting case where the natural frequency of the os
lator exceeds the natural frequency of the pendulum.

In the sections that follow we use the same ideas de
oped in the pendulum-spring example to analyze the dyn
ics of a well localized Rydberg wave packet in a hom
nuclear diatomic molecule. Our fundamental theoretical t
is a sum over classical trajectories formula that was obtai
first by Mallalieu and Stroud@1# for the hydrogen atom by
applying a stationary phase to Feynman’s path integral. D
to its semiclassical nature, this formula is accurate for h
values of the relevant quantum numbers of the problem

be
FIG. 1. Coupled pendulum-spring system.
©2002 The American Physical Society15-1
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particular, this restricts the choice of principal quantum nu
ber for the electronic motion to be above a certain thresh
which we have determined to ben̄57. This makes the elec
tronic frequency smaller than a typical vibrational frequen
for a diatomic molecule. Hence, when vibrational-electro
couplings are considered, the electron will be taken to be
slow moving part of the system and the adiabatic appro
mation as applied to the motion of the electron will get c
rected, as in the oscillator-pendulum example. It is, howe
possible to investigate the rotational-electronic couplin
when the frequencies of the two motions are compara
Therefore two cases will be analyzed for this situation; o
for the case of very slow electronic motion in comparison
rotational motion (vel!v rot) and one for the case where th
electronic frequency is near the rotational frequency. As w
be demonstrated, stroboscopic effects are recovered bet
the two motions in this limit when the rotational frequency
chosen to be twice the electronic frequency. These eff
can be considered to be quantum mechanical manifesta
of the classical concept of resonance.

II. THEORY

The starting point is the propagator that gives the ti
evolution of an arbitrary wave packet for a given Ham
tonian. The propagator is defined by

K~xW f ,t f ,xW i ,t i !5^xW f ,t f uxW i ,t i&5^xW f ue2
iĤ (t f2t i )

\ uxW i&, ~1!

where Ĥ5 p̂2/2m1V(rW). Hence for an initial wave packe
defined byC(xW i ,t i), the wave packet evaluated at (xW f ,t f) is
given by

C~xW f ,t f !5E K~xW f ,t f ,xW i ,t i !C~xW i ,t i !dxW i . ~2!

Feynman’s well known analytical formula for the propaga
is

K~xW f ,t f ,xW i ,t i !5E D„xW~ t8!…e*L„xW (t8)…dt8. ~3!

Here L is the classical Lagrangian evaluated on the prim
pathxW (t8) that connectsxW f andxW i and is given by

L5T2V5
p2

2m
2V~rW !. ~4!

D represents an integration over all possible paths betw
xW f andxW i . When stationary phase is applied to this integ
form, we get the conditiondL50, which is equivalent to
Newton’s equations of motion. This suggests that the do
nant contribution to the Feynman propagator comes fr
classical trajectories that connectxW f and xW i . After proper
transformation is applied, we arrive at the Gutzwiller sem
classical form@6# for the propagator:
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K~xW f ,t f ,xW i ,t i !5S 1

2p i\ D N/2

(
j
Udet

]2Rj~xW f ,xW i ,t !

]xW f]xW i
U1/2

3e(Rj i /ĥ2 ipm j /2), ~5!

whereRj is the action for thej th classical trajectory given by

Rj~xW f ,xW i ,t !5E
0

t

L„xW j~ t8!…dt8, ~6!

and m j is the number of conjugate points along the sa
trajectory,2 which can be determined from the relation

eipm j5
det~]2Rj /]xW f]xW i !

detu]2Rj /]xW f]xW i u
. ~7!

In our applications we will be concerned with many-bo
systems. For such a case, the classical trajectoryxW (t8) be-
comes the system trajectory vector with components co
sponding to generalized coordinates. The time derivative
this vector gives us the conjugate momenta as function
time. The common notation to describe a system withN

degrees of freedom is a system vectorxWN(t), which signifies
the N generalized coordinates that describe the overall t
evolution.

The autocorrelation function is defined by

c~ t !5^c~rW,0!uc~rW,t !& ~8!

for a wave functionc evolving under a HamiltonianĤ(pW ,rW).
In integral form,

c~ t !5E E c* ~rW f ,0!c~rW i ,0!K~rW f ,rW i ,t !drW fdrW i . ~9!

To proceed with the derivation we make the crucial assum
tion that the initial wave packet is well localized in thesemi-

classicalvariables. Then the amplitudec* (rW f ,0)c(rW i ,0) for
rW fÞrW i will be small. Hence we can approximatec(t) by
replacing the integration overdrW i by a constant value of the
initial position wave function evaluated atrW f5rW i and write

c~ t !'E uc~rW,0!u2K~rW,rW,t !dt

5Tr@c* ~rW f ,0!K~rW f ,rW i ,t !c~rW i ,0!#. ~10!

Further, assuming thatc* (rW f ,0)c(rW i ,0) is not oscillatory, we
can impose stationary phase on the propagator to get

2For a clear explanation of the conjugate points and their phys
meaning, see@6#.
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]K

]rW i

]rW i

]rW f

1
]K

]rW f

50,

which gives

2pW i1pW f50. ~11!

With the additional condition thatrW f5rW i , this becomes the
definition of a periodic orbit. Thus, from the sum over cla
sical trajectories, only trajectories located near perio
closed orbits will contribute to the integral. It is allowed th
the trajectories will have completed multiple periods by t
time at which the autocorrelation function is evaluated. Th
it is sensible to label each periodic orbit by an integerk, the
number of cycles completed att. Next, we choose a pointrW0
on the periodic orbit which lies in a region where the init
wave packet has significant amplitude, and we expand
phase of the propagator to second order about this poin

R5Rk~rW0 ,rW0 ,t !1
1

2 (
i , j 51

N

I i j ~r i2r 0
i !~r j2r 0

j !. ~12!

Here,

I 5S ]2R

]rW f]rW i

1
]2R

]rW i]rW f

1
]2R

]rW f]rW f

1
]2R

]rW i]rW i
D U

rW i5rW f5rW0

. ~13!

Thus the autocorrelation function can be written as

c~ t !5S 1

2p i\ D N/2

(
k S detU ]2R

]rW f]rW i
U D 1/2U

rW0

e2( i /h̄)Rk

3E uc~rW,0!u2e2( i /2h̄) (
i , j 51

N

I i j (r
i2r 0

i )(r j 2r 0
j )drW. ~14!

This expression is subject to the restriction thatrW f5rW i . We
can improve on the approximation by distinguishing the t
points but retaining the same form:
05341
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c~ t !5S 1

2p i\ D N/2

(
k

S detU ]2R

]rW f]rW i
U D 1/2U

rWo

e2( i /h̄)Rk

3E E c~rW f ,0!* c~rW i ,0!e2( i /ĥ)I (rW f ,rW i )drW fdrW i , ~15!

with

I ~rW f ,rW i !5
]R

]rW i

•~rW i2rW0!1
]R

]rW f

•~rW f2rW0!

1
1

2
~rW i2rW0!•

]2R

]2rW i

•~rW i2rW0!

1
1

2
~rW f2rW0!•

]2R

]2rW f

•~rW f2rW0!

1~rW f2rW0!•
]2R

]rW f]rW i

•~rW i2rW0!, ~16!

and the period of the periodic orbitk passing throughrW0 is
given byTpo5t/k.

In general, molecularN-body systems will have two o
more dynamical variables, corresponding to generalized
ordinates, which will evolve over time scales that exhi
different periods. However, these dynamical variables will
coupled through electrostatic interactions and therefore
exchange momentum. The above analysis invites us to
proach this problem in complete analogy to the oscillat
pendulum problem described in the Introduction.We will de-
couple the interaction by an average over a period
trajectory of one part of the system, thereby obtaining
analytical expression for the autocorrelation functio
Within this framework we are further allowed to use an a
proximate, trajectory-dependent potential function instead
the full potential felt by the wave packet, since the autoc
relation function has been put in a form that is an expli
sum of the classical periodic orbits and therefore it is
evolution of these periodic orbits that plays the key role
the final result.

In the case that there are two parts of the overall sys
that evolve on different time scales, such an average
lead to the separation of the actionsR in the following man-
ner:

Rtot5Rk
11R2

k , ~17!

implying that the second part evolves in averaged correla
with the first part through its particular periodic orbitk, lead-
ing to an autocorrelation function given by

c~ t !5(
k

ake
( i /h̄)Rk

1
, ~18!

whereak is a complex number to be determined and conta
the phase-amplitude contribution of the second part.

In the next section we apply the outlined method to
nonrotating diatomic system where vibrational degrees
5-3
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freedom are coupled to the electronic motion through a qu
rupole interaction. The accuracy of the autocorrelation fu
tion is then compared with a perturbation theory calculati
In Sec. IV we add in rotations to our calculations and de
onstrate how the resonances between the electronic an
rotational motions manifest themselves in the survival pr
ability.

III. VIBRATIONAL COUPLING

We investigate the time evolution of a well localized wa
packet for a H2 like system with an infinite barrier agains
rotation.

In Fig. 2 we have an orbiting Rydberg electron, two nuc
of equal charge11, and an effective charge densityr(rW8),
which is responsible for holding the nuclei together. We d
fine, in atomic units,

V~rW !5E r~rW8!

urW2rW8u
drW8,

U5X12X2 ,

P5X11X2 . ~19!

By describing the inner electron as a static charge den
we are discarding any dynamics due to a possible excita
from the core ground electronic state via exchange of ene
with the Rydberg electron. This is a good approximation
the Rydberg wave packet is localized sufficiently far fro
the core, as will be the case in our model. Neglecting f
translation, we can write the Lagrangian of the system a

L5
1

2
mṘ21

1

2
@ ṙ 21r 2u̇21r 2 sin~u!2ḟ2#1

1

r 1

1
1

r 2
1De2

1

2
ke f fR

22V~rW !, ~20!

where R5U2Ueq , m5M proton/2, De is the depth of
the potential energy curve for the ionic diatom, andke f f is a
parameter determined from the curvature of the potential

FIG. 2. Diatomic molecule:U5X12X2 ;P5X11X2.
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ergy curve at the minimum,U5Ueq . Anharmonic terms are
neglected in the nuclear potential and consequently the
sults we obtain will be valid only for low lying vibrationa
states. From molecular orbital theory we can take the follo
ing form for the charge density:

r~rW8!5u1ssu25
1

2~11S!
@1sA~rW8!11sB~rW8!#2, ~21!

whereS is the overlap integral given by

S5E 1sA~rW8!* 1sB~rW8!drW8. ~22!

The accuracy of the method outlined in Sec. II depends
whether the initial wave packet that will evolve subject
this Lagrangian is sufficiently localized. Thus we consider
initial Rydberg wave packet that is localized near the unc
tainty limit in all three electronic coordinates@7#. Our initial
wave packet is defined by

c~xW ,0!5cel~rW,0!cnuc~R!,

cel~rW,0!5(
n

S 1

psn
2D 1/4

e2(n2n̄)2/2sn
2
fn,n21,n21 ,

cnuc~R!5A1

3
~c0

HO1c1
HO1c2

HO!, ~23!

wherefn,n21,n21 is a hydrogenic wave function,3 with prin-
cipal quantum numbern, orbital angular quantum numbe
n21, magnetic quantum numbern21, and n̄57 with sn

!n̄. The wave functions labeledHO refer to the first three
harmonic oscillator eigenstates. This choice is made to
count for the possibility of vibrational transitions and th
resultant dynamics. Electron exchange is neglected bec
the overlap of the Rydberg wave packet with the grou
electronic wave function of the core is small, spin-orbit co
pling is also ignored. An approximate expression for the h
drogenic linear combination that appears in Eq.~23!, using
spherical polar coordinates, is given in@8#, which shows that
the wave packet is localized about

r̄ 5n̄2, ū5
p

2
, f̄50. ~24!

This describes an electronic wave packet confined to
x-y plane at a large average distance from the origin. F
thermore, the linear combination consists exclusively of h
l ’s, which imposes a large centrifugal barrier against elect
penetration toward the center of the ion-core. In particu
one can safely assume that the classical trajectories of
II, which will ultimately sum to yield the autocorrelation
function, will lie in an asymptotic region. The potential e

3This electronic wave packet is convenient to use as a theore
tool but is not meant to be a model for an experimentally realiza
physical system.
5-4
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perienced by such classical trajectories can be described
static multipole expansion. The electron-electron interact
in this limit becomes

V~rW !5E r~rW8!

urW2rW8u
drW85(

l
E

0

r

r~rW8!pl~rW•rW8!
~r 8! l

r l 11
dv8

1(
l
E

r

`

r~rW8!pl~rW.rW8!
r l

~r 8! l 11
dv8. ~25!

For sufficiently larger we can assume that this expression
near its asymptotic limit, approximately giving

V~rW !5
1

r
. ~26!

We want to investigate the effect of nuclear dynamics
the electronic motion and thus we expand the nuclear att
tion to its first nonvanishing multipole term that includes t
internuclear distance. Since the initial electronic wave fu
tion lies in thex-y plane, a natural choice of trajectories f
Eq. ~18! is those confined to the same plane and which lie
the asymptotic region. Multipole expansion to second or
reveals

1

r 1
1

1

r 2
'

1

r S 22
@123 cos2~f!#U2

4r 2 D , ~27!

wheref is the planar azimuthal angle. Here the appeara
of the quadrupole term@123 cos2(f)#U2/r 3 breaks the
spherical symmetry and angular momentum is no lon
conserved. As in the pendulum-spring example, we deco
this asymmetry from the electronic degrees of freedom
couple it completely to nuclear motion by introducing
time-modulated force constantḡpo(t) as the average value o
the quadrupole term along a periodic trajectory of the el
tron. Explicitly, we define

ḡpo
(t)5

1

Tpo
R 123 cos2@f~ t8!#

2r ~ t8!3
dt81ke f f . ~28!

The Lagrangian now becomes

Lpo5
1

2
mṘ21

1

2
@ ṙ 21r 2u̇21r 2 sin~u!2ḟ2#1

1

r

1D02
1

2
ḡpo

(t)S R1
Ueq~ ḡpo

(t)2ke f f!

ḡpo
(t) D 2

2
ke f f

2ḡpo
(t)

Ueq
2 ~ ḡpo

(t)2ke f f!, ~29!

and the evaluation along a periodic trajectory of the elect
in the pure Coulomb potential is evident. This is the Kep
problem and the solutions are the Kepler ellipses, as we h
anticipated. We letḡpo

(t)5mvk
2 with the electronic period

given byT5t/k. Along the periodic trajectory the actions fo
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the nuclei and the electron separate and so do the semi
sical propagators. From Eq.~15! we get

c~ t !5(
k

ake
iRk

elE cnuc* ~R!Kk~R,R8,t !

3cnuc~R8!dRdR8. ~30!

The complex numberV(k)5ake
iRk

el
is obtained from circu-

lar trajectories in a pure spherical Coulomb interaction a
its explicit form is available in@1#. For a circular orbit of
period t/k we have

f~ t8!5
2pkt8

t
1f̄ ~31!

and Kepler’s law leads to

r ~ t !5S t

2pkD 2/3

. ~32!

Evaluation ofwk along such circular trajectories, using E
~28!, gives

wk5A2k2p2/t21ke f f

m
. ~33!

Within the adiabatic picture the angular frequencywk would
simply be given byAke f f /m. The term2k2p2/t2 is thecor-
rection we have obtained by explicitly considering the co
pling between electronic and nuclear degrees of freedom.
can go one step further and write an analytical expression
the autocorrelation function in analytical form using the e
act propagator for the harmonic oscillator:

c~ t !5(
k

V~k!EA mvk

2p i sin~vkt !
expS imvk

2 sin~wkt !

3@~R21R82!cos~vkt !22RR8!] D
3c* ~R!c~R8!dRdR8. ~34!

This is valid for any vibrational wave packetcnuc(R) ex-
cited at time t50 and contains all information about th
coherence between the zero-order states. For our initial w
packet the survival probability can be written as

uc~ t !u25 (
n51

3

(
n851

3

(
k

(
k8

ann8V~k,k8!

3ei [(n11/2)vk2(n811/2)vk8] . ~35!

This is further separated as
5-5
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uc~ t !u2

5(
k

uV~k!u21(
n

(
k5” k8

anV~k,k8!ei [(n11/2)(vk2vk8)]

1 (
n5” n8

(
k

ann8V~k!ei [(n2n8)(vk)]

1 (
n5” n8

(
k5” k8

ann8V~k,k8!ei [(n11/2)vk2(n811/2)vk8] .

~36!

(kV(k) is anatomicterm, which leads to the autocorrelatio
function for the hydrogen atom. The remaining terms in E
~36! contain all the molecular information. This form tells u
that, at the hydrogen atom recurrence times, all the molec
information, which is given by the remaining terms in E
~36! when the atomic term is taken out, disappears, since
recurrence time implies that theatomic term is equal to 1.
Thus, an atomic signature is built into the molecular rec
rence spectrum within this framework.

Perturbation analysis

Given that most of the amplitude of the initial wave fun
tion lies outside the core region, little error is introduced
the asymptotic form of the potential is used over all spa
This facilitates a perturbation theory treatment of the sa
problem, which we present now. The autocorrelation fu
tion in general is given by

c~ t !5(
n,v

uanu2e2 iEn,l ,vt, ~37!

where theuanu are the amplitudes of the zero-order statesn
and l are the electronic quantum numbers, andv is the vi-
brational quantum number. According to first-order pertur
tion theory,

En,l ,v5En,v
0 1En,l ,v

1 , ~38!

with

En,v
0 52

1

2n2
1Ake f f

m S v1
1

2D2De ,

En,l ,v
1 5K n,l ,m,vU @123 cos2~f!#U2

4r 3 Un,l ,m,vL .

~39!

When the matrix elements are calculated we get

En,l ,n5S 21

8 D 1

l ~ l 11/2!~ l 11!n3 S v11/2

Ake f fm
1Ueq2D

~40!

as the corrections to the zero-order energies. The autoc
lation function computed from perturbation theory is co
pared to the result from average decoupling theory in Fig
05341
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The numerical values of the force constants and the pote
energy curve depths are those for H2

1. It is seen that the two
theories agree quite well even until very late times. On
after about 15 classical electronic periods, given byTcl

52pn̄3, do the amplitudes start to differ.

Fourier transform spectrum

The Fourier transform of the autocorrelation functio
gives the energy spectrum of the core plus electron syst
In Fig. 4 we have plotted the Fourier transform of the au
correlation function that was computed using average dec

FIG. 3. Theoretical survival probability. The solid line is ave
age decoupling theoryand the dashed line is perturbation the

The parameters used aresn510/(2p), n̄57, ke f f50.334,m
5918.01,De50.102,Ueq52, v50,1,2.
5-6
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pling theory. Here we see three Ryderg series convergin
the ground, the first, and the second excited vibrational st
of the ion core, in accord with the initial vibrational wav
packet that we created att50. In Fig. 5, we have assigne
these energy levels in order of increasingn. When the energy
levels, as predicted by average decoupling, are compare
unperturbed levels in Fig. 6 one sees a relative shift fon
55, which seems to disappear forn59, in the corresponding
line. This is in good agreement with the well known fact th
the quadrupole energy shift, which has been directly wor
into average decoupling theory, scales approximately as
inverse ofn3l 3.

IV. ROTATIONS

When the barrier against rotations is lifted, new regions
configuration space will be accessible by the diatomic co
which has hitherto been approximated by a point quadrup
Relative probabilities for arbitrary interacting configuratio
of the system will depend on the rotational state of the
clei, thereby causing a delocalization of positions on the u
sphere which is difficult to model semiclassically~see Fig.
7!. We can make progress by assuming that the rigid rota
is in a state with maximal angular momentum along thz
direction:

c rot5Yl
m~u,f!, l 5m. ~41!

This confines the angular momentum onto a cone with v
small apex angle, provided thatl is chosen sufficiently large
Moreover, the planar trajectories of the orbiting electron w
on average, experience zero torque4 as any component of th

4This torque arises from the Coriolis and centrifugal forces, wh
are described by Eq.~59!.

FIG. 4. Fourier transform spectrum. The three lines corresp
to Rydberg series converging tov50, 1, and 2 levels of the core
The fine structure is due to the interaction of the Rydberg elec
with the ionic core.
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FIG. 5. Assigned Rydberg levels. The Rydberg series forv50
in order of increasingn.

FIG. 6. Energy comparison. We observe here that the pea
the n55 line computed using average decoupling theory has b
shifted slightly to the left of the unperturbed state, implying
attractive ion-core–electron interaction. Such an energy shift is
sent for then59 case. This implies that the nonspherical attract
between the core and the electron drops off very quickly with
creasedn and l.
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projection of the nuclear angular momentum on the plane
rotation of the electron will be canceled by the equally like
component lying along the axially opposite direction, as c
be seen from Fig. 8.

In our sum over classical trajectories formula, the el
tronic motion is initiated in the asymptotic region and t
electron remains on average at large distance from the ce
of the diatomic core due to its high angular momentum a
the consequent centrifugal barrier. The signature for s
motions is their long periods on the atomic scale. When
angular momentum quantum number is chosen to be la
for the core rigid rotation, the nuclear motion becomes mu
faster than the electronic motion, i.e., the diatom comple
many periods before the electron is able to complete
cycle. In this limit, the orbiting electron experiences a ring
charge near the origin, as opposed to two nuclei moving,
this is illustrated in Fig. 9. Following the usual conventio
we decouple the rotations from vibrations by assuming t

FIG. 7. Orientations of the rigid rotor on the unit spher
Nuclear angular momentum is delocalized on thex-y plane where
the classical electron trajectories lie. One can localize the nuc
rotation by letting the magnitude of the angular momentum be la
and by maximizing the component along thez axis, i.e.,m5J.

FIG. 8. Delocalization of angular momentum.
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the moment of inertia remains on average the same, ev
ated at the equilibrium bond lengthUeq during a period of
the rotation. Thus, the result of allowing the nuclei to rota
is reduced to the multiplication of the autocorrelation fun
tion by an extra phase:

c~ t !5c~ t !* e2 iJ(J11)t/2mUeq
2

, ~42!

wherec(t)* is the part that includes the electron dynam
coupled to rotations andJ is the rotational quantum numbe
for the diatom. Next, we analyze the effects of the rotatio
electronic couplings. The autocorrelation function has
ready been expressed as a sum over classical trajectori
Eq. ~18!. All we have to do now is to understand how th
electron trajectories are modified by our present configu
tion involving a ring of charge near the origin. The tot
force experienced by an electron at positionrW becomes

FW 5 R r~u!~rW2RW !dl

~rW2RW !3
1

1

r 2
r̂ , ~43!

where, according to Fig. 9,rW5r cos(f) x̂1r sin(f) ŷ andRW

5Ueqcos(u) x̂1Ueqsin(u) ŷ. Explicitly,

FW 5rUeqF E
0

2p @Ueqcos~u!2r cos~f!#du x̂

@Ueq
2 1r 222Ueqr cos~u2f!#3/2

1E
0

2p @Ueqsin~u!2r sin~f!#du ŷ

@Ueq
2 1r 222Ueqr cos~u2f!#3/2G1

1

r 2
r̂ ,

~44!

and the constant charge density on the ring isr51/pUeq .
SinceUeq!r , we can series expand the denominators ins
the integrands in powers ofUeq /r to get

Fx52
rp~2r 223Ueq

2 !cos~f!Ueq

r 4
1

cos~f!

r 2
,

ar
e

FIG. 9. Coplanar rotations of the core and the electron.
5-8
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Fy52
rp~2r 223Ueq

2 !sin~f!Ueq

r 4
1

sin~f!

r 2
. ~45!

This is a purely radial force and the equations of motion c
be solved by circular orbits.5 The new radii for these trajec
tories become

r k~ t !5
~ t/2pk!4/32Ueq

2

~ t/2pk!2/3
. ~46!

This difference between Eq.~32! and Eq.~46! is the Ueq
2

term, which makes the new radii smaller. This shows tha
this configuration there is an additional attractive interact
between the electron and the nuclei. The negative charg
the origin is shielded by the ring of positive charge and
effect of shielding increases as the radius of this ring
creases. Since this radius is the internuclear separation
can expect that the electron will be bound more strongly
the core as the internuclear separation increases, leading
larger shift to lower energy in the corresponding electro
energy levels. Alternatively one could also choose to con
the angular momentum along thex axis. This would imply
that the nuclei and the electron are rotating in perpendic
planes, as in Fig. 10. LettingrW5r cos(f) x̂1r sin(f) ŷ and
RW 5Ueqcos(u) ẑ1Ueqsin(u) ŷ, we can carry out the integra
tions in Eq.~43! to get

Fx52
2pr cos~f!Ueq

r 2
1

cos~f!

r 2
,

Fy52
2pr sin~f!Ueq

r 2
1

3pr

r S Ueq

r D 3

sin~f!1
sin~f!

r 2
.

~47!

Here we have an asymmetry term in sin(f) of the order
(Ueq /r )3, which we will neglect becauseUeq!r . In this
limit, the total radial force experienced by the electron

5See Appendix A for mathematical details.

FIG. 10. Perpendicular rotations of the core and the elect
The electron rotates in thex-y plane, whereas the nuclear rotation
in the x-y plane.
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-duces toFr521/r 2 and the electron trajectories are the
given by Eq.~32!. In this configuration, the shielding of th
negative charge at the origin is reduced, leading to the
appearance of the attractive effect we observed in the cas

n.

FIG. 11. Comparison of energy levels for coplanar vs perp
dicular rotations. The solid line is coplanar rotations and
dashed line refers to perpendicular rotations. The parameters

are J540, n̄57, m5918.01,ke f f50.3340,De50.502,Ueq52, sn

510/(2p). It is observed in~b! that the energy peak for coplana
rotation is shifted slightly to the left of the peak for the perpendic
lar rotation, signifying that in the case of coplanar rotation the el
tron experiences stronger core attraction. As seen in~c!, the differ-
ence in the two profiles vanishes when the principal quant
number gets large. At larger distances the electron is no lon
affected by the ring structure of the core and therefore the ove
attractive effect disappears.
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S. N. ALTUNATA, J. CAO, AND R. W. FIELD PHYSICAL REVIEW A65 053415
coplanar rotations. In a reference frame in which the posit
of the electron is fixed, the ring of charge makes a comp
out-of-plane rotation during an electronic period, effective
forming asphereof charge near the origin. The electric fie
outside the sphere reduces to the electric field produced
point charge of magnitude11 when the negative charge
the origin is also considered. Thus, the electronic mot
becomes completely hydrogenlike. However, when the
dius of the ring~the internuclear separation! is increased, the
asymmetry term in Eq.~47! can no longer be neglected an
the electron is pushed away from the core, settling into
elliptical orbit at higher energy. Hence, for this case of p
pendicular rotation, the electron becomes less bound as
internuclear separation is increased. Having obtained
classical trajectories for the electron, the autocorrelat
functions for the two cases of planar and perpendicular r
tions can be computed, using the sum over classical tra
tories formula in Eq.~15! with the same initial electronic
wave function, and their Fourier transforms give the ene
spectrum. In Fig. 11 we compare the energies for copla
and perpendicular rotations. The parameters used aren̄57
andJ540. The depth of the potential energy curve has a
been increased toDe50.502 to bind the extra rotational ki
netic energy that we inject into rotations needed to con
the angular momentum along a specified axial direction
this sense, our core is no longer explicitly H2

1, but is an
arbitrary diatomic core of total charge11 and thus, as far a
the motion of the Rydberg electron is concerned, can be
proximated by a point quadrupole with a charge of21 at the
origin and two1 charges rotating about it. A closer look
the energy profiles in Fig. 11~b! displays the attractive effec
of the coplanar rotations in contrast to the repulsive effec
perpendicular rotations forn56. This effect seems to disap
pear in Fig. 11~c! as we go higher in the Rydberg series. Th
is well in agreement with our expectation that, when t
electron principal quantum number increases, the ave
distance of the electron from the origin gets very large a
the effect on the electron of thering structure is no longer
distinguishable from that of a point charge. Consequen
the relative shift in the energies vanishes.

Semiclassical rigid rotor and the stroboscopic effect

We can make the previous arguments more rigorous
explicitly treating the rotations of the nuclei semiclassica
If the autocorrelation function can be expressed as a
over planar rotations, then average decoupling can m
naturally be applied, since along every planar rotation of
rigid rotor, the rotor’s angular momentum is well define
along the normal direction. However, due to the nature of
Hamiltonian, it is difficult to obtain an accurate semiclassi
description for the rigid rotor. Satisfying results are obtain
in the limit of high angular quantum numberJ and heavier
reduced massm.

In the spirit of Sec. II, we begin by exciting a well loca
ized rotational wave packet on thex-y plane att50. This
will allow us to express the autocorrelation function as a s
over classical rigid rotations within thex-y plane. To achieve
this, we choose as our initial wave packet a Gaussian su
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position of spherical harmonics:

c0~u,f!5(
J

aJYJ,m~u,f!,

aJ5S 1

ps2D 1/4

expS 2~J2 J̄!2

2s2 D , J5m. ~48!

This wave packet has the property thatū5p/2 andf̄50 and
1! J̄. The autocorrelation function then becomes

c~ t !5E c0~u f ,f f ,0!K~u f ,f f ,u i ,f i ,t !

3c0~u i ,f i ,0!sinu f sinu idu fdu idf fdf i . ~49!

The classical Lagrangian for the system, according to F
7, becomes

L5ma2u̇21ma2 sin2uḟ2, ~50!

where we letm52m andUeq52a. This leads us to the se
of coupled differential equations:

ma2ü5ma2 sinu cosuḟ2,

d

dt
~2ma2 sin2uḟ!50. ~51!

Next we define the rotational angular momentum in thef
direction, which is conserved on every trajectory, as

2ma2 sin2uḟ5pf , ~52!

and substitution into Eq.~51! gives

ü5
cosu

4m2a4 sin3u
pf

2 . ~53!

FIG. 12. Planar rotations in thex-y plane.
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Planar solutions of these equations that lie in thex-y
plane can be written as~see Fig. 12!

f~ t8!5
pf

2ma2
t81f i ,

~54!

u~ t8!5u i .

The mapping into quantum mechanics is achieved by con
ering the stability properties of these trajectories via the p
tial derivative matrices of the action. To calculate these m
trices we consider, instead, a particular set of solutions
which there are small oscillations about the equilibriumu
position:
la
is

ic

n

ne
sic

05341
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f~ t8!5
pf

2ma2
t81f i , ~55!

u~ t8!5u i1
pu

i

pf
sinS pf

2ma2
t8D ,

wherepu
i is the initial rotational angular momentum in theu

direction. It is now straightforward to calculate the part
derivatives of the action, which then constitute the blocks
the monodromy matrix@6#. The monodromy matrix can the
be utilized to calculate the integral in Eq.~15!, and the re-
sulting expression can finally be evaluated6 at the planar or-
bit given in Eq. ~54! with u i5p/2, f i50, pf/2ma2

52p j /t, and j is an integer.
The final form for the autocorrelation function is
c~ t !5(
j

exp@21/2i j p2 J̄2/s2216a4 j 2m2p2/s2t214a2 jmp~ i j p12J̄/s2!#

A11 i ts2/4a2m
. ~56!
nal
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Here the classical action isRrot
j 5ma24p2 j 2/t and the index

j refers to summations over planar rotations with circu
frequencyv j52p j /t. The exact autocorrelation function
given by

c~ t !5(
J

uaJu2e2 iJ(J11)/2mUeq2
. ~57!

In Fig. 13 we compare the exact result to the semiclass
result. The parameters were taken to beJ̄550 and m
53200 a.u. It is seen that the semiclassical approximatio

FIG. 13. Accuracy of the semiclassical rigid rotor. The solid li
is the exact result and the dotted line refers to the semiclas

approximation. The parameters used areJ̄550,m53200,Ueq

52, s510/(2p).
r

al

is

quite accurate over a time length of 15 classical rotatio
periods, where a classical rotation period is given byTrot

52pmUeq
2 / J̄.

Armed with this result, we return to the case of the diato
with an orbiting Rydberg electron. Over a rotation of th
diatomic core, the positive nuclei interact with the Rydbe
electron in orbit through long range interactions. We c
model the effect of this rotation on the electronic motion
describing it in a rotating frame of reference with circul
frequencyv j . This follows from the average decoupling fo
mula in Eq.~18!, which generalizes as

c~ t !5(
j

aje
iRrot

j

(
k

bk je
iRel, j

k E cv ib* K jkcv ibdR, ~58!

where aj is obtained from Eq.~56!, Rel, j is the electronic
action,K jk is the vibrational propagator, and the subscripj
in the remaining terms signifies that the electronic and vib
tional parameters are evaluated inside thej th rotating frame
of reference. What remains to be done is to understand
the electronic trajectories get modified inside a rotat
frame. The equation of motion of an electron inside a fra
that rotates alongvW j becomes

d2rW

dt2
52

1

r 2
r̂ 22vW j3

drW

dt
2vW j3~vW j3rW !, ~59!

where the additional two terms are known as the Coriolis a
centrifugal forces, respectively. By the nature of the init
rotational wave packet we choose to excite, we havevW j

6See Appendix B for the full derivation.

al
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5vjẑ. We can, however, reverse the direction of this vec
by making the substitutionm°2m in the initial rotational
wave packet, wherem is the magnetic quantum numbe
From this point on, we consider both orientations simul
neously. Since the rotation vector points in the direction n
mal to the plane of motion of the electron, Eq.~59! can still
be solved with Kepler orbits, and the new radii for the c
cular electron trajectories in the rotating frame become

r jk
6~ t !5

1

u2p j /t62pk/tu2/3
, ~60!

in contrast to Eq.~32!. Here vel52pk/t are the electron
frequencies inside the rotating frame of reference. The1
sign in Eq. ~60! is used to signify that the nuclei and th
electron rotate in the same direction whereas the2 sign
refers to the nuclei and electron rotating in opposite dir
tions. Using this new definition forr k , we can now go back
and reevaluate the atomic termV(k) of Eq. ~30!. Clearly the
6 sign that appears in the definition ofr k leads to different
modifications of the autocorrelation function. This serves
break the degeneracy in the electronic motion reflecting
orientation relative to the nuclear angular momentum. Ne
we account for the vibrations. In the rotating frame, the ti
derivative of the vectorUW that connects the two nuclei i
given by

dUW

dt
5UẆ 1v j3UW . ~61!

Here UẆ is the rate of change of the vectorUW as measured
inside the rotating frame. This makes an additional contri
tion to the kinetic energy in the Lagrangian which can a
proximately be taken as
05341
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Eo
j 5

1

2
wj

2Ueq
2 . ~62!

Therefore the immediate effect of rotations on the vib
tions is an upward shift of the zero of energy. The avera
force constant of Eq.~28! models the coupling of the vibra
tional motion to the electronic motion. Its explicit form de
pends on the trajectory of the electron, and in the simple c
of circular orbits, the radius of the circle. Using Eq.~60! in
Eq. ~28!, we can then account for the electronic-vibration
coupling inside the rotating frame of reference. The aver
vibrational force constant becomes

gk j
65

2u2p j /t62pk/tu2t

4
1ke f f . ~63!

We are now in a position to express the complete autoc
relation function for the system using Eqs.~60!, ~34!, ~63!,
~56!, and~58!. For the initial wave packet,

c~0!5c rotcelcv ib ,

c rot~u,f!5
1

A2
(

J
aJYJ,m~u,f!

1
1

A2
(

J
aJYJ,2m~u,f!,

cel~rW,0!5(
n

S 1

psn
2D 1/4

e2(n2n̄)2/2sn
2
fn,n21,n21 ,

cv ib~R!5co
HO . ~64!

The semiclassical autocorrelation function can be written
c~ t !5
1

2 (
j

(
k

ajV j
1~k!expH 2 i t F1

2
Agjk

1

m
1

ke f fUeq
2 ~gjk

12ke f f!

2gjk
1

2De1
1

2 S 2p j

t D 2

Ueq
2 G J 1

1

2 (
j

(
k5” j

ajV j
2~k!

3expH 2 i t F1

2
Agjk

2

m
1

ke f fUeq
2 ~gjk

22ke f f!

2gjk
2

2De1
1

2 S 2p j

t D 2

Ueq
2 G J , ~65!

aj5

expF2
1

2
i j p2 J̄2/s2216a4 j 2m2p2/s2t214a2 jmp~ i j p12J̄/s2!G

A11 i ts2/4a2m
,

V j
6~k!5

1

snA~1/sn!22 i3t/2r k j
6

expF2
~Ar k j

62n̄!

sn
21 i2~r k j

6 !2/3t
1 i S 2pkAr k j

61
t

2r k j
6 D G ,
5-12
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and is plotted in Fig. 14. The parameters used wereJ̄

550, n̄58, m53200 a.u.,De50.502. These values wer
chosen so that the special condition of 2pn̄352Trot was
achieved. In other words the classical period of rotation
the electron was fixed to be twice the classical period
rotation of the nuclei, thus tuning the two motions into res
nance.

It is known that in the recurrence spectrum of atom
hydrogen, peaks are observed at times corresponding t
teger multiples of the Kepler periods. Such peaks are a
seen in Fig. 14. The positions marked with the downw
pointing arrows correspond to integer multiples of the cl
sical electronic period and thus even integer multiples of
rotational period. Partial recurrences are repeated con
tently at these points. However, if the points at about a qu
ter of the electronic period away from the downward poi
ing arrows are investigated,7 it is seen that recurrence
completely vanish and the survival probability almost dro
to zero. This behavior can be explained by considering c
sical configurations of the electron-diatom system. At inte
multiples of the electronic periods the two motions are
phase. The electron starts out with the nuclei at a cer
orientation, completes a period, and comes back to find
nuclei in the same orientation. It is as if the nuclei have
moved at all@Fig. 15~a!#. However, at the points when th
survival probability is approaching zero, the classical m
tions are out of phase. In other words, at these points
electron completes about a quarter of its period whereas
nuclei are able to go through half a period@Fig. 15~b!#. The
electron is affected by the opposite of the orientation fr
which it started, leading to destructive interference in
corresponding wave mechanics that describe the two
tions. Thus the survival probability approaches zero. Ho

7These are marked with upward pointing arrows in the figure.

FIG. 14. Recurrence spectrum. The parameters used aJ̄

550, n̄58, m53200, ke f f50.3340,De 50.502, Ueq52, sn 5s
510/(2p). The signature of the stroboscopic effect can be see
the points marked by the arrows.
05341
f
f
-

in-
o

d
-
e
is-
r-
-

s
s-
r

in
e
t

-
e

he

e
o-
-

ever, if the electron is allowed to traverse an additional qu
ter of a period, it will find itself in its original configuration
once again, and this is indeed manifested in the figure
further partial recurrences at the midpoints of the downw
pointing arrows. If the autocorrelation function is consider
as a probe of the state of a system, then the situation ca
related to a classical system such as a weakly coup
pendulum-oscillator pair inside a completely dark room. T
probe in this case will be a light switch that we can turn
at times we choose to observe the state of the system, bu
cannot keep the light on continuously. Now suppose that
period of small oscillations of the pendulum is twice that
the oscillator. Then if we turn on the light switch at time
corresponding to integer multiples of the period of the pe
dulum, we will not be able to tell if the system has moved
all as both the oscillator and the pendulum will be back
their original positions. Only if we come in at the corre
times, i.e., the times at which the two motions are out
phase, will we be able to observe motion. This is known
thestroboscopiceffect. Our autocorrelation function display
a direct manifestation of the stroboscopic effect in the rea
of quantum mechanics which was first suggested by@9#.

V. CONCLUSION

We have given a semiclassical treatment of Rydberg
namics for a well localized initial wave packet in a diatom
system. It has been shown that our sum over classical o

at

FIG. 15. Classical configurations.
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formula allows us to decouple the vibration-electronic int
action, based upon an averaging principle derived prima
from a classical model. Our results agree well with the p
dictions of a perturbation theory treatment of the same pr
lem. Inclusion of the rotations took place in two steps. In
first step, we worked in the limit of the nuclei moving muc
faster than the Rydberg electron. This has led to the in
duction of an approximation of the free rotation of the nuc
by a ring of charge placed near the origin in order to anal
the dynamics of the electron. The approximation correc
predicted how the energies for the electron will be shift
based upon the relative orientations of the two motions in
sense of coplanar versus perpendicular rotations. In the
ond step, we worked in the limit of resonance in which t
average period for rotation matched an integer multiple
the average electronic period. Consequently, we recov
partial recurrences in the survival probability. These rec
rences are the signature of the stroboscopic effect that a
when two separate parts of a system move in resonance.
illustrates how the classical concept of resonance maps
the dynamics of a fundamentally quantum mechanical m
lecular system.
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APPENDIX A

For the case of coplanar rotations we solve the equat
of motion for the electron with reference to Fig. 9. The to
force experienced by the electron located atrW is given by

FW 5 R r~u!~rW2RW !dl

~rW2RW !3
1

1

r 2
r̂ . ~A1!

Explicitly,

FW 5rUeqF E
0

2p @Ueqcos~u!2r cos~f!#du x̂

@Ueq
2 1r 222Ueqr cos~u2f!#3/2

1E
0

2p @Ueqsin~u!2r sin~f!#du ŷ

@Ueq
2 1r 222Ueqr cos~u2f!#3/2G1

1

r 2
r̂ .

~A2!

Taylor expansion to second order inUeq /r gives

1

@Ueq
2 1r 222Ueqr cos~u2f!#3/2

→ 113 cos~u2f!Ueq/r

r 3 , ~A3!

which leads to
05341
-
ly
-
-

e

-
i
e
y
,
e
c-

f
ed
r-
es
his
to
-

-
y

ns
l

Fx52
rp~2r 223Ueq

2 !cos~f!Ueq

r 4
1

cos~f!

r 2
,

Fy52
rp~2r 223Ueq

2 !sin~f!Ueq

r 4
1

sin~f!

r 2
. ~A4!

The total central force becomes

FW 52
r 223Ueq

2

r 4
r̂ , ~A5!

which leads to the equation

4p2k2

t2
5

r 223Ueq
2

r 5
. ~A6!

The solution we are looking for corresponds to a root of

ar52r 213Ueq
2 50,

a5
4p2k2

t2
. ~A7!

The equation for the approximating line to the curvear5

2r 213Ueq
2 passing from the point„(1/a)1/3,3Ueq

2
… is given

by

y53S 1

aD 1/3

r 13FUeq
2 2S 1

aD 2/3G , ~A8!

which intersects ther axis at the point

r k5
~1/a!2/32Ueq

2

~1/a!1/3
. ~A9!

For the case of perpendicular rotations we refer to Fig.
The expression in Eq.~A1! becomes

FW 5rUeqF E
0

2p

2
r cos~f!du x̂

~Ueq
2 1r 222Ueqr sinf sinu !3/2

1E
0

2p @Ueqsin~u!2r sin~f!#du ŷ

~Ueq
2 1r 222Ueqr sinf sinu!3/2

1E
0

2p Ueqcosudu ŷ

~Ueq
2 1r 222Ueqr sinf sinu!3/2G1

1

r 2
r̂ .

~A10!

The third of these integrals vanishes. Taylor expansion
Ueq /r to second order gives
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1

~Ueq
2 1r 222Ueqr sinu sinf!3/2

→ 113 sinu sinfUeq /r

r 3
, ~A11!

which then leads to

Fx52
2pr cos~f!Ueq

r 2
1

cos~f!

r 2
,

Fy52
2pr sin~f!Ueq

r 2
1

3pr

r S Ueq

r D 3

sin~f!

1
sin~f!

r 2
. ~A12!

APPENDIX B

Planar solutions of the equations of motion for the rig
rotor are given by

f~ t8!5
Pf

2ma2
t81f i ,

u~ t8!5u i .

To calculate the stability properties of these trajectories
consider small oscillations aboutu0. We let

u~ t8!5u i1e~ t8!,

wheree(t8) is small. Substitution into Eq.~53! and Taylor
expansion to first order ine gives

ë52
pf

2

4m2a4
e.

The solutions subject to the initial conditions

u~0!5u i ,

u̇~0!5pu
i ,

are given in Eq.~55!. Considering small oscillations aboutu i
reduces the blocks of the monodromy matrix to diago
form. The monodromy matrix in this limit is given by

S ]qW f

]qW i

]qW f

]pW i

]pW f

]qW i

]pW f

]pW i

D 5S A B

C DD ,
05341
e

l

with

A5S 1 0

0 1D , B5S sinS Pft

ma2D /pf 0

0
ma2

t

D ,

C5S 0 0

0 0D , DS 1 0

0 1D .

Defining further the matrices

s5S s 0

0 s
D , K5 is22,

S5S 2 0

0 21
i t

2a2ms2
D ,

T5S 1 0

0 11
i t

2a2ms2

D ,

and the vectors

pW l5S 0

l̄
D , pW 05S 0

pf
D ,

we can carry on the integration given in Eq.~15! to get

c5(
j

aj ,

aj5udet~S/2!u1/2

3expS iRj2 i
p

2
m j2s~pW 02pW l !TS21s~pW 02pW l !

1s~pW 02pW 1!S21s~pW 02pW 1! D .

Here the final expression is evaluated over a planar rota
on thex-y plane for which we have

pf5
2p jma2

t
, Rj5ma2

4p2 j 2

t
,

and the number of conjugate points is given by

m j5 j ,

corresponding toj crossings through theu axis of the oscil-
lating sine term over itsj periods.8

8See Refs.@4# and@5# for further information on multidimensiona
Gaussian integrations.
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