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Linear theory for optimal control of molecular wave packets

Jianshu Cao and Kent R. Wilson
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0339

~Received 14 August 1996!

A linear theory for optimizing optical fields to achieve a molecular configuration at a chosen time is
formulated with an emphasis on the symmetric transformation between time domain and space domain repre-
sentations. Based on two different measures of control, the yield and achievement functions, two parallel but
distinct optimization schemes are derived in a unified algebraic format. Connections are then established to a
more conventional optimization procedure as well as the optimization procedure for squeezing wave packets
used by Averbukh and Shapiro@Phys. Rev. A47, 5086 ~1993!#. A numerical example of the production of
localized wave packets~i.e., squeezed states! demonstrates the effectiveness and feasibility of the proposed
scheme.@S1050-2947~97!02506-7#

PACS number~s!: 42.50.Dv, 33.80.2b
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I. INTRODUCTION

Numerous proposals for the quantum control of ma
have been suggested@1–7#, among which optimal contro
theory has been employed to predict the time-varying li
field that best drives the quantum dynamics of a system
ward a desired outcome@8–14#. An approach is developed i
this paper to unify various optimization procedures for qu
tum control of wave packets in the linear-response regi
One particularly interesting application of the theory is t
prediction of the light field capable of producing spatia
squeezed states@15–19#.

The paper is organized as follows. In Sec. II A, a sy
metric algebraic structure linking the time and coordin
domain representations is explored based on the linear na
of optimal control. In Sec. II B, two different measures
control are compared and examined, which further lead
two parallel versions of optimization. In Sec. II C, the op
mization scheme for squeezing wave packets used by A
bukh and Shapiro@19# is reformulated using the simplifie
notation and unified format developed here. A numerical
ample is given in Sec. III and a discussion in Sec. IV co
cludes the paper.

II. THEORY

A. Algebra and notation

We consider a molecular system described by the t
level Hamiltonian

H5Hgug&^gu1~He1\veg!ue&^eu, ~2.1!

whereHe andHg are the ground- and excited-state Hamilt
nians, respectively. The molecule, initially in its ground sta
ug& at t50, is excited to stateue& at timeT by a laser pulse
whose electric field is

E0~ t !5E~ t !e2vegt1E* ~ t !eivegt. ~2.2!

Under the rotating-wave approximation, the excited-st
wave function is given in the linear-response regime
@8,14#
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fe~T,x!5E
0

T i

\
^xue2 iHe~T2t !/\me2 iHgt/\ug&E~ t !dt,

~2.3!

where m is the transition dipole moment. Formally, th
equation can be cast in a compact expression as

f~x!5E
0

T

U~x,t !E~ t !dt[U~x,t !•E~ t !, ~2.4!

where the subscripte and the observation timeT in
fe(T,x) can be omitted without causing confusion. Here t
dot denotes a time integral from 0 toT andU(x,t) is a linear
transformation from the laser electric field in the time d
main to the excited-state wave function in the coordin
domain, explicitly defined as

U~x,t !5
i

\
^xue2 iHe~T2t !/\me2 iHgt/\ug&. ~2.5!

Clearly, this transformation establishes a one-to-one co
spondence between the excited-state wave functionf(x) and
the applied electric fieldE(t).

Within this format, the expectation value of an opera
Â evaluated for the excited-state wave functionf is written
as

Ā5^fuÂuf&5E E E* ~ t !^U~x,t !uÂ~x,x8!

3uU~x8,t8!&E~ t8!dt dt8[E* •Ã•E, ~2.6!

whereÃ is the time-domain counterpart ofÂ, i.e.,

Ã5^UuÂuU&. ~2.7!

Here Ã denotes the expectation value of an operator t
takes the form ofÃ in the time-domain representation an
Â in the coordinate-domain representation. As an exam
whenÂ is the identity operatorÎ defined on the excited-stat
manifold, we have
4477 © 1997 The American Physical Society
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N5^fu Î uf&5E* •^UuU&•E5E* •Ñ•E, ~2.8!

whereN denotes the excited-state population andÑ is its
time-domain operator.

Next, the inverse transformation ofU is introduced as

E~ t !5@U~x,t !#21uf~x!&5S~ t,x!uf~x!&, ~2.9!

whereS satisfies*0
TU(x8,t)S(t,x)dt5d(x82x). Then, the

total incident energy is given by

Q5E
0

T

uEu2dt5E* •E5^fuS1
•Suf&5^fuQ̂uf&,

~2.10!

which defines the spatial operator as

Q̂5S1
•S5~U•U1!21. ~2.11!

With the help ofS, the reverse transformation of Eq.~2.7!
can be established as

Â5S1
•Ã•S. ~2.12!

As can be seen from the above relations, a perfect ti
coordinate symmetry is preserved and is embodied in
following pairs of functions: E(t) and f(x), S(t,x) and
U(x,t), andÑ(t,t8) andQ̂(x,x8).

Because of the importance ofQ̂ in our theory, an explicit
expression in the Hilbert space of eigenstates is prese
here in addition to the formal definition in Eq.~2.11!. As-
suming that the initial wave function is a ground eigenst
with eigenenergyeg , the excited wave function is expande
in terms of eigenstatesun& on the excited electronic man
fold, giving

f~x!5(
n

^xun&^nug&E
0

T i

\
e2 i en~T2t !/\me2 i egt/\E~ t !dt,

~2.13!

with en being the eigenenergy of stateun&. Then, the inverse
of Q̂ becomes

Q̂215U•U15(
n,m

un&^nug&

3^gum&^mu H i

\~en2em!
@e2 i ~en2em!T/\21#J , ~2.14!

in which terms withn5m are understood as the limit o
en→em .

B. Optimization procedure

To define the objective of control, we choose a tar
operatorÂ, which, in principle, can be any desired outcom
such as a wave packet in phase space or a projection ope
onto a particular product channel@9,13#. As shown in Eq.
~2.6!, the corresponding target operator in the time domai
simply Ã, better known as the material response funct
@13#. To maximize the expectation value of the target ope
tor, we can either increase the overall population on the
e-
e
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e

t
,
tor
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cited state or improve the efficiency of the excited-state w
function in matching the target. This physical considerat
leads us to construct a cost functional@11–13#

J~T!5Ā2hN2lQ, ~2.15!

whereh andl represent a weight, or penalty, on the excite
state population and the incident radiation energy, resp
tively. The variablesh andl can also be treated as Lagran
multipliers, which are adjusted to yield the desired co
straints on the excited-state populationN or the incident ra-
diation energyQ, respectively. However, as far as the fir
stage of optimization is concerned, the same results are
tained whetherh andl are treated as weights or as Lagran
multipliers. We therefore will not distinguish between the
two viewpoints hereafter unless we specifically so indica

Corresponding to the two mechanisms to enhance
control, two different measures of control are introduced
yield function defined with respect to the incident energy

y5
E* •Ã•E
E* •E

5
Ā

Q
~2.16!

and an achievement function defined with respect to
excited-state population,

a5
^fuÂuf&

^fuf&
5
Ā

N
. ~2.17!

@We point out here that the achievement used in Ref.@13# is
the square root of the one defined by Eq.~2.17!.# Conse-
quently, we have the choice of maximizing the yield functi
or the achievement function. These two equivalent, thou
different, optimization scenarios are described in the follo
ing.

1. First optimization scheme

Given a constraint on or equivalently a weight assigned
the incident radiation energyQ, the achievement function is
maximized with respect to the excited-state wave functi
To this end, the cost functional is expressed in terms of
wave function, giving

J@f~ t !#5^fu@Â2lQ̂2h#uf&. ~2.18!

Then, taking the functional derivativedJ@f(t)#/df* (t)
leads to an eigenequation

~Â2lQ̂!uf&5huf&. ~2.19!

Consequently, the maximum eigenvalueh of this equation
gives the yield

y5l1
h

Q
~2.20!

and the achievement

a5h1lQ, ~2.21!

where the total radiation energy isQ5^fuQ̂uf& and the
excited-state population is normalized asN5^fuf&51.
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Also, the corresponding eigenvector is the normalized o
mal wave function, which can be converted to the optim
field via the transformation~2.9!. As stated earlier, for a
constraint on the incident radiation energyQ, the weightl in
Eq. ~2.18! can be understood as a Lagrange multiplier tha
adjusted to meet the constraint onQ while the achievemen
is maximized.

2. Second optimization scheme

Given a constraint on or equivalently a weight assigned
the excited-state populationN, the yield function is maxi-
mized with respect to the electric field. Similarly, the co
functional is expressed in terms of the optical field,

J@E~ t !#5E* •@Ã2l2hÑ#•E, ~2.22!

the extremum of which is given by

~Ã2hÑ!•E5l•E. ~2.23!

Again, the maximum eigenvaluel of the above eigenequa
tion results in the yield

y5l1hN ~2.24!

and the achievement

a5h1
l

N
, ~2.25!

where the excited-state population isN5E•Ñ•E and the
incident radiation energy is normalized asQ5E* •E51.

It is clear from the above that there exists an almost ex
parallel between the two optimization schemes. In fact
one-to-one correspondence can be established betwee
wave-function solution to Eq.~2.19! for a givenl and the
electric-field solution to Eq.~2.23! for a correspondingh, or
vice versa.

Both schemes of optimization have been proposed in
literature from seemingly different perspectives@20#. If the
excited-state populationh assumes no weight, i.e.,h50, the
second scheme becomes exactly the weak-field version o
optimization formalism developed earlier@8,13,14# and the
eigenequation~2.23! now reduces to

Ã•E5lE, ~2.26!

which implies that the yield is maximized with respect to t
field regardless of the excited-state population. Another
evant earlier procedure will be explained in the next subs
tion.

C. Optimization procedure by Averbukh and Shapiro

To design laser fields for the generation of spatia
squeezed molecular wave packets@15–18#, Averbukh and
Shapiro @19# put forth a different optimization procedur
based on optimal control theory. We will show here that th
formulation is essentially the first optimization scheme p
sented in the preceding subsection. The presentation b
follows closely the original derivation in Ref.@19#, but with
a simpler and more transparent treatment. Such a simpli
i-
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tion is made possible because of the compact notation
the optimization concepts developed in the preceding
subsections.

The object of optimal squeezing, as stated in Ref.@19#, is
to produce as high a localization in coordinate space as
sible at the end of the optimization intervalT, while limiting
the optical pulse bandwidth. Therefore, the objective fu
tional is introduced as

J0~T!5x22 x̄21lE
0

T

uE~ t !u2dt, ~2.27!

which is essentially a generalized form of the cost functio
with the spatial spreading of the wave packet as the ta
operator. Due to the nonlinear termx̄2, we first minimize
J0 with x̄ fixed. To this end, a cost functional similar to E
~2.18! is constructed as

J@f~ t !#5x22hN2h1x̄1lQ, ~2.28!

where an additional Lagrange multiplierh1 is included to lift
the constraint onx̄. Then, taking a functional derivative re
sults in

~ x̂22h1x̂1lQ̂!uf&5huf&, ~2.29!

an eigenequation that gives the optimal wave function as
largest eigenvalue solution. As usual, the Lagrange mu
plier h1 is varied to yield the desired centerx̄ of wave
packet. Finally, on substituting the eigensolution Eq.~2.29!
back into Eq.~2.26!, we immediately obtain

J0~T!5h1h1x̄2x2, ~2.30!

which measures the success in squeezing the molecular w
packet.

III. AN ILLUSTRATIVE EXAMPLE

To illustrate the optimization procedure described in t
preceding section, we will study the electronic excitation o
molecular system modeled as a simple displaced harm
oscillator. More specifically, the ground- and excited-st
Hamiltonians defined in the two-level-system Hamiltoni
~2.1! are given, respectively, by

Hg5
p2

2m
1
1

2
mv2~x1d!2 ~3.1!

and

He5
p2

2m
1
1

2
mv2x2. ~3.2!

The advantage of using such a simple system is the availa
ity of the quantum propagator expressed in the closed fo

^xue2 iHetufg&5expH ip~ t !@x2x~ t !#2
@x2x~ t !#2

2a0
2

2 iu~ t !/\J , ~3.3!
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where p(t)5mvd sin(vt), x(t)52d cos(vt), a(t)
5(mv2d2/4)sin(2vt)1(e1v\/2)t, and a0

25\/mv. Here
fg is the ground-state wave function given asfg

5exp@2(x1d)2/2a0
2#, with d55a0 . For the sake of simplic-

ity, unit values are assumed for mass, frequency, and
Planck constant\ in the calculation.

For a realistic system, it is unlikely that an analytical e
pression for the quantum propagator can be found as is fo
for the case of the simple harmonic oscillator. Th
quantum-dynamics methods must be employed to propa
the system numerically in order to calculate the transform
tion matrix U(x,t). Alternatively, one can solve for th
eigenstates of the system and make use of the relation~2.13!
to obtain the information. In fact, for the stability of th
inversion in Eq.~2.11!, the eigenstate representation~2.14! is
preferred.

To demonstrate the ability to predict the light pul
needed to produce a localized state, a spatially locali
Gaussian function is chosen as the target wave function

f~T!5
1

A2pa2
e2~x2x0!2/2a2, ~3.4!

wherea denotes the width of the wave packet. The mom
tum distribution is not specified since an extremely localiz
wave packet in coordinate space will be correlated to
widely spread wave packet in momentum space accordin
the uncertainty principle. The target time is chosen asT55
and the parameters for the target wave function in Eq.~3.4!
arex055 anda250.01.

As stated in Sec. II C, though the scheme suggested
Averbukh and Shapiro allows for the calculation of elect
fields needed for squeezing wave packets, the numerical
cedure is complicated due to the nonlinearity in the obj
targets. Alternatively, with the help of a localized targ
wave function, the optimization formalism in Sec. II B ca
effectively achieve the same goal as minimizing the width
wave packet, but with less numerical effort. In addition
squeezed states, various shapes of wave packets can b
duced in this fashion, such as a wave packet with two loc
ized peaks, which is useful in demonstrating the so-ca
Schrödinger cat states@6,21#. Therefore, the first optimiza
tion scheme as described by Eqs.~2.17!–~2.21! will be
adopted here for the calculation.

To implement the optimization procedure, the releva
functions and operators are discretized in both the time
coordinate domains, resulting in a vector and matrix no
tion. For example, the transformationU(x,t) is expressed as
a matrix and is inverted to obtainS; then Ñ is obtained by
matrix multiplication according to Eq.~2.11!. To proceed,
the matrix equation~2.19! is diagonalized for a givenl,
hence the largest eigenvalueh gives the corresponding yiel
and achievement according to Eqs.~2.20! and~2.21! and the
corresponding eigenvectorf(t) gives the optimal wave
function, which in turn is solved for the optimal field from
Eq. ~2.9!.

In Fig. 1, the yield and achievement are plotted as fu
tions of the weightl. As the weight of the incident radiatio
energy h increases, the yieldy increases accordingly
he
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whereas the achievementa decreases. Notice the linear d
pendence of the yield onl at large values ofl, a result of
Eq. ~2.20! when the first term becomes dominant. This o
servation indicates that more electric energy is used to ex
the ground-state wave function in order to enhance the
pectation value of the target without further squeezing
wave packet. On the other extreme, with a small value ol,
a localized wave packet is produced by exciting the grou
state wave function from a non-Franck-Condon regio
which is implied by the increase in achievement and
decrease in yield. For a better understanding of wave-pa
focusing and rephasing, some relevant discussions have
presented based on semiclassical arguments@14,22# and
physical considerations@19,23–25#.

To further understand the mechanism of focusing wa
packets, the optimal field and wave function computed
l50.001 are shown in Figs. 2~a! and 2~b!, respectively.
Such a highly localized state is produced by the interfere
of two wave packets, one moving inward and the other m
ing outward, induced by the two distinguishable subpul
shown in Fig. 2~a!. It becomes even clearer in Fig. 2~b!,
where a delocalized wave function is shown as a resul
reversing the phase relation between the two optical s
pulses. This phenomena is clearly the manifestation of
same physical principle underlying the well-known wav
packet interferometry experiments@26#.

FIG. 1. ~a! Yield y and ~b! achievementa as functions of the
weight l. The optimization procedure follows the first scheme d
scribed in Sec. II B, applied to the displaced harmonic oscilla
described in Sec. III@cf. Eqs.~3.1!–~3.4!#.
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For comparison, the results computed from the more c
ventional optimization scheme@13,14# described by Eq.
~2.26! is shown in Fig. 3, where Fig. 3~a! is the optimal field
and Fig. 3~b! is the wave function at the target time. A
indicated in Eq.~2.26!, there is no adjustable weight as
Eqs. ~2.19! and ~2.22!, so there exists a unique solution
every objective. Also, it is found that the width of the targ
wave functiona no longer makes any difference oncea
,0.1, hence there is clearly a limit to squeezing the wa
packet through this approach. In this case, the most nar
wave packet predicted by Eq.~2.26! is not as narrow as tha
predicted according to Eq.~2.19!.

FIG. 2. Amplitude of the~a! optimal field and~b! wave function
for l50.001. The optimization procedure is the same as that
scribed for Fig. 1. In~b! the curve denoted byin phaseis the result
of the optimal field given in~a!, whereas the curve denoted byout
of phaseis the result of reversing the phase relation between
two subpulses of the optimal field.
ll,
n-

t

e
w

IV. CONCLUSION

The formalism presented in this paper, by virtue of a co
pact algebraic format, allows existing theories to be clarifi
and simplified and adds further insights and additional th
ries to our understanding of the subject. Equivalent ma
ematically, the two proposed optimization procedures
both flexible enough to be applied to a large number of pr
lems. It is therefore a matter of desired objective and pra
cal convenience as to which one is preferred. For exam
when mixed initial states and dissipation are present@13,27#,
the second scheme is preferable because the time do
operatorsÃ and Ñ are easily recast in terms of the dens
matrix. Such extensions and other more practical appl
tions are left for future studies.

e-

e

FIG. 3. Amplitude of the~a! optimal field and~b! wave func-
tion. The conventional optimization procedure given by Eq.~2.24!
is adopted for this calculation. Note that the optimal wave packe
not as narrow as that in Fig. 2.
a,
,
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