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Linear theory for optimal control of molecular wave packets
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A linear theory for optimizing optical fields to achieve a molecular configuration at a chosen time is
formulated with an emphasis on the symmetric transformation between time domain and space domain repre-
sentations. Based on two different measures of control, the yield and achievement functions, two parallel but
distinct optimization schemes are derived in a unified algebraic format. Connections are then established to a
more conventional optimization procedure as well as the optimization procedure for squeezing wave packets
used by Averbukh and Shapif@hys. Rev. A47, 5086 (1993]. A numerical example of the production of
localized wave packetf.e., squeezed stajedemonstrates the effectiveness and feasibility of the proposed
scheme[S1050-294{@7)02506-1

PACS numbd(s): 42.50.Dv, 33.80-b

I. INTRODUCTION T
0

i A .
(T X)= f 7 (xleT T/ e MM g) E(t)t,
Numerous proposals for the quantum control of matter 2.3
have been suggestdd—7], among which optimal control ’

theory has been employed to predict the time-varying lightyhere 4. is the transition dipole moment. Formally, this

field that best drives the quantum dynamics of a system tOaquation can be cast in a compact expression as
ward a desired outcom&-14]. An approach is developed in

this paper to unify various optimization procedures for quan- T
tum control of wave packets in the linear-response regime. d’(X):f U(x,H)E(H)dt=U(x,t)-E(t), (2.9
One particularly interesting application of the theory is the 0
prediction of the light field capable of producing spatially where the subscripe and the observation tim& in

squTehize(; Sé?tisgr_la%‘. ed as follows. In Sec. I A a s m_d)e(T,x) can be omitted without causing confusion. Here the
paper 1 ganiz WS. : ' YM- 4ot denotes a time integral from 0 ToandU(x,t) is a linear

metric algebraic structure linking the time and Coordln""tetransformation from the laser electric field in the time do-

g?rgat'i?ngpéisn?rrglat:ﬁngéieﬁpéorfvsobzisf?gr::ttrr:]eeggi?é:?:main to the excited-state wave function in the coordinate
P : ' ’ gomain, explicitly defined as

control are compared and examined, which further leads t
two parallel versions of optimization. In Sec. Il C, the opti- i _ _
mization scheme for squeezing wave packets used by Aver- Uxt= 5 (x|e HeT-0h o= Halltlgy  (2.5)
bukh and Shapir¢19] is reformulated using the simplified

notation and unified format developed here. A numerical eX_Clearl this transformation establishes a one-to-one corre
ample is given in Sec. lll and a discussion in Sec. IV con- Y,

cludes the paper spondence between the excited-state wave funetio) and
' the applied electric fieldE(t).
Within this format, the expectation value of an operator

Il. THEORY A evaluated for the excited-state wave functigns written
A. Algebra and notation as
We consider a molecular system described by the two- o R R
level Hamiltonian A=(¢|A|¢)=J J E* (1)(U(X,)|A(X,X")

whereH, andH are the ground- and excited-state Hamilto- hereA is the time-d . i B i

nians, respectively. The molecule, initially in its ground stateVNE€reA IS the ime-domain counterpart &, 1.€.,

|g) att=0, is excited to statée) at timeT by a laser pulse ~ A

whose electric field is A=(U|AJU). 2.7

Eo(t) =E(t)e™ “ed+E* ()€ “ed. (2.2) Here A denotes the expectation value of an operator that
takes the form ofA in the time-domain representation and
Under the rotating-wave approximation, the excited-statét in the coordinate-domain representation. As an example,

wave function is given in the linear-response regime bywhenA is the identity operator defined on the excited-state
[8,14] manifold, we have
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N=(¢[l|¢)=E* -(U|U)-E=E*-N-E, (2.9

where N denotes the excited-state population ands its
time-domain operator.
Next, the inverse transformation of is introduced as

E()=[UX,D]o(x)=S(t,x)[S(x)),

where S satisfiesfgu(x’,t)S(t,x)dt= 8(x'—x). Then, the
total incident energy is given by

(2.9

T ~
Q- [ 1Elat-E*-E~(9ls-SI)~(41Ql4).
(2.10

which defines the spatial operator as

Q=S"-S=(U-U*)"1 (2.1

With the help ofS, the reverse transformation of E@.7)
can be established as

A=S".A.S. (2.12

As can be seen from the above relations, a perfect tim
coordinate symmetry is preserved and is embodied in th

following pairs of functions: E(t) and ¢(x), S(t,x) and
U(x,t), andN(t,t") andQ(x,x").
Because of the importance & in our theory, an explicit

e_
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cited state or improve the efficiency of the excited-state wave
function in matching the target. This physical consideration
leads us to construct a cost functiohal—13
J(T)=A—yN—-\Q, (2.15
wheren and\ represent a weight, or penalty, on the excited-
state population and the incident radiation energy, respec-
tively. The variablesy and\ can also be treated as Lagrange
multipliers, which are adjusted to yield the desired con-
straints on the excited-state populatidnor the incident ra-
diation energyQ, respectively. However, as far as the first
stage of optimization is concerned, the same results are ob-
tained whethem and\ are treated as weights or as Lagrange
multipliers. We therefore will not distinguish between these
two viewpoints hereafter unless we specifically so indicate.
Corresponding to the two mechanisms to enhance the
control, two different measures of control are introduced: a
yield function defined with respect to the incident energy,

_E*AE A

Y=FE "Q 219

and an achievement function defined with respect to the
excited-state population,

e R
(¢lAlp) A

expression in the Hilbert space of eigenstates is presentggye point out here that the achievement used in Ri] is
here in addition to the formal definition in E@ll) As- the square root of the one defined by Eal?)] Conse-
suming that the initial wave function is a ground eigenstateyuently, we have the choice of maximizing the yield function
with eigenenergy, the excited wave function is expanded or the achievement function. These two equivalent, though

in terms of eigenstateg) on the excited electronic mani- different, optimization scenarios are described in the follow-
fold, giving ing.

Ti , . Lo
¢(X)=E (X|n)(n|g)f % e—|En(T—t)/ﬁMe—|Egt/hE(t)dt’ 1. First optimization scheme
n 0

(2.13

with €, being the eigenenergy of stdtg). Then, the inverse
of Q becomes

Given a constraint on or equivalently a weight assigned to
the incident radiation energ®, the achievement function is
maximized with respect to the excited-state wave function.
To this end, the cost functional is expressed in terms of the
wave function, giving

IBO]=(SI[A-\Q— 7]|}). (2.18

Then, taking the functional derivativéJ[ ¢(t)]/S5é* ()
leads to an eigenequation

(A=\Q)|$)= 7| }).

Consequently, the maximum eigenvalygeof this equation
gives the yield

Q '=U-U*=3 [n)(nlg)

x{(g|my(m| m[e—i(én—sm)ﬂh_l] (214

(2.19
in which terms withn=m are understood as the limit of

€n— €m-

B. Optimization procedure

To dejine the objective of control, we choose a target y=)\+g (2.20
operatorA, which, in principle, can be any desired outcome,
such as a wave packet in phase space or a projection operaigid the achievement
onto a particular product channg,13]. As shown in Eq.
(2.6), the corresponding target operator in the time domain is a=7+\Q, (2.21)

simply A, better known as the material response function .
[13]. To maximize the expectation value of the target operawhere the total radiation energy ®=(#|Q|¢) and the
tor, we can either increase the overall population on the exexcited-state population is normalized &=(¢|¢p)=1.
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Also, the corresponding eigenvector is the normalized opti-

mal wave function, which can be converted to the optimaltion is made possible because of the compact notation and
field via the transformation(2.9). As stated earlier, for a the optimization concepts developed in the preceding two
constraint on the incident radiation ener@y the weight in subsections.

Eq. (2.18 can be understood as a Lagrange multiplier that is The object of optimal squeezing, as stated in RE9], is

adjusted to meet the constraint @while the achievement to produce as high a localization in coordinate space as pos-
is maximized. sible at the end of the optimization interve| while limiting

the optical pulse bandwidth. Therefore, the objective func-
2. Second optimization scheme tional is introduced as

Given a constraint on or equivalently a weight assigned to _ T
the excited-state populatioN, the yield function is maxi- JO(T)=x2—_Z+)\f |E(t)]2dt, (2.27
mized with respect to the electric field. Similarly, the cost 0

functional is expressed in terms of the optical field, which is essentially a generalized form of the cost functional

with the spatial spreading of the wave packet as the target
operator. Due to the nonlinear terrf, we first minimize

Jo with x fixed. To this end, a cost functional similar to Eq.
(2.18 is constructed as

I p(1)]=x2— yN— 7 x+\Q, (2.28

where an additional Lagrange multipligf is included to lift
the constraint orx. Then, taking a functional derivative re-

JE(t)]=E* -[A—\— yN]-E, (2.22
the extremum of which is given by
(A—7N)-E=\-E. (2.23

Again, the maximum eigenvalue of the above eigenequa-
tion results in the yield

y=A+ 7N (2.24) sults in
and the achievement (= mX+AQ)[¢)=7l4), (2.29
N an eigenequation that gives the optimal wave function as the
a=n+ N’ (2.25 largest eigenvalue solution. As usual, the Lagrange multi-

plier », is varied to yield the desired center of wave

) o ~ packet. Finally, on substituting the eigensolution E329
where the excited-state population M=E-N-E and the  pack into Eq.(2.26, we immediately obtain

incident radiation energy is normalized @=E*-E=1.

It is clear from the above that there exists an almost exact Jo(T)=n+ pix— F, (2.30
parallel between the two optimization schemes. In fact, a
one-to-one correspondence can be established between thbich measures the success in squeezing the molecular wave
wave-function solution to Eq2.19 for a given\ and the packet.
electric-field solution to Eq(2.23 for a correspondingy, or

vice versa. Ill. AN ILLUSTRATIVE EXAMPLE
Both schemes of optimization have been proposed in the ) L i i
literature from seemingly different perspectiio]. If the To illustrate the optimization procedure described in the

preceding section, we will study the electronic excitation of a
Hgolecular system modeled as a simple displaced harmonic
oscillator. More specifically, the ground- and excited-state
Hamiltonians defined in the two-level-system Hamiltonian
(2.2) are given, respectively, by

excited-state population assumes no weight, i.e=0, the
second scheme becomes exactly the weak-field version of t
optimization formalism developed earlig8,13,14 and the
eigenequatiorf2.23) now reduces to

A-E=\E, (2.26 2
P 1 2 2

o o o ] Hg=5=+ 5 mo“(x+d) (3.9
which implies that the yield is maximized with respect to the 2m 2
field regardless of the excited-state population. Another relémd
evant earlier procedure will be explained in the next subsec-
tion. p2 1

He:ﬁ + E Maw2x2. (3.2)

C. Optimization procedure by Averbukh and Shapiro

To design laser fields for the generation of spatially_The advantage of using such a simple system is the availabil-
squeezed molecular wave pack§ls—18, Averbukh and ity of the quantum propagator expressed in the closed form

Shapiro[19] put forth a different optimization procedure

_ 2
based on optimal control theory. We will show here that their (x|e " Hef| bg)= exp[ ip(t[x—x(t)]— w
formulation is essentially the first optimization scheme pre- 2a

sented in the preceding subsection. The presentation below
follows closely the original derivation in Reff19], but with —ia(t)/ﬁ], (3.3
a simpler and more transparent treatment. Such a simplifica-
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where p(t)=mwd sin(wt), x(t)=-—d cost), «(t) ———
= (mw?d?/4)sin(2wt)+(e+wh/2)t, and ai=f/mw. Here S
¢y is the ground-state wave function given ag,

= exp[—(x+d)2/2a§], with d=5¢. For the sake of simplic-

ity, unit values are assumed for mass, frequency, and the
Planck constant in the calculation.

For a realistic system, it is unlikely that an analytical ex- r ]
pression for the quantum propagator can be found as is found -10f ]
for the case of the simple harmonic oscillator. Then ’ ]
guantum-dynamics methods must be employed to propagate
the system numerically in order to calculate the transforma-

o

Iog1 A}

tion matrix U(x,t). Alternatively, one can solve for the T 20 15 -10 -5 0
eigenstates of the system and make use of the rel&2idg) log, A
to obtain the information. In fact, for the stability of the
inversion in Eq(2.11), the eigenstate representati@l4) is Tr ]
preferred. 0.95 [ ]
To demonstrate the ability to predict the light pulse 0.0k ]
needed to produce a localized state, a spatially localized i
Gaussian function is chosen as the target wave function, 0.85 E
@ 0.8 a ]
0.75 b E
$(T)= e~ 020 (3.4 0.7} ]
2’7Ta’2 u
0.65 [ -
wherea denotes the width of the wave packet. The momen- O'G.zo 15 -10 -5 "o
tum distribution is not specified since an extremely localized log, A
wave packet in coordinate space will be correlated to a
widely spread wave packet in momentum space according to
the uncertainty principle. The target time is choseasb FIG. 1. (8 Yield y and (b) achievement as functions of the
and the parameters for the target wave function in Bd) weight\. The optimization procedure follows the first scheme de-
arexo=>5 anda?=0.01. scribed in Sec. Il B, applied to the displaced harmonic oscillator

As stated in Sec. Il C, though the scheme suggested b§escribed in Sec. llfcf. Egs.(3.1)—(3.4)].
Averbukh and Shapiro allows for the calculation of electric

fields needed for squeezing wave packets, the numerical prgyhereas the achievemeatdecreases. Notice the linear de-
cedure is complicated due to the nonlinearity in the ObJerendence of the yield ok at large values ok, a result of
targets. Alternatively, with the help of a localized targetgq (2 20 when the first term becomes dominant. This ob-
wave function, the optimization formalism in Sec. Il B can gqation indicates that more electric energy is used to excite

effectively achieve the same goal as minimizing the W.'dth 0fthe ground-state wave function in order to enhance the ex-
wave packet, but with less numerical effort. In addition to

. ppectation value of the target without further squeezing the
squeezed states, various shapes of wave packets can be vrva_ve packet. On the other extreme, with a small valug,of

duced in this fashion, such as a wave packet with two local- localized ket i duced b ting th d
ized peaks, which is useful in demonstrating the so-called '0¢@!1z€0 wave packet IS produced by exciting the ground-

Schralinger cat state§6,21]. Therefore, the first optimiza- Stae wave function from a non-Franck-Condon region,
tion scheme as described by Eq@.17—(2.2) will be which is |_mpI_|ed by the increase in achlgvement and the
adopted here for the calculation. decrease in yield. For a better understanding of wave-packet
To implement the optimization procedure, the relevantfocusing and rephasing, some relevant discussions have been
functions and operators are discretized in both the time anfresented based on semiclassical argumé¢h#22 and
coordinate domains, resulting in a vector and matrix notaphysical considerations9,23-29.
tion. For example, the transformati(bj'(x,tn)l is expressed as To further understand the mechanism of focusing wave
a matrix and is inverted to obtai®; thenN is obtained by Packets, the optimal field and wave function computed for
matrix multiplication according to Eq2.11). To proceed, A=0.001 are shown in Figs.(@ and 2b), respectively.
the matrix equation(2.19 is diagonalized for a given, Such a highly localized state is produced by the interference
hence the largest eigenvaluegives the corresponding yield of two wave packets, one moving inward and the other mov-
and achievement according to E¢®.20 and(2.21) and the ing outward, induced by the two distinguishable subpulses
corresponding eigenvectop(t) gives the optimal wave shown in Fig. 2a). It becomes even clearer in Fig(h,
function, which in turn is solved for the optimal field from where a delocalized wave function is shown as a result of
Eqg. (2.9. reversing the phase relation between the two optical sub-
In Fig. 1, the yield and achievement are plotted as funcpulses. This phenomena is clearly the manifestation of the
tions of the weight\.. As the weight of the incident radiation same physical principle underlying the well-known wave-
energy »z increases, the yieldy increases accordingly, packet interferometry experimerita6].
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FIG. 2. Amplitude of the@) optimal field andb) wave function FIG. 3. Amplitude of the(a) optimal field and(b) wave func-

for A=0.001. The optimization procedure is the same as that detion. The conventional optimization procedure given by E424
scribed for Fig. 1. Inb) the curve denoted bip phaseis the result  is adopted for this calculation. Note that the optimal wave packet is
of the optimal field given in@), whereas the curve denoted byt ~ not as narrow as that in Fig. 2.
of phaseis the result of reversing the phase relation between the IV. CONCLUSION
two subpulses of the optimal field.
The formalism presented in this paper, by virtue of a com-
For comparison, the results computed from the more conpact algebraic format, allows existing theories to be clarified
ventional optimization schemgl3,14 described by Eq. and simplified and adds further insights and additional theo-
(2.26 is shown in Fig. 3, where Fig.(8) is the optimal field ries to our understanding of the subject. Equivalent math-
and Fig. 3b) is the wave function at the target time. As ematically, the two proposed optimization procedures are
indicated in Eq.(2.26), there is no adjustable weight as in both flexible enough to be applied to a large number of prob-
Egs.(2.19 and (2.22), so there exists a unique solution to lems. It is therefore a matter of desired objective and practi-
every objective. Also, it is found that the width of the target cal convenience as to which one is preferred. For example,
wave functiona no longer makes any difference onee  when mixed initial states and dissipation are pre$&8127,
<0.1, hence there is clearly a limit to squeezing the wavéhe second scheme is preferable because the time domain
packet through this approach. In this case, the most narrowperatorsA andN are easily recast in terms of the density
wave packet predicted by E(R.26) is not as narrow as that matrix. Such extensions and other more practical applica-

predicted according to E¢2.19. tions are left for future studies.
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