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Semiclassical modeling of Rydberg wave-packet dynamics in diatomic molecules:
Average decoupling theory
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The semiclassical dynamics of Rydberg electronic wave packets in diatomic molecules is investigated using
a sum over classical trajectories method, which is based on the semiclassical form of Feynman’s path integral.
Our approach allows us to calculate intramolecular energy redistribution rates based on averaging of coupling
parameters over classical trajectories associated with time-dependent parts of the overall system that exhibit
different periodicities. The accuracy of our method is tested against perturbation theory and good agreement is
obtained. A resonance structure in the computed autocorrelation function has also been observed in the case of
rotating nuclei, when the periods of the classical trajectories of the electron match an integer multiple of the
rotational period. This has previously been called the “stroboscopic” effect.
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[. INTRODUCTION are not analytically solvable and one must approach the
problem numericallf5]. However, if the natural frequency
Rydberg wave-packet dynamics in diatomic systems is aof the pendulum is much larger than the natural frequency of
interesting subject from experimental and theoretical pointéhe mass-spring system, then the equations of motion can be
of view. This arises from the fact that in the limit of high Separated using the adiabatic approximation in which the tra-
principal quantum number electronic orbit periods become jectory for the pendulum is solved for, given a fixed exten-
comparable to vibrational and rotational periods of the nuSion or compression of the spring. One azorect for the
clei. This results in the reduction of the Born-Oppenheimer@diabatic approximation by replacing the time-dependent

picture to the status of a crude approximation. Several thed€nsion force applied by the spring-mass system on the pen-

ries[2,3] have been developed to correct for these nonadiaém'utm by”ar:_ aver?i]rel valug over one petrlod of the mdepder;—
batic effects, based on the formalisms of the variational prin- ent osciflation ot the Spring-mass system, as opposed 1o

ciple and scattering theory. However, in a time-dependen"f1ssum|ng that the spring-mass system is *rozen” with re-
. : . Spect to the motion of the pendulum. It should be noted here
approach, evidence from experimg#éi with regard to ob-

: . that this argument could equally well be applied to the op-
served recurrences at the classical periods of the system g quaty P b

h d lation f . ¢ a Rvdb site limiting case where the natural frequency of the oscil-
the measured autocorrelation function of a Rydberg wave,;,. oyceeds the natural frequency of the pendulum.

packet suggests that a semiclassical method might provide |, the sections that follow we use the same ideas devel-

insights that are not immediately accessible by the previougpeq in the pendulum-spring example to analyze the dynam-

treatments. ics of a well localized Rydberg wave packet in a homo-
Our semiclassical model rests on the observation tha§yclear diatomic molecule. Our fundamental theoretical tool

when the electron is excited to a Rydberg state it starts tgs a sum over classical trajectories formula that was obtained

exchange energy with the ion core much like the componentgirst by Mallalieu and Stroud1] for the hydrogen atom by

of a system of coupled pendula and springs. As a result of thapplying a stationary phase to Feynman’s path integral. Due

electronic excitation, the expectation value of the electronto its semiclassical nature, this formula is accurate for high

distance from the origin in the molecular frame is suddenlyalues of the relevant quantum numbers of the problem. In

increased to a value several times larger than the molecular

size and the electron transfers energy and momentum to the

internal states of the diatom primarily through long range

electrostatic interaction'sSince the ion core is in general not

spherical, these interactions are not spherically symmetric v
and the Hamiltonian is off diagonal in products of electronic
and rovibrational basis states. M

There are parallels between this situation and the classical
problem of a pendulum coupled to a linear spring in the
earth’s gravitation fieldFig. 1).

In general, the trajectories of the pendulum-spring system

* Author to whom correspondence should be addressed.
We neglect the electrodynamic interactions, as corrections can be
obtained using perturbation theory. FIG. 1. Coupled pendulum-spring system.
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particular, this restricts the choice of principal quantum num- 12
ber for the electronic motion to be above a certain threshold, K(x;,t;,X;,tj)=

which we have determined to lme="7. This makes the elec-
tronic frequency smaller than a typical vibrational frequency Xe(Rji/ﬁ*iw,-/Z) (5)
for a diatomic molecule. Hence, when vibrational-electronic ’

couplings are considered, the electron will be taken to be the ) ) ) ) ) )

slow moving part of the system and the adiabatic approxi-WhereRj is the action for theth classical trajectory given by
mation as applied to the motion of the electron will get cor-

rected, as in the oscillator-pendulum example. It is, however, - - to.

possible to investigate the rotational-electronic couplings Rj(x¢.Xi )= fOL(XJ(t,))dt" ©®)
when the frequencies of the two motions are comparable.

Therefore two cases will be analyzed for this situation; one . . .
for the case of very slow electronic motion in comparison toam.j K 1S the. number of conjugate points along fche same
rotational Motion (< w,o,) and one for the case where the trajectory? which can be determined from the relation
electronic frequency is near the rotational frequency. As will
be demonstrated, stroboscopic effects are recovered between
the two motions in this limit when the rotational frequency is
chosen to be twice the electronic frequency. These effects

can be considered to be quantum mechanical manifestations o ) )
of the classical concept of resonance. In our applications we will be concerned with many-body

systems. For such a case, the classical trajeof(er) be-
comes the system trajectory vector with components corre-
sponding to generalized coordinates. The time derivative of
The starting point is the propagator that gives the timethis vector gives us the conjugate momenta as functions of
evolution of an arbitrary wave packet for a given Hamil- time. The common notation to describe a system whith

1 N’22 . PR (Xg X 1)
—_— et——5——
2mih) 4 XX

_ det( %Ry /9x;x;)
deﬂ ﬂzR] /(7)_()f(9)_()|| .

ei T

)

Il. THEORY

tonian. The propagator is defined by degrees of freedom is a system vectd(t), which signifies
i the N generalized coordinates that describe the overall time
- - - - . H{t L) | evolution.

K(Xp b, %, t) = (X bl t) =(xsle” — & [xp), (1) The autocorrelation function is defined by
where A= p?2m+V(r). Hence for an initial wave packet c(t)= ((F,0)|¥(F.1)) ®)
defined by¥ (x; ,t;), the wave packet evaluated & (t;) is
given by

for a wave functiony evolving under a Hamiltoniahi (p,r).
In integral form,

V(X ,ty) = f K(X¢,tr X, 1) W (X, t)dX . (2)
c<t>=ffw*<Ff,0>w<Fi,0>K<Ff,ﬂm)dr?dr?. (9)

Feynman’s well known analytical formula for the propagator
is

To proceed with the derivation we make the crucial assump-
tion that the initial wave packet is well localized in teemi-
classicalvariables. Then the amplitudg* (r;,0)y(r;,0) for
ri#r; will be small. Hence we can approximatgt) by
HereL is the classical Lagrangian evaluated on the primedeplacing the integration ovetr; by a constant value of the

K(Rg b % 1) = J DRt e/t (3)

pathx(t') that connects; andx; and is given by initial position wave function evaluated et=r; and write
p> .
L=T=V=om V- @ c<t>~f | (P O)PK(F,F tydt
D represents an integration over all possible paths between =T * (r{,0)K(r¢,r;,t)e(r;,0)]. (10)

x; andx; . When stationary phase is applied to this integral

form, we get the conditiorL =0, which is equivalent to  Further, assuming thaﬁ*(Ff,O)elf(Fi,O) is not oscillatory, we
Newton’s equations of motion. This suggests that the domican impose stationary phase on the propagator to get

nant contribution to the Feynman propagator comes from

classical trajectories that connect and x;. After proper

transformation is applied, we arrive at the Gutzwiller semi- 2For a clear explanation of the conjugate points and their physical
classical form[6] for the propagator: meaning, se¢6].
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oK ar; K
— —=t-—==
ary drgy  Jrs

which gives

with

—pi+pi=0. (11)

With the additional condition that;=r,, this becomes the
definition of a periodic orbit. Thus, from the sum over clas-
sical trajectories, only trajectories located near periodic
closed orbits will contribute to the integral. It is allowed that
the trajectories will have completed multiple periods by the
time at which the autocorrelation function is evaluated. Thus,
it is sensible to label each periodic orbit by an integethe
number of cycles completed atNext, we choose a poirt,

on the periodic orbit which lies in a region where the initial
wave packet has significant amplitude, and we expand the

1 N/2 aZR
=0, C(t)z(m) E (de‘{ >
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1/2

o (MR

k ﬁFf&ri

[o]

xff:,Zf(ﬂ,O)*gb(Fi,O)e’(i’F‘)'(Ff'Fi)dedﬂ, (15)

1(re,r)=—=(ri—ro)+—(r{—Tp)
i I
1. . R R

1. . PR . .
+5(ri=ro) 2I;f‘(rf_ro)
HFTo R (g, a8
ri—rg)-—=——=-(I,—"Iyp),
f 0 O"rfﬁri ! 0

phase of the propagator to second order about this point: @nd the period of the periodic oritpassing through, is

R o
R=R(fo.fo.t)+5 2 1i(r'=ro)(r'=rp). (12
ij=1

Here,

#R R
= —==——=+——=

ardr,  ororg
R
ar,ar;

IR

ar dr'¢

+

13

li=re=ro

Thus the autocorrelation function can be written as

)1/2

N
Xf (7 020 2 1yt =0 =g (14

o= (/MR

1 N/2 (92R
o=z 3 [t

0

This expression is subject to the restriction thatr,. We
can improve on the approximation by distinguishing the two

points but retaining the same form:

given by Ty,=t/k.

In general, moleculaN-body systems will have two or
more dynamical variables, corresponding to generalized co-
ordinates, which will evolve over time scales that exhibit
different periods. However, these dynamical variables will be
coupled through electrostatic interactions and therefore will
exchange momentum. The above analysis invites us to ap-
proach this problem in complete analogy to the oscillator-
pendulum problem described in the Introductigve will de-
couple the interaction by an average over a periodic
trajectory of one part of the system, thereby obtaining an
analytical expression for the autocorrelation function.
Within this framework we are further allowed to use an ap-
proximate, trajectory-dependent potential function instead of
the full potential felt by the wave packet, since the autocor-
relation function has been put in a form that is an explicit
sum of the classical periodic orbits and therefore it is the
evolution of these periodic orbits that plays the key role in
the final result.

In the case that there are two parts of the overall system
that evolve on different time scales, such an average will
lead to the separation of the actioRsn the following man-
ner:

Riot= R+ RS, (17)

implying that the second part evolves in averaged correlation
with the first part through its particular periodic orkjtlead-
ing to an autocorrelation function given by

c(t)= ; a,eiMR (18

wherea, is a complex number to be determined and contains
the phase-amplitude contribution of the second part.

In the next section we apply the outlined method to a
nonrotating diatomic system where vibrational degrees of
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ergy curve at the minimun) =U,,. Anharmonic terms are
neglected in the nuclear potential and consequently the re-
sults we obtain will be valid only for low lying vibrational
states. From molecular orbital theory we can take the follow-
ing form for the charge density:

- 1 - -
p(r) =108’ =5 [1sa(r) +1ss(r) )% (2D

whereSis the overlap integral given by

S=J 1sa(r")* 1sg(r')dr'. (22)

The accuracy of the method outlined in Sec. Il depends on
whether the initial wave packet that will evolve subject to

FIG. 2. Diatomic moleculet) =X; —X;;P=X;+X,. this Lagrangian is sufficiently localized. Thus we consider an
initial Rydberg wave packet that is localized near the uncer-

freedom are coupled to the electronic motion through a quadgjnty fimit in all three electronic coordinat§g]. Our initial
rupole interaction. The accuracy of the autocorrelation funcy,gye packet is defined by

tion is then compared with a perturbation theory calculation.
In Sec. IV we add in rotations to our calculations and dem- $(X,0)= Pre)(1,0) ¢, R),
onstrate how the resonances between the electronic and the

rotational motions manifest themselves in the survival prob- 1\ o,
ability‘ l//e|(r,0): E - 5 e (=N lzgn(f’n,nfl,nfl!
n \ mTo,
I1l. VIBRATIONAL COUPLING 1
. . . . . _ HO HO HO
We investigate the time evolution of a well localized wave YaudR) = \[g( ot T ), (23
packet for a H like system with an infinite barrier against
rotation. whereg, 1,1 iS @ hydrogenic wave functichwith prin-

In Fig. 2 we have an orbiting Rydberg electron, two nucleicipal quantum numben, orbital angular quantum number
of equal charget1, and an effective charge densjiyr’),  n—1, magnetic quantum number—1, andn=7 with o,
which is responsible for holding the nuclei together. We de-<,” The wave functions labeled O refer to the first three

fine, in atomic units, harmonic oscillator eigenstates. This choice is made to ac-
-, count for the possibility of vibrational transitions and the
V()= Fz(ra) dr’ resultant dynamics. Electron exchange is neglected because
[r—r’| ' the overlap of the Rydberg wave packet with the ground
electronic wave function of the core is small, spin-orbit cou-
U=X;—Xy, pling is also ignored. An approximate expression for the hy-
drogenic linear combination that appears in E28), using
P=X;+X,. (29 spherical polar coordinates, is given[Bl, which shows that

the wave packet is localized about
By describing the inner electron as a static charge density,
we are discarding any dynamics due to a possible excitation - = T —
from the core ground electronic state via exchange of energy =n PN ¢=0. (24)
with the Rydberg electron. This is a good approximation if
the Rydberg wave packet is localized sufficiently far from  This describes an electronic wave packet confined to the
the core, as will be the case in our model. Neglecting freex-y plane at a large average distance from the origin. Fur-
translation, we can write the Lagrangian of the system as thermore, the linear combination consists exclusively of high
I's, which imposes a large centrifugal barrier against electron
penetration toward the center of the ion-core. In particular,
one can safely assume that the classical trajectories of Sec.
II, which will ultimately sum to yield the autocorrelation
function, will lie in an asymptotic region. The potential ex-

1 . 1. ) . 1
L= uR*+5[r?+r26°+r2sin(0)*¢*]+ —
2 2 rq
1 1 5 -
+E+De_§keffR _V(r), (20)
where R=U—-Ugq, u=My0/2, De is the depth of  S3This electronic wave packet is convenient to use as a theoretical

the potential energy curve for the ionic diatom, dqg; is a  tool but is not meant to be a model for an experimentally realizable
parameter determined from the curvature of the potential erphysical system.
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perienced by such classical trajectories can be described bytlae nuclei and the electron separate and so do the semiclas-
static multipole expansion. The electron-electron interactiorsical propagators. From E¢L5) we get
in this limit becomes

R ry . oL () c(t)= aeiRﬁ'f *(RIKKR,R t
viir= [ 27 gi=s [ oo o (=2 ae® | yruRIKRR'D
lr—r'| r Jo pl+t
X audR")IRAR. (30)
* _)I g -)! rl !
+2 J p(r)py(r.r') ———dv’. (25) el . , ,
bJr (r’) The complex numbef) (k) =a,e'™« is obtained from circu-

. ) . lar trajectories in a pure spherical Coulomb interaction and
For sufficiently large we can assume that this expression isjig explicit form is available if1]. For a circular orbit of

near its asymptotic limit, approximately giving periodt/k we have
1
V(r)=—. (26) . 2mkt!
r P(t")= té (31

t
We want to investigate the effect of nuclear dynamics on
the electronic motion and thus we expand the nuclear attragng Kepler's law leads to
tion to its first nonvanishing multipole term that includes the
internuclear distance. Since the initial electronic wave func- |23
tion lies in thex-y plane, a natural choice of trajectories for r(t):(—) ) (32)
Eq. (18) is those confined to the same plane and which lie in 2wk
the asymptotic region. Multipole expansion to second order
reveals Evaluation ofw, along such circular trajectories, using Eq.
(28), gives
1 1 1 ) [1—3 cod(¢)]U?

+ , 2
ry rp, r 4r2 @7 — K22+ Ke s (33
R e —
g w

where ¢ is the planar azimuthal angle. Here the appearance

of the quadrupole ternj1—3 cog(¢)]U?/r® breaks the . o

spherical symmetry and angular momentum is no IongeW‘th'n the a_dlabatlc picture the angularzfrezquzemywould
conserved. As in the pendulum-spring example, we decoupl@MPly be given byker/w. The term—k“7°/t* is thecor-

this asymmetry from the electronic degrees of freedom anéection we have obtained by explicitly considering the cou-
couple it completely to nuclear motion by introducing a Pling between electronic and nuclear degrees of freedom. We

time-modulated force constagf(t) as the average value of can go one step. further qnd yvrlte an gnalytlcal expression for
the autocorrelation function in analytical form using the ex-

the quadrupole term along a periodic trajectory of the elec- . . )
tron. Explicitly, we define act propagator for the harmonic oscillator:

1 [1-3cod[¢(t)] _ | mox np( imwy
BT P T orryy O e @9 c(01=3 000 | 5™ 2siing

po
The Lagrangian now becomes ><[(R2+R’2)cos{wkt)—2RR’)])
1. 2 1 2 292 2 i 242 1 ’
Lp°=§,uR +§[r +reg°+resin(0)<¢p ]+F X y*(R)y(R')dRdR. (34
1_(0 Ueq(gfjc),— Ketp) 2 This is valid for any vibrational wave packet,,(R) ex-
+Do— Egpo R+# cited at timet=0 and contains all information about the
Ypo coherence between the zero-order states. For our initial wave
Kers packet the survival probability can be written as
e
— =y V2O Kero), (29
200

3 3
lc®P=2 2 X > amQkk)
k/

and the evaluation along a periodic trajectory of the electron n=1,-7 K
in the pure Coulomb potential is evident. This is the Kepler
problem and the solutions are the Kepler ellipses, as we have
anticipated. We Ietg(,j()):,uwﬁ with the electronic period
given byT=t/k. Along the periodic trajectory the actions for This is further separated as

x @il(n+ 12— (n' +12)w] (35
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2
le(t)] .
Solid Line = Average Decoupling Theor
:2 |Q(k)|2+2 E anQ(k,k!)ei[(n+1/2)(wk*(ul;)] 0.6 | Dotted Line = F’anﬂrhatiun'lyhsugry Y
K ,
N Ktk ol
R ’ C 2
£ 3 S a0kl e (@ ol
ntn’ K
03
+ Z 2 ann,Q(k’k/)ei[(n+l/2)wkf(n’+1/2)wkr]' -
n#n’ k#k’
(36) o
2 Q(Kk) is anatomicterm, which leads to the autocorrelation % 12 n ey 1F 2 22
function for the hydrogen atom. The remaining terms in Eq. Al
(36) contain all the molecular information. This form tells us 08
that, at the hydrogen atom recurrence times, all the molecula Il L= e St Ty
. . . . . .. . 07 . " E
information, which is given by the remaining terms in Eg. Dotted Line:= Perturbetion. Theory
(36) when the atomic term is taken out, disappears, since the 06t
recurrence time implies that thegomicterm is equal to 1. (b) o]
Thus, an atomic signature is built into the molecular recur-
rence spectrum within this framework. g
03 E
Perturbation analysis . i
Given that most of the amplitude of the initial wave func- .
tion lies outside the core region, little error is introduced if '
the asymptotic form of the potential is used over all space. L e
This facilitates a perturbation theory treatment of the same Lrees) wn®
problem, which we present now. The autocorrelation func- 07— ——
tion in general is given by e e P ™
0B
c(t)=2 |ag|’e™Enet, (37)
n.v (©) Ieiy?

04f
where thela,| are the amplitudes of the zero-order states,
and| are the electronic quantum numbers, and the vi- o3y
brational quantum number. According to first-order perturba- .

tion theory,
01
En,',U:Eg,U+Er]:I,|,U' (38) 1 \lﬂ

f i ) L
3.2 34 36 38 4 42 4.4

W|th Tirne(a.u) i
1 Kot 1 FIG. 3. Theoretical survival probability. The solid line is aver-
Eﬂ b= ;+ 7 v+ > —De, age decoupling theoryand the dashed line is perturbation theory.
n

The parameters used are-n:IO/(Zw),Wz?,keff:0.334,,u
=918.01,0,=0.102,U¢q=2,v=0,1,2.

4r3

! ,m,v> ' The numerical values of the force constants and the potential
(39) energy curve depths are those fofH'It is seen tha_t the two
theories agree quite well even until very late times. Only
When the matrix elements are calculated we get after about 15 classical electronic periods, given Ry

=27n3, do the amplitudes start to differ.

- (—1 1 vH12 &>
nlv=| q e
8 J1(1+12(1+1)n3\ VKepsu Fourier transform spectrum

(40)
The Fourier transform of the autocorrelation function

as the corrections to the zero-order energies. The autocorrgives the energy spectrum of the core plus electron system.
lation function computed from perturbation theory is com-In Fig. 4 we have plotted the Fourier transform of the auto-
pared to the result from average decoupling theory in Fig. 3correlation function that was computed using average decou-
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x10
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T n=6 <«—| | —» n=8 7
05 =
. . . L | |y .
-0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.08 -0.04

FIG. 5. Assigned Rydberg levels.

FIG. 4. Fourier transform spectrum. The three lines correspondn order of increasing.

to Rydberg series converging to=0, 1, and 2 levels of the core.

The fine structure is due to the interaction of the Rydberg electron

with the ionic core.

pling theory. Here we see three Ryderg series converging tc
the ground, the first, and the second excited vibrational state
of the ion core, in accord with the initial vibrational wave
packet that we created & 0. In Fig. 5, we have assigned
these energy levels in order of increasmdVhen the energy
levels, as predicted by average decoupling, are compared @)
unperturbed levels in Fig. 6 one sees a relative shiftnfor

=5, which seems to disappear fo+ 9, in the corresponding

line. This is in good agreement with the well known fact that
the quadrupole energy shift, which has been directly worked 2t
into average decoupling theory, scales approximately as thi

inverse ofn3I3.

clei, thereby causing a delocalization of positions on the uni
sphere which is difficult to model semiclassicallsee Fig.

7). We can make progress by assuming that the rigid rotatior 6F
is in a state with maximal angular momentum along the

direction:

(prot:Ylm( 0,9),

m.

(41)

x10°

The Rydberg seriefel0

Dotted Ii’ne'Unpenur'hed State |
12 | Solid line:Average Decoupling

n=5

1 L 1
013 0113 01125

L
0.112

L L
01116 0111

Energy (aw)
IV. ROTATIONS ,
w10
When the barrier against rotations is lifted, new regions of al _
configuration space will be accessible by the diatomic core, Dt e e S
. . . . 14 F olid line:Average Uecoupling g
which has hitherto been approximated by a point quadrupole
Relative probabilities for arbitrary interacting configurations tar 1
of the system will depend on the rotational state of the nu- 1ol - |

t® |
1
|

|
|
'

d I

LA

@
——

0 (.’V"""’”"’".""J

N

-0.09%6 -0.099 -0.0985

Energy (aw)

This confines the angular momentum onto a cone with very

small apex angle, provided thiis chosen sufficiently large.

FIG. 6. Energy comparison. We

-0.098 -0.0975

-0.097

observe here that the peak of

Moreover, the planar trajectories of the orbiting electron will, the n=5 |ine computed using average decoupling theory has been
on average, experience zero torjas any component of the  ghifted slightly to the left of the unperturbed state, implying an
attractive ion-core—electron interaction. Such an energy shift is ab-
sent for then=9 case. This implies that the nonspherical attraction
“This torque arises from the Coriolis and centrifugal forces, whichbetween the core and the electron drops off very quickly with in-
are described by Eq59).

creasech and|.
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Z

. . . . FIG. 9. Coplanar rotations of the core and the electron.
FIG. 7. Orientations of the rigid rotor on the unit sphere.

Nuclear angular momentum is delocalized on xhg plane where the moment of inertia remains on average the same, evalu-

the classical electron trajectories lie. One can localize the nuclear e . .
J ated at the equilibrium bond length,, during a period of

rotation by letting the magnitude of the angular momentum be Iarge{ . ] .
Lo o he rotation. Thus, the result of allowing the nuclei to rotate

and by maximizing the component along thaxis, i.e.,m=J. . ’ A .
y g P g is reduced to the multiplication of the autocorrelation func-

. }ion by an extra phase:
projection of the nuclear angular momentum on the plane o

rotation of the electron will be canceled by the equally likely
component lying along the axially opposite direction, as can
be seen from Fig. 8. wherec(t)* is the part that includes the electron dynamics

In our sum over classical trajectories formula, the EIeC_cou led to rotations andlis the rotational quantum number
tronic motion is initiated in the asymptotic region and the P d

electron remains on average at large distance from the centg r the diatom. Next, we analyze the effects of the rotation-

of the diatomic core due to its high angular momentum and ectronic couplings. The autocorrelation fP”C“O”. has'al—_
Eady been expressed as a sum over classical trajectories in

the consequent centrifugal barrier. The signature for suc a. (18). All we have to do now is to understand how the

motions is their long periods on the atomic scale. When th . . . :
eelectron trajectories are modified by our present configura-

angular momentum quantum number is chosen to be Iar%yon involving a ring of charge near the origin. The total
for the core rigid rotation, the nuclear motion becomes muc 9 9 9 gin.

faster than the electronic motion, i.e., the diatom completeforce experienced by an electron at posittobecomes
many periods before the electron is able to complete one .

cycle. In this limit, the orbiting electron experiences a ring of - [pO(r—R)dl 1.
charge near the origin, as opposed to two nuclei moving, and F= % (r—R)3 + r_zr’ (43)
this is illustrated in Fig. 9. Following the usual convention,

we decouple the rotations from vibrations by assuming tha\tNhere according to Fig G=r COS(d)X+1 sin(¢)y andR

=U¢qCOS(f)X+ Ugqsin()y. Explicitly,

C(t)=C(t)*e_iJ(J+l)t/2MU§q, (42)

S~ var [UeqCOS @) —r cog ¢p) ]d X
PR g [UZ+12=2Ueqr cog 60— ) 132

+fzw [UeqSin(6)—r sin( ¢)]day +1A
ry
Projection of ¢ NoTTTTOC 0 [UZ+12=2Ucq cog0—$)1%2] 12

w onto the x-y

plane is zero (44)
o1 average . i .
y and the constant charge density on the ringisl/mU,.
SinceUq,<r, we can series expand the denominators inside
the integrands in powers &f.,/r to get
x e __ pm(2r’-3Ug)cod$)Ueq  codg)
FIG. 8. Delocalization of angular momentum. * r4 rz '
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Il (a)

FIG. 10. Perpendicular rotations of the core and the electron.
The electron rotates in they plane, whereas the nuclear rotation is
in the x-y plane.

m(2r2=3U2)sin($)Uqsq  si
_ P iq ¢ eq+ n(j’) . (45)
r r
(b)
This is a purely radial force and the equations of motion can
be solved by circular orbitsThe new radii for these trajec-
tories become

y

(t2mk)*P-Ug,

(t/27k)?? 48

rk(t

This difference between Ed32) and Eq.(46) is the Uiq
term, which makes the new radii smaller. This shows that in
this configuration there is an additional attractive interaction
between the electron and the nuclei. The negative charge ¢
the origin is shielded by the ring of positive charge and the
effect of shielding increases as the radius of this ring in-( )
creases. Since this radius is the internuclear separation, w
can expect that the electron will be bound more strongly to
the core as the internuclear separation increases, leading to
larger shift to lower energy in the corresponding electronic
energy levels. Alternatively one could also choose to confine
the angular momentum along tkxeaxis. This would imply
that the nuclei and the electron are rotating in perpendiculal

planes, as in Fig. 10. Letting=r cos(¢)x+r sin(¢)y and
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x10°

w10°

T T T T T
Solid Line: Coplanar rotations n=
T=

7
Dotted Line: Rotations in perpendicular planes 40
De=0.502
> n=7
1
H
H -+ n=8
H
028 027 0.26 025 -0.24

Energy (a.L)

55 Solid Line: Coplanar rotations
Dotted Line: Rotations in perpengicular planes

n=6 +—

%10

L
-0.2834

L L L L !
0.2832 -0.283 02828 02826  0.2824
Energy (a.L)

0sr

Solid Line: Coplanar rotations 1
Dotted Line: Rotations in perpendicular planes

=g -

0 L h
-02776 02774 02772 D277 -0.2768 02766 -0.2764 -D.2762

Energy (a.L)

R=U¢qC0S(0) 2+ Uqsin(d)y, we can carry out the integra-

tions in Eq.(43) to get

_ 2mp cog ‘/’)Ueq_i_coid’)

X 2

r r

F. =
y r2 r

3 2mp sin(¢)Ueq+ 3mp ( Ueq
p

Here we have an asymmetry term in si)(of the order
(Ugg/r)3, which we will neglect becaustlqq<r. In this

3
—> sin(¢) +

FIG. 11. Comparison of energy levels for coplanar vs perpen-
dicular rotations. The solid line is coplanar rotations and the
dashed line refers to perpendicular rotations. The parameters used
are J=40,n=7, u=918.01,ke1y=0.3340,D0,=0.502,U4=2, oy,
=10/(27). It is observed in(b) that the energy peak for coplanar
rotation is shifted slightly to the left of the peak for the perpendicu-
lar rotation, signifying that in the case of coplanar rotation the elec-
tron experiences stronger core attraction. As sedg)irthe differ-
ence in the two profiles vanishes when the principal quantum
number gets large. At larger distances the electron is no longer
affected by the ring structure of the core and therefore the overall
attractive effect disappears.

limit, the total radial force experienced by the electron re-duces toF,=—1/r? and the electron trajectories are then

5See Appendix A for mathematical details.

given by Eq.(32). In this configuration, the shielding of the
negative charge at the origin is reduced, leading to the dis-
appearance of the attractive effect we observed in the case of
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coplanar rotations. In a reference frame in which the position

of the electron is fixed, the ring of charge makes a complete \
out-of-plane rotation during an electronic period, effectively +
forming asphereof charge near the origin. The electric field
outside the sphere reduces to the electric field produced by
point charge of magnitude-1 when the negative charge at
the origin is also considered. Thus, the electronic motion
becomes completely hydrogenlike. However, when the ra- d)
dius of the ring(the internuclear separatipis increased, the =
asymmetry term in Eq47) can no longer be neglected and

the electron is pushed away from the core, settling into an

elliptical orbit at higher energy. Hence, for this case of per-

pendicular rotation, the electron becomes less bound as th
internuclear separation is increased. Having obtained the +
classical trajectories for the electron, the autocorrelation

functions for the two cases of planar and perpendicular rota-

tions can be computed, using the sum over classical trajec

tories formula in Eq.(15) with the same initial electronic

wave function, and their Fourier transforms give the energy FIG. 12. Planar rotations in they plane.
spectrum. In Fig. 11 we compare the energies for coplanar

and perpendicular rotations. The parameters usecharé  position of spherical harmonics:
andJ=40. The depth of the potential energy curve has also
been increased tb.=0.502 to bind the extra rotational ki- _

. o . . . 0,9)= a;Yim(6,9),
netic energy that we inject into rotations needed to confine Vo(6.9) EJ: Yol 0:4)
the angular momentum along a specified axial direction. In
this sense, our core is no longer explicitly, H but is an ( 1 )1’4 p<_(J_J_)2

a;= exp ————

arbitrary diatomic core of total chargel and thus, as far as
the motion of the Rydberg electron is concerned, can be ap-
proximated by a point quadrupole with a charge-df at the . _ _
origin and two+ charges rotating about it. A closer look at This wave packet has the property tifat 7/2 and¢=0 and
the energy profiles in Fig. 1) displays the attractive effect 1<J. The autocorrelation function then becomes

of the coplanar rotations in contrast to the repulsive effect of

perpendicular rotations far=6. This effect seems to disap- _

pear in Fig. 11c) as we go higher in the Rydberg series. This C(t)_f Vo011 OK(Gr, b, 0161 0)

is well in agreement with our expectation that, when the
electron principal quantum number increases, the average
distance of the electron from the origin gets very large and - ; ; -
the effect on the electron of thing structure is no longer 7 g’g((:aocrzrl]e;sssmal Lagrangian for the system, according to Fig.
distinguishable from that of a point charge. Consequently,’
the relative shift in the energies vanishes.

’7TO'2

o? ) J=m. (48)

X (ﬂo( 0; ,¢i,0)Sin 0¢ sin Hldﬁfdﬁ,d¢fd¢, . (49)

L=ma26?+ma? sif0¢?, (50)

Semiclassical rigid rotor and the stroboscopic effect where we letm=2u andUg,=2a. This leads us to the set

. . of coupled differential equations:
We can make the previous arguments more rigorous by

explicitly treating the rotations of the nuclei semiclassically.
If the autocorrelation function can be expressed as a sum
over planar rotations, then average decoupling can more d
naturally be applied, since along every planar rotation of the —(2ma? sirf6¢)=0. (51
rigid rotor, the rotor’s angular momentum is well defined dt

along the normal direction. However, due to the nature of th?\lext we define the rotational angular momentum in the
Hamiltonian, it is difficult to obtain an accurate semiclassical .~ . o 9 .

description for the rigid rotor. Satisfying results are obtainedd irection, which is conserved on every trajectory, as

in the limit of high angular quantum numbdérand heavier
reduced masg.

In the spirit of Sec. Il, we begin by exciting a well local-
ized rotational wave packet on they plane att=0. This
will allow us to express the autocorrelation function as a sum
over classical rigid rotations within they plane. To achieve = p3. (53)
this, we choose as our initial wave packet a Gaussian super- am?atsirtg’ ?

ma2f=ma? sinf cosf¢?,

2mazsin20<';‘>=p(,,, (52
and substitution into Eq51) gives

cosé
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Planar solutions of these equations that lie in thg

plane can be written asee Fig. 12 H(t')= %t% &, (55)
. Py, P! p
t)=——t"+ o y " — p. _9 H ¢ 1
¢t)=_ ST o(t')=6;+ pq;SIn( o )
(54)

wherep), is the initial rotational angular momentum in the

direction. It is now straightforward to calculate the partial
o L i _derivatives of the action, which then constitute the blocks of
The mapping into quantum mechanics is achieved by considte monodromy matri6]. The monodromy matrix can then
ering the stability properties of these trajectories via the parpe ytilized to calculate the integral in E€L5), and the re-
tial derivative matrices of the action. To calculate these masulting expression can finally be evaludted the planar or-
trices we consider, instead, a particular set of solutions imit given in Eq. (54) with 6=m/2, ¢;=0, p,/2ma’
which there are small oscillations about the equilibridm =27j/t, andj is an integer.

position: The final form for the autocorrelation function is

0(t')=0i .

exf — 1/2ij w— 3% o?— 16a%]2m2 w2 o2t + 4ajmar(ij w+ 23/ 02)]

J1+ito?/4a’m

(56)

C(t)=§j)

Here the classical action Rl,,=ma?47?j?/t and the index quite accurate over a time length of 15 classical rotational

j refers to summations over planar rotations with circularperiods, where a classical rotation period is givenTpy;
frequencyw;=2j/t. The exact autocorrelation function is =27TMU§Q/1

given by Armed with this result, we return to the case of the diatom

with an orbiting Rydberg electron. Over a rotation of the

diatomic core, the positive nuclei interact with the Rydberg

c(t)=> |a,|2e I+ D2ubed, (57)  electron in orbit through long range interactions. We can

J model the effect of this rotation on the electronic motion by

describing it in a rotating frame of reference with circular

In Fig. 13 we compare the exact result to the semiclassicdl€duéncyw; . This follows from the average decoupling for-

result. The parameters were taken to be50 and % mula in Eq.(18), which generalizes as
=3200 a.u. Itis seen that the semiclassical approximation is

c(t)=2 ajeiRiOtEK: bkjeiRZ"jf PinKikindR, (58)

09

Dotted line:Semiassical 1 where g; is obtained from Eq(56), R is the electronic

Solid line:exact

0.8[

action, K is the vibrational propagator, and the subscyipt

in the remaining terms signifies that the electronic and vibra-

tional parameters are evaluated inside jttterotating frame

of reference. What remains to be done is to understand how
the electronic trajectories get modified inside a rotating

frame. The equation of motion of an electron inside a frame

that rotates along;j becomes

0.7R

0.6
letI?
05

0.4

03[

& 1. . dr . . .

021

01

. : where the additional two terms are known as the Coriolis and
Timetay) X centrifugal forces, respectively. By the nature of the initial
FIG. 13. Accuracy of the semiclassical rigid rotor. The solid line rotational wave packet we choose to excite, we h&i{e

is the exact result and the dotted line refers to the semiclassical

approximation. The parameters used are 50, u=3200,U,
=2, 0=10/(27). 5See Appendix B for the full derivation.
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=ij. We can, however, reverse the direction of this vector il
by making the substitutiom— —m in the initial rotational Eo=5WjUeq- (62

2
wave packet, wheren is the magnetic quantum number. ) ) ) _
From this point on, we consider both orientations simulta- Therefore the immediate effect of rotations on the vibra-

neously. Since the rotation vector points in the direction nordions is an upward shift of the zero of energy. The average
mal to the plane of motion of the electron, H§9) can still  force constant of Eq28) models the coupling of the vibra-
be solved with Kepler orbits, and the new radii for the cir- tional motion to the electronic motion. Its explicit form de-

cular electron trajectories in the rotating frame become ~ Pends on the trajectory of the electron, and in the simple case
of circular orbits, the radius of the circle. Using E§O) in

Eqg. (28), we can then account for the electronic-vibrational
(60)  coupling inside the rotating frame of reference. The average
vibrational force constant becomes

_ —|2mjit=2mkit?t

r(t)= ,
() |2/t + 2 kit 23

in contrast to Eq.32). Here we=2wk/t are the electron

frequencies inside the rotating frame of reference. Fhe g;fj— 4 +Kers- (63)
sign in Eq.(60) is used to signify that the nuclei and the
electron rotate in the same direction whereas thesign We are now in a position to express the complete autocor-

refers to the nuclei and electron rotating in opposite direcrelation function for the system using Ed$60), (34), (63),
tions. Using this new definition far,, we can now go back (56), and(58). For the initial wave packet,

and reevaluate the atomic te@(k) of Eq. (30). Clearly the

+ sign that appears in the definition of leads to different
modifications of the autocorrelation function. This serves to
break the degeneracy in the electronic motion reflecting its
orientation relative to the nuclear angular momentum. Next, 1

we account for the vibrations. In the rotating frame, the time Yror(0,¢) = E ; aYsm(0,4)

derivative of the vectotJ that connects the two nuclei is

given by 1
+—= ; a;Y;,-m(6,¢),

#(0) = trote1yiv »

du - - V2
IZU-FCUJ'XU. (61) 1 14 ,
- _ 2 o
. lﬂe|(r10):§n: (_2) e~ (MM ”(ﬁn,nfl,n—lr
Here U is the rate of change of the vectbr as measured 9n
inside the rotating frame. This makes an additional contribu- (R)= 410 64
. . . . . . lvbulb( ) ‘/’o . ( )
tion to the kinetic energy in the Lagrangian which can ap-
proximately be taken as The semiclassical autocorrelation function can be written as

1 /g_j+|<+keffu«29q(gj+k_keff)_D +£ Z_ﬂ)zuz
2V u 2911 e 20t ed

1 Ok KettUiq(Gj— Kerr) 1(2mj\%
2NV “Petal ) Y[ (65

Zgj_k

1
]+52 > 2,07 (k)
k#j

J

1
c(t) =5 2 Zk ajaf(k)exp{ —it

><expi—it

1 _ J—
ex;{ — 5” am—J% 0% — 16a4j 2m2w2/02t2+4a2jm77(ij T+ 2J/0’2)

a;= ,

) JV1+ito?/4a’m
+ (Vri'_ﬁ) . ¥ t
QF (k)= —exg — 50— +i| 2wkt —| |,
onV(Lo)?—i3t/2r; oA +i2(ry)?3t 2ry;
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os ' ' ' ' ' ' ' ' (a) On Phase Configuration
Tor=2xTyo - _

03F 1 = =
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let?
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Initial Configuration Configuration at the end
of an electronic period.

0.05

2Iz l 214 26

e l 1 12 ] 14 1Ii 5 l 2
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FIG. 14. Recurrence spectrum. The parameters usedJare =
=50,n=8, u=3200, ke1=0.3340,D, =0.502, Uc=2,0, =0
=10/(27). The signature of the stroboscopic effect can be seen al
the points marked by the arrows. )
. . — A
and is plotted in Fig. 14. The parameters used wére
=50,n=8, ©=3200 a.u.,.D,=0.502. These values were

chosen so that the special condition ofri®*=2T,,, was - _ :

achieved. In other words the classical period of rotation of Teatial Conlpuraton C°“fg‘;a“.°“‘ af‘eg(l‘q) of
the electron was fixed to be twice the classical period of h Fleciionle pene
rotation of the nuclei, thus tuning the two motions into reso- FIG. 15. Classical configurations.

nance.

It is known that in the recurrence spectrum of atomiCeyer, if the electron is allowed to traverse an additional quar-
hydrogen, peaks are observed at times corresponding 1o ifer of a period, it will find itself in its original configuration
teger multiples of the Kepler periods. Such peaks are alsgnce again, and this is indeed manifested in the figure by
seen in Fig. 14. The positions marked with the downwardrther partial recurrences at the midpoints of the downward
pointing arrows correspond to integer multiples of the claspointing arrows. If the autocorrelation function is considered
sical electronic period and thus even integer multiples of thg,g 4 probe of the state of a system, then the situation can be
rotational period. Partial recurrences are repeated COnSiga|ated to a classical system such as a weakly coupled
tently at these points. However, if the points at about a quarpendulum-oscillator pair inside a completely dark room. The
ter of the electronic period away from the downward point-probe in this case will be a light switch that we can turn on
ing arrows are investigatédjt is seen that recurrences gt times we choose to observe the state of the system, but we
completely vanish and the survival probability almost dropscannot keep the light on continuously. Now suppose that the
to zero. This behavior can be explained by considering Clasyeriod of small oscillations of the pendulum is twice that of
sical configurations of the electron-diatom system. At integethe oscillator. Then if we turn on the light switch at times
multiples of the electronic periods the two motions are INcorresponding to integer multiples of the period of the pen-
phase. The electron starts out with the nuclei at a certaigyjum, we will not be able to tell if the system has moved at
orientation, completes a period, and comes back to find thgj| as both the oscillator and the pendulum will be back at
nuclei in the same orientation. It is as if the nuclei have notpeir original positions. Only if we come in at the correct
moved at all[Fig. 15a)]. However, at the points when the {imes, ie., the times at which the two motions are out of
survival probability is approaching zero, the classical mo-phase, will we be able to observe motion. This is known as
tions are out of phase. In other words, at these points thgye stroboscopicffect. Our autocorrelation function displays
electron completes about a quarter of its period whereas thg girect manifestation of the stroboscopic effect in the realm

nuclei are able to go through half a perifilg. 15b)]. The  of quantum mechanics which was first suggestedSiy
electron is affected by the opposite of the orientation from
which it started, leading to destructive interference in the
corresponding wave mechanics that describe the two mo- V. CONCLUSION
tions. Thus the survival probability approaches zero. How- '
We have given a semiclassical treatment of Rydberg dy-
namics for a well localized initial wave packet in a diatomic

"These are marked with upward pointing arrows in the figure.  system. It has been shown that our sum over classical orbits
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forr_nula allows us to decouple_the w_brqtlon-ele.ctronlcl inter- pw(2r2—3U§q)cos{ $)Ueq  COS )
action, based upon an averaging principle derived primarily Fy=— + ,
from a classical model. Our results agree well with the pre- r
dictions of a perturbation theory treatment of the same prob-

lem. Inclusion of the rotations took place in two steps. In the B p7-r(2r2—3U§q)sin( ¢>)Ueq+ sin( ¢)
2
r

4 2

r

first step, we worked in the limit of the nuclei moving much Fy= 7
faster than the Rydberg electron. This has led to the intro- r
duction of an approximation of the free rotation of the nuclei

by a ring of charge placed near the origin in order to analyzéhe total central force becomes
the dynamics of the electron. The approximation correctly

predicted how the energies for the electron will be shifted, r2_3y?2
based upon the relative orientations of the two motions in the F=— ——2%, (A5)
sense of coplanar versus perpendicular rotations. In the sec- ré

ond step, we worked in the limit of resonance in which the

average period for rotation matched an integer multiple ofwhich leads to the equation

the average electronic period. Consequently, we recovered
partial recurrences in the survival probability. These recur- 4m2k2  r2—3U>2
rences are the signature of the stroboscopic effect that arises = ca
when two separate parts of a system move in resonance. This t? r
illustrates how the classical concept of resonance maps into

the dynamics of a fundamentally quantum mechanical moThe solution we are looking for corresponds to a root of
lecular system.

(A4)

- (A6)

5_ 2 2 _
ar’—r<+3Ug,=0,
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The equation for the approximating line to the cume’
APPENDIX A —r2+3U%, passing from the poin(1/a)*3,3U3%,) is given

For the case of coplanar rotations we solve the equationlgy
of motion for the electron with reference to Fig. 9. The total

> 1/3 2/3
force experienced by the electron located @ given by y=3(5) r+3 qu_(;) } (A8)
. [pO)r—Rdl 1. o _ _
F= ¢ ———————+ —r. (A1) which intersects the axis at the point
(r-R)® r2
213_ 112
Explicitly, r :(1/a) Ueq (A9)
k (1/a)l/3
. 27 [UeqCO% 6)—1 cog )]d X
F=pUcq fo [UZ 417201 cos 0— 4 For the case of perpendicular rotations we refer to Fig. 10.
eq eq

The expression in EA1) becomes

+fzw [UeqSin(6)—r sin(¢)1dgy . 1. X
' R 2m r cog ¢)d
0 [UZ +r2—2Ucqf cog - )13 r? F:PUeq[f T 44) -ax ——
A2) 0 (Ugqtr“=2U¢qr sing sing )
27 [UggSIN(@)—r si d 6y
Taylor expansion to second orderliy,/r gives +j [2 eaSinC9) n$)1d6y
0 (UZytr2—2Ucq singsing)®?
1 fZW U.qcosod gy . 1.
2 2_ _ V1302 —T.
[Ueqtr™—2Ueq cOS 60— )] 0 (UZgtr2—2Uqq singsing)3?|  r?
1+3 cog 60— p)Ug /r
. $r3 P)Ued , (A3) (A10)
The third of these integrals vanishes. Taylor expansion in
which leads to Ueq/r to second order gives
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1
(UZ+12=2Uqqr sindsing)3?

1+3sindsingpUqq/r
r3 '
which then leads to
21p CO U co
Fo=— mp 52(¢) eq 5(2¢),
r r
27TpSin(¢)Ueq 3mp Uegq 3 .
Fy=- 2 t—\7 sin(¢)
Si
N n(d))_

r2

APPENDIX B

Planar solutions of the equations of motion for the rigid

rotor are given by
BU)= -t g
2ma? v

0(t')=9i .

PHYSICAL REVIEW A 65 053415

with
Pt
in| —— 0
ot o[l
(A11) “lo 1)0 °PT me |’
0 -
t
0 0 1 0
=lo o/ Plo 1)
Defining further the matrices
o 0 K2
o= 0 ol =lo °,
2 0
>=lo 2+—2—zit '
(A12) 2a’mo
1 0
T= it ,
0 1+
2a’mo,

and the vectors

0
Py

SERNT

we can carry on the integration given in H45) to get

To calculate the stability properties of these trajectories we

consider small oscillations abo#g. We let
O(t')=6,+e(t"),

where e(t’) is small. Substitution into Eq53) and
expansion to first order il gives

P5

4m?a* “

e=—
The solutions subject to the initial conditions
0(0) = 0i y

6(0)=pl,,

are given in Eq(55). Considering small oscillations

CZZ a;,
]

a;=|de(S/2)|"2
Taylor -
xex;{iRj—i 5 Hj~0(Po— PTS *a(po—py)

+0(Po—P1)S *o(Po—P1) |-

Here the final expression is evaluated over a planar rotation
on thex-y plane for which we have

471'2j 2
t 1

_2mjma’

Py= R;=ma’

t ' !

abo#t  and the number of conjugate points is given by

reduces the blocks of the monodromy matrix to diagonal

form. The monodromy matrix in this limit is given
g oy
aq,  ap; (A B)
Ipr P ~\c o)
g ap;

by =],

corresponding t¢ crossings through thé axis of the oscil-
lating sine term over it$ periods®

8See Refs[4] and[5] for further information on multidimensional
Gaussian integrations.

053415-15



S. N. ALTUNATA, J. CAO, AND R. W. FIELD PHYSICAL REVIEW A65 053415

[1] M. Mallalieu and C. R. Stroud, Phys. Rev.4®, 2329(1994). [6] M. C. Gutzwiller,Chaos in Classical and Quantum Mechanics
[2] W. Kolos and L. Wolniewicz, Rev. Mod. Phy35, 473(1963. (Springer-Verlag, New York, 1990

[3] O. Atabek and C. H. Jungen, J. Chem. PI86.5584(1977). [7] M. Naunberg, Phys. Rev. A0, 1133(1989.

[4] V. G. Stavros, J. A. Ramswell, R. A. L. Smith, J. R. R. Verlet, [8] Z. D. Gaeta and C. R. Stroud, Phys. Rev2 6308(1990.

J. Lei, and H. H. Fielding, Phys. Rev. Le@3, 2552(1999. [9] P. Labastie, M. C. Bordas, B. Tribollet, and M. Broyer, Phys.
[5] C. GoldsteinClassical Mechanic$Addison-Wesley, Reading, Rev. Lett.52, 1681(1984).
MA, 1980).

053415-16



