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Gaussian factorization of hydrodynamic correlation functions and mode-coupling memory kernels
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A simple method to determine mode-coupling memory functions in generalized Langevin equations is
obtained by explicitly expressing the random force of the slow hydrodynamic modes in terms of pair interac-
tions in liquids and by Gaussian factoring the resulting multiple-point time correlation functions into products
of linear correlation functions. The approach is used to derive the mode-coupling memory kernels for the
velocity autocorrelation function, four-point bilinear density correlation function, and density correlation func-
tion of linear molecular liquids. These generalized Langevin equations and their associated memory kernels are
useful for calculating relaxation processes and spectroscopic measurements in liquids and solvents. As a central
result of our analysis, the non-Gaussian behavior of the bilinear density correlation function is quantitatively
related to the nonexponential nature of linear hydrodynamic modes. This relation aids in the understanding of
recent simulation results of non-Gaussian indicators in supercooled liquids.
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I. INTRODUCTION: GENERALIZED LANGEVIN tion between the non-Gaussian behavior of nonlinear hydro-
EQUATION, GAUSSIAN FACTORIZATION, dynamic modes and the nonexponential behavior of linear
AND MODE-COUPLING THEORY hydrodynamic modes.

The general goal of molecule hydrodynamic analysis is to

The time correlation functions of hydrodynamic modespredict time correlation over the complete time domain from
are essential for studying liquids and solvents. These hydregquilibrium distributions and other measurements. One way
dynamic modes are a set of slowly varying stochastic dyio establish such a relationship is the simple Gaussian ap-
namical variables whose relaxation can be described by theroximation, which treats density fluctuations in liquids as
generalized Langevin equatidGLE). The time-dependent Gaussian variables and decomposes a nonlinear time corre-
memory kernel describes the memory effect on the relaxatioftion function into products of linear correlation functions.
of the system. The usual hydrodynamics limit assumes th&he simple factorization scheme destroys the initial and final
Markovian approximation, where the GLE reduces to theequilibrium distributions and leads to unphysical results of
Langevin equation and the hydrodynamic mode decays exaverlapping particles. To avoid this, thermal equilibrium is
ponentially. However, deviations from the hydrodynamic be-imposed at the initial and final times. Formally, we represent
havior have been observed on the experimental time scalé)e Gaussian factorization approximation as
especially in heterogeneous systems such as low-temperature
glass-forming liquids. In th(_ase systems, Iingar hydrodynamic G(T,I",t)=(T"'|e|T)~g(T)g(T") H G(i,j,0),
modes are coupled to nonlinear modes, which slow down the icl,jel’
relaxation dramatically. These mode-coupling effects were (1)
first used to calculate transport coefficients near the critical . . L
point[1-3]. Later, the mode-coupling concept was shown toyvhereF is a set of phase space points at the.|n|t|al_t|ﬂﬁé,
be crucial in the interpretation of the hydrodynamic long-iS @ set of phase space points at the final time, and
time tail. Gaze derived mode-coupling equations to explainG(I',I'",1) is the multipoint time correlation function. As a
the « and 8 relaxation processes of the glass transifigh ~ 'esult of the decompositiog(I") andg(I'") are the equilib-
Other approaches include extended hydrodynamics and tH#!m distribution functions for the initial and final phase
field theoretical formalism of nonlinear hydrodynamic cou- SPace points, an@(i,j,t) is the linear time correlation func-
pling [5]. A recent review by Bagchi and Bhattacharyya pro-tion W|.th i in the !n|t|al configuration angl in the f|na_l con-
vides a comprehensive account of various approaches figuration. Equation(1) recovers the long-time equilibrium
mode-coupling theorys]. Although successful, the standard !Imlt but is not correctin thg sh.ort time. As an alternative, we
mode-coupling approximation has not been obtained in 4MPose the correct initial distribution by writing(I",I'",t)
systematic and straightforward fashion. A simple understand=9(I")11; ;G(i.j,t)/G(i,j,0) where the linear time correla-
ing of mode-coupling effects and their validity for describing tion function is normalized. To bridge the two limiting cases,
low-temperature dynamics is still lackifig]. In this paper, We can further improve the approximation by combining the
we explore an alternative route to obtaining ideal mode-2bove two expressions as
coupling equations via the direct Gaussian factorization of , , - .
the multiple-point correlation function in the memory kernel. G(I.I".)~g(I)g(I")[IL; ;G(.J.1) ~ 1T }Gs(i.].1)]
Within this approximation, we examine the underlying rela- +g(D)IT; ;G4(i,j,1)/G(i,},0),

where G4(t) is the short-time part of the time correlation
*Electronic address: jianshu@mit.edu function. Although there are various versions of Gaussian
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factorization, the key element of dynamics decompositionvas studied by Glozter and co-workers in glassy systems
remains the same. Equatidf) will be used in this paper using numerical simulatiof12,13. Their results show that
because we are mainly concerned with the long-time behawthe Gaussian factorization scheme fits the short-time limit
ior. when the equilibrium effects dominate. The error introduced
A rigorous formulation for calculating dynamic correla- by the Gaussian approximation increases to a maximum
tion functions is the generalized Langevin equation derivedralue before decaying to zero. The peak value of the non-
with the projection operator techniqli8,9]. Instead of de- Gaussian indicator and the corresponding time increase
composing the correlation function directly, we now apply strongly as the temperature decreases. These non-Gaussian
the approximation to the memory kernel, yielding effects have also been observed in recent experiments by
Angell, Weekset al, and Cui and Rice and are correlated
with the behavior of low-temperature liquids near the glass
transition temperaturgl4—16. These measurements supple-
2) ment traditional scattering measurements, which often reveal
highly nonexponential decay in complex systems. An impor-

where Q=1—P is orthogonal to the projectoP, and all tant result of the paper is the relation between the non-
other notation follows the definition in Eq1). Combined Gaussian behavior of the nonlinear density correlation func-
with the random phase approximation for the direct correlafion and the nonexponential decay of the linear
tion functionc(r)~— BU(r)g(r), this approach leads to the hydrodynamics mode. This relation is developed in Sec.
standard mode-coupling approximation for the memory ker!V B.

nel [10]. This approach is better justified in an elegant deri-

vation by Zaccarelli etal, which exploits the self- Il. DERIVATION OF IDEAL MODE-COUPLING THEORY
consistency of the fluctuation-dissipation relationsfig]. EQUATION FOR THE INTERMEDIATE

Because the memory kernel propagates in phase space or- SCATTERING FUNCTION

thogonally to the slpw variable, dynamic decc_)mposition of  we begin with the GLE and the standard projection op-
the memory kernel is more reasonable than direct decomp@srator formalism. The notation here follows a review article
sition. Thus, the mode-coupling approximation is believed tq,y, Berne[9]. The projection operatoP is defined asP

be more reliable than the direct factorization expression. It:<___7AT><A,AT>—1, where (A,BTY is the average

then follows that we can apply the factorization scheme tq,er the equilibrium  canonical ~ ensemble{A,B")

higher-order memory kernels as represented in the form of + . . :
continued fractions. In this sense, the GLE provides a com-_ If 8&8‘;@}?2{18)%) ') dTE‘ref (SLI\E/vhlsreV(v)”it;e&easrg(g:-
pact formalism to construct dynamic correlation with initial . TIAT)ET ! proj

moments and nonlinear memory kernels in the most ecogggcgf ;Ihe?‘ineelgeggs if[‘;y ATQEAH);\%T? tirlie:{IowH\;air;able
nomical way, whereas Gaussian factorization simply Pr%he Liouville operator, an#ll is the Hamiltonian. The random

vides a closure to the hierarchy. Higher-order memory ker'orcef(t) represents the fast decay of the system, defined as
nels and other forms of closure may lead to alternatives t (t)= exgiQLUQILA, with the projectorQ=1-P. The

tsheectisotgg d?&g ?p?pdls-(t;r?g pIGIr;guses)i(grr]eZSelggrsn'pg]si:iTﬁl fggg\;\gg emory kernel is related to the reduced correlation function
and, equivalently, the self-consistent derivation by Zaccarellﬁ (tt)hi <rfa(?)dcf>[r'r>1 <KJIX$) _b%’ tg?l efluvsitgslt)l/or&-sdelzsgggro;a éﬁlaftécr)n

et al. to obtain mode-coupling kernels for the velocity auto- luating h K lis oct th dom
correlation function, bilinear density correlation function, evaluating the memory Kernet IS 1o project the random force
to a bilinear operator and factor the resulting kernel onto the

and density fluctuations in linear molecular liquids. ) ) .
The Gaussian approximation is valid for long-time andproduct of correlation functions of linear modgk7]. The

large displacements, which according to the central Iimitdifﬁ.CUIty ‘.Nith thif‘:’ approach i.s thqt.the cho'ice .Of the bilinear
theorem can be treated as random Gaussian fluctuation ariable is ambiguous and is difficult to justify rigorously.

Away from the hydrodynamic limit, the relaxation process is _ISO’ 'the .rand'om forcg in q tt:‘e hfast lspacef,(ft) h
not Markovian and the fluctuation is not Gaussian. The dy-~ ©XPIQLUQILA, is approximated by the evolution of the
andom force in the full space(t)=exgiLt}QiLA. In a

namic decomposition scheme has to be modified to incorpor- , X
rate nonhydrodynamic effects observed on the experimentd}'°re rigorous approach developed by Oppenheim and co-

time scale. This indeed is the case for low-temperature syVorkers[18-20, all the possible combinations of the slow
tems with dynamic clustering effects. Recently, the vaIiditymOdeS’ such aSA,AA_A,..., aremcludgd in the c;onstrucﬂon
of Gaussian factorization in low-temperature liquids was ex2f the slow space. It is shown that in evaluating the GLE a

amined and non-Gaussian effects were investigated. For e&elatively few additional nonlinear variables are involved.
ample, the difference between In a recent papdrl0], we employed a simple approach to

obtain the mode-coupling memory kernel fE(E,t). The
(p(F1,1)p(F1,0)p(F2,t)p(F2,0)) intermediate scattering function is defined d5(t)
=(p(k,t)p(—K)), where p(k,t)=3N_, expik-F,(t)} is the
and collective density andll is the total number of particles in the
system[21]. Our approach is motivated by the observation
(p(F1,t)p(F1,0)){p(F2,t)p(F,,0)) that the random force on the slow mode involves the inter-

M(I, I (I [€RN Ty ~g(M)g() [T G(i.j.b,
iel,jel”
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action potential and its derivatives, which can be written asvheren=(p) is the number density. In this approach, the
Fourier integrals of the bilinear density mode. This bilinearintroduction of the extra bilinear mode projection operator is
density mode provides a natural choice for the projection anévoided, and the nonlinear coupling term comes from the
decomposition used in the mode-coupling approximationFourier expansion of the random force on the density. The
Our derivation of the ideal mode-coupling equation involvesGaussian factorization and the mean-field approximation

Gaussian factorization and the random phase approximatioi€., RPA lead to a self-consistent mode-coupling memory
(RPA). The GLE forA={p(K.t),p(K.t)} is kernel. Similar approximations have been used recently for

computing linear and nonlinear Raman line shaldés.

d { p(k) 0 1)/ k1) 0 0 In (?ur der|vatL0n, ex{jQLt}_ is apprOXImated.a_s e{fnht}
atl ok =l _.2 oll: ol 0 Kpt—1) and higher-ordek terms are ignored. These difficulties are
p(k,1) Wk p(k,t) 0 aft=7 resolved in a recent paper by Zaccarellial. [11]. In their

p(k,7) 0 paper, a self-consistent approach is introduced to derive an
x(b(k’T))dﬁL(f (t))' 3 exact formal expression for the random force. The explicit
’ 2

operator expression of the random fortg,) = exp{iQLt}, is
wherewﬁ=k2/(8km,3) andS, is the structure factor. By vir- not used, because the projection operaois difficult to
tue of the fluctuation-dissipation relation, the nonzero ele

evaluate. Instead, they derived the expression for the random
mentK,,(t) of the memory kernel matrix is given by

force by applying the GLE directly:
. . . t .
mB(p+ wip| e p+ wip) fo(t)=p(K,t) + wip(K,t)+ f Kodt—7)p(k,)dr. (8)
K22(t)= NkZ ’ (4) 0

The fluctuation-dissipation relationship is used to evaluate
where the random force‘z(t)=exp[iQLt}(b+w§p). The  the memory kernel. Gaussian factorization of the memory
second-order time derivative of the collective density in Foukernel leads to

rier space is —
Nk,
) kg, - (fa(0f5)= 2 7z [07UG+au(k—0) UgUi—g]
p==2 {5 Uep(K=Q.0p(d1) ik
) X Fr_g(t)Fg(t)
L2 2 iK-Fo(t) k*N B
2, vrder © + g (1 BV SR
where Ug is the Fourier transform of the pair interaction k2N 1
potential. The second term in the above equation is neglected + m_,8(1+'8n Ug—S )
because the first term is larger in the smiallimit. The
Gaussian factorization approximation of the relevant part of t J_
the memory kernel leads to % fOKzz(t_ 7) EFk( T)dr. ©)

. k2
<P|elQLt|P>: m2V2 Z a.9,UgUq
a.q’

The direct correlation functiog, is related to the structure
factor S, by c,=(1—S 1)/n, so that & BnU;— S, tocc,
+ BU~0. By virtue of the RPA, the additional terms cancel,

X(p(k—G)p(d)|e®p(k—G")p(d")) leading to the lowest-order mode-coupling memory kernel.
N2K2 Based on the above description, a simple procedure to
~ 212 - derive the mode-coupling memory kernels follows. The GLE
~ D ——5[q2US+q,(k—0,)UUir_z pling y
zq: szZ[qz A2k 82 UqUk al for a set of slow variable#\ defines an expression for the
X Fi_a(OF4(1) (6) random force f(t)=A—iQA—K*A. The fluctuation-

dissipation relationK(t)=(f(t)f(0)) determines a self-
where exfiQLt} is approximated by eXji.t} for the fast ran- consistent equation for the memory kernel. The first term in

dom force and the wave vectRris directed along the axis. ~ the equation{AA), is rewritten in terms of the interaction

Using the random phase approximatibh; is proportiona| to potential and the bilinear density mode, and is then decom-
the direct correlation functiomlz: _BUIZ' which allows us pOSEd into prOdUCtS of linear hydrOdynamiC correlation func-
to rewrite the above equation as the well-known modedions. Several other terms, including the self-consistent

coupling memory kernel for the intermediate scattering funcierms, are removed under the random phase approximation
tion Fy(t) [21]: or mean-field approximations of a similar nature. Although

we use this procedure in our derivation, we can obtain ex-

n 1 . 22 i actly the same mode-coupling expression from the simpler
Koat)= m—ﬁwf dqla;c5+d.(k—0a,)CqCk—g] scheme introduced in Ref10] and in Egs.(6) and (7). In
fact, the removal of the self-consistent terms of the memory
XFr_g(t)Fg4(t), (7) kernel in Eq.(9) justifies the direct evaluation of the memory
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kernel [10]. The random force can be written ds=(1  even for zero wave vector. Using the projection operator
—Q)iLA~fdKU(K)Ax(K,t), where A, is the correlation Method, the GLE for the three-basis-set elements is written

function of bilinear modes. Then Gaussian factorization@S
leads toK(t)=(f(t)f(O))wA(IZ,t)A(lZ,t), which recovers

the mode-coupling memory kernel. d pa(K,t) 0 1 0\ [ pa(K,t)
gi| Pkt [ =1 O 0 LI pa(k,t)
I1l. VELOCITY AUTOCORRELATION FUNCTION pl(lz,t) 0 3w0+ QO) 0 bl(lz,t)
The velocity autocorrelation function of one tagged par- 0 0 0
ticle in liquids has a long-time tail, which decays &s”? o o o
[22]. Mode-coupling theory successfully explains this long- 0
time tail. We apply the approach outlined earlier to derive the 3(t) Kgi(7) 0 Kagg(7)
same mode-coupling effects predicted by other methods R
[17,23,24. We first use a basis set with a single elemant pi(k,t=17)
=v4(t). Using the projection operator method, we write the X pl(IZ,t— 7) | dT, (14
random force ag(t)=A(t)+ LK (t—7)A(7)dr, where the pu(Kt—17)

kernel is given by the fluctuation-dissipation theorem,
where the random force is given by

H=ma(f(t)f*)

d. . -
:mﬁ<[A(t)+ f;K(t_T)A(T)dT A> (10) fa(h)= Grpa(k D) +(Bwg+ Q) pa(KD)

t -
ExpressingA(t) in Fourier space, * JOK?’l(t_T)pl(k'T)dT

t
. q . N (D
Alt)=2 m, VU1qP1( a.0[p(q,t) —pa(q,t)], (1) +JOK33(t m)p1(k, 7)d7. (15)
q#
the correlation function of the random force becomes wo=k*(mpB) and Qq is the Einstein frequency
=(A2U(r))/3m. Then, dp,(k,t)/dt is explicitly expanded
0,9, as
(FOF)= 2 oz Vsl lea - d00p(@0
ok * g (K1) = —ik3 3ty a0
—p2(G,OTHp2(—a)p(G") —p2(4)]}*) atPr® 12
t .
+ foK“—TNA(ﬂA*% (12 _3|k22 oy Vaal 1K= G.0p (6.0
where 9the density of the tagged particle 'psl(lz,t) +i2 —q\Z/Ulq[qajla(E—G,t)]P(ﬁ,t)
=explik-ri(t)}. With Gaussian factorization and the RPA a M

(i.e., g~ — BUy), the mode-coupling memory kernel be- . ka, o .
comes —IZ;‘ oy Y10 jo(@.0Ipa(k=d.0),
K(t)=g 2 aZctaFE(DF4(h), (13) 1o
wherej , (IZ t) is the collective current density function along
where the self-intermediate scattering function is defined athe « axis, ja(k t)= 2n I a(t)exp{ilz r®)}, jla(lz t) is the
k(t) <p1(k ) p(— k)} This result can also be obtained single current density function along the axis, j,(K,t)

by msertlng the projection operator of the bilinear mode= vla(t)exp{|k r1(t)}, and the repeated indicates the sum
pikp; into K(t). Clearly, this bilinear mode arises from the over the three Cartesian axes. By substituting &) into
expansion of1(t) in Fourier space. the expression for the random force, the memory kernel ma-
Next we study the time evolution of the longitudinal cur- trix is calculated from the fluctuation- d|SS|pat|on relation-
rent and the density of the tagged particle. Unlike the basiships, using the approximatiofik,= 0, Fg(t) = SF (1), and
set for the collective density, this basis set includes the;;=— B8U, and applying the Gaussian factonzatlon pro-
double time derivative of the tagged particle density becauseedure. The correlation function of the random force simpli-
the single longitudinal current is not a conserved quantityfies to
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2N k2q§q)2(uid MCT result with simple Gaussian factorization to establish
(fa()f5)=2>, —ZVZ—q[CEfd J(DF4(1) the validity of the Gaussian factorization scheme.
a my ' A three-element basis set of bilinear modes is constructed,
S
T g(DCax(V]- (17 As(t) p(KDp(—K.b)
In the above equation, we ignore the longitudinal current A()=|{ Az(t) | =| p(k,t)P(=K,t)+p(—K )P(K) |,
correlation functions, which decay faster than the transverse As(t) P(IZ,t)P( — IZ,t)
current correlation functions. Equatidf7) gives the same (18)
result as the mode-coupling theofMCT) expression ob- R )
tained by inserting the bilinear mogg ¢ 4j g [21]. where P(k,t) is the momentum density functio®(k,t)
=3N_.P,,explik-f(t)}, andP,, is the longitudinal momen-
IV. BILINEAR DENSITY MODES tum of thenth particle. A similar basis set was used by Mad-
A GLE den for analyzing a depolarized Raman spectf@6j. As an

approximation, we neglect temperature fluctuations because
In this section, we study the time evolution of the bilinearthe effects of the temperature fluctuations are smaller than
collective density mode used in calculating Raman spectra ghe coupling between the density and momentum fluctuations
liquids. The bilinear modeg(k,t)p(—k,t) do not follow  [28].
simple hydrodynamic equations. Calculations of the bilinear We derive the GLE for this basis set with the projection
density correlation function have been carried out, particuoperator approach. A complete description of the projection
larly, in the context of Raman spectfd0,25,26,2T. A  operator includes the projection onto different wave vectors.
simple approach to evaluating the bilinear correlation funcHowever, according to Madden and to Keyes and Oppen-
tion is to decompose the four-point correlation function intoheim, the dominant contribution arises from the diagonal el-
the product of two linear density correlation functigri€]. ements with the same wave vectors, which allows us to ig-
Here we apply the proposed scheme to obtain the time evaiore the mixing effects of different wave vectors in our
lution of the bilinear density with the mode-coupling derivation[25,29. The susceptibility matrix of this basis set
memory kernel and, in the next subsection, we compare this

NZSE:‘) 0 _szﬂ718k
(AAh)= 0 2NmB NS ~Re ST 0] 0 . (19
—N2mpB~1s, 0 Nm*(v$) + Nm?B~2(2N+ S, — 3)

In Eq. (19), S((“) is the four-point equilibrium distribution correlation function, defined agip_ o - )/N?, which reduces to
28,3 for a Gaussian systerﬁ{32 - is the three-point equilibrium distribution correlation function, definedmgip 1)/ N,

K, — 2k
which has the samM order asS,. The GLE is explicitly given as
Aq(t) 0 O O A1) Ki Kz Ky Ay fi(t)
A(t) | =i| Qa1 0 Qoz|| Ax(t) | —| Kax Koz Kog || Ax | +| fat) |, (20)
As(t) 0 Qzp 0/ Al Ky Ka Kaa/ \As f(t)
where the eigenfrequencies are
k
91225,
k 2m[3NS+25Sy— 28~ 2 RAS} )~ SwRe(S} _,0)/N]
Q=+ @ _ 2 ) '
m BIN(28Y =5 +5a8"]
K AN+ ) +,80 - 258" - SRS )]
“m N(2S" = S0) + SuS,” ’
kK m(N+S,—2
— ( Szk(g) Sk)' 2
M NSRS, o)
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with * representing a convolution, AxB=[{A(t  where
—7)B(7)d7. When the equilibrium system is Gaussian, the

eigenfrequencies simplify to C(k,q) = c5(k- )2+ cqCpi_glk- (k—d)1,
k 2k 2k k B(Pw(t)Pk (0))
Qo= Q= oy Qo= o) Qgg= o, L= PHUTAD))
2= 217 g5, 237 2= s, - Dpp (1) Nm . (28

Equations(20) and (27) relate the bilinear density corre-
- The random forces are |44i0n function to the linear density correlation function and
give the explicit mode-coupling memory kernel matrix for
f,(t)=0 e_valuating the bilinear density correlation fu.nction. In prin-
' ciple, once fast-decay memory kernels are incorporated, we
can explicitly evaluate the relaxation of the bilinear collec-
tive density over the complete time scale and predict the

which is accurate to the order bf 1
given as

fo(t) = Ag(t) — 1 Qa1As (1) =1 QoaA5(1) + Kop* Ay

+ Koo A+ Kogr Ag, non-Gaussian effects of the bilinear density correlation func-
tion. In this paper, we do not make this explicit calculation;
Fa(t)=Ag(t) — 1 QapAp(t) + Ko Ag+ Kapt Agt Kagt Ag instead, we examine the long-time behavior of the bilinear

(23) density correlation function and the nature of Gaussian fac-
torization in the next section.
with A,(t) andAz(t) explicitly expressed as
B. Non-Gaussian effects

Ay(t) =i £[2A3(t)+E(E,t)p*(lz,t)JrE*(IZ,t)p(IZ,t)], In the hydrodynamic limit, we can apply the Gaussian
m factorization directly to the four-point density correlation
(24 function to yield the product of two linear density correlation
K functions. In the previous section, the mode-coupling equa-
; OBk r * (I " tion for the bilinear mode is derived using the Gaussian ap-
As(t) =1 m[E(k't)P( kO+E(OP(D], (29 proximation. As stated earlier, the GLE describes the true
R dynamics, which is neither linear nor Gaussian, whereas the
andE(k,t) defined as Gaussian approximation introduces a closure to the hierar-
chical equation. In a sense, the Gaussian approximation is
Ugd, - . not compatible with the nonlinear nature of the GLE. Thus,
Z K p(k=q,t)p(q,1). we can explore this inconsistency by calculating the error
d (26) introduced by non-Gaussian effects. In this section, we ex-
amine the nature of non-Gaussian effects within the frame-
Within the proposed scheme, we assume that the equilibyork of the mode-coupling equation for the bilinear mode
rium system is close to Gaussian, which allows usand demonstrate that the non-Gaussian effects can be quan-
to use the eigenfrequencies in E(R2) instead of Eq. tified by the nonexponential decay of the linear hydrody-
(21). The multipoint correlation functions, e.g{p(k  namic mode. . .
—G.0)p(4,D)p(—K ) p* (K—G")p* (§)p(K)), are factored . In Sec. IVA, we use th(=T GLE to _descrlbe thg time evplu—
as NsFlZ(t)FIE—q(t)Fa(t)- In addition, the RPA relatiore; tion of the bilinear collective density and explicitly derive

— — U removes the linear terms in the memory kemeleigenfrequencies and mode-coupling memory kernels. The

matrix. A complicated random phase approximation to the Pressions thus obtained are

three- and four-body interactions is required here. Since we ) Kk
assume that the equilibrium system is Gaussian, the addi- A(t)=i EAZ(U’
tional many-body terms reduce to pair interaction terms. Us-

ing these approximations, the three nonzero elements of the

N
E(kt)= >, PZek
n=1

<3

K | matri ) 2k 2k
memory kernel matrix are Az(t)zlEAMHIEAs(t)—Kzz*Aszfz(t),

Koo )= =z > C(k,)Fg_(OFg(OF (D)

2= ) Fk—g ] k(L) . 2k
mkEV'S, ¢ A Ao() =1 5o Aalt) ~Kag Ay~ Kot Ag (1), (29)
2n

Kgq(t)= W E C(k,g)F_g(OF§(t)Ppp (1), where the equilibrium system is assumed to be Gaussian, and
q#k

the memory kernels are from E@20). Since the above
an memory kernels do not include the fast-decay friction in the
K an( 1) = CK.Q)F_ (D) D pp i(1), short t|me,_ we focus on th_e long-time bghawor of the system.
3t 3m?BV qzk (k)F-g(OF () Pep k() As stated in the Introduction, we can either apply the Gauss-
(27 ian factorization directly to the bilinear correlation function
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and obtain a simple Gaussian expression, or apply the GausSubstituting the above equation into E§3), the final result
ian factorization to the memory kernel to obtain a mode-simplifies to

coupling expression. These two procedures leads to inconsis-
tency between the nonlinear memory kernel and the linear d? ) "
Gaussian factorization. Therefore, we can evaluate the non- <WA1(UAI> = 2N2F(t)Fy(t) + 2NF (1)
Gaussian behavior by comparing the results obtained from G

direct factorization and from factoring the mode-coupling 2 N2
memory kernel. - > C(k,q)
Direct Gaussian factorization of(Ai(t)A;) vyields mk°AY S a2k
(Al(t)A1>G=N2FE(t). From Eg.(29) the first-order time t
derivative of(A;(t)A%) is X JOA(LT)Fifd(t— T)Fg(t—17)
(AdOAT) =i - (AsDAD), (30 *F(nar. (39

Then, the difference between the two Gaussian factorization

which, after Gaussian factorization, becomes schemes, i.e., the non-Gaussian deviation, is

(AL(DAT)6=2NF(DF(t). (31) ,

d? > d

—A(DAY ) — —(A{(t)A}
The first-order time derivative oerFE(t) gives the same <dt2 (DAL . dt2< DA
result, i.e. (A, (t)A¥)g=d/dt[(A,(t)A¥)s], which demon- 2nN2

t
strates that the Gaussian factorization scheme of MCT is :_WE C(k,q)f A(t,7)Fg_g(t—1)
consistent for the first-order time derivative. BV S a7k 0
. S s _
The second-order time derivative @&, (t)AT) is X Fg(t— ) Fa(ndr, (36)

2 k2 k2
<PA1(UA’{> =-2 m(Al(t)A’f )~ 25 (As(DAT) which depends on the difference functiart, 7).
Equation (36) relates the non-Gaussian behavior of the

t . . bilinear correlation function to the non-Markovian nature of
—jOKzz(t_T)<A1(T)A1>dTv (32 the correlation functions. The difference functia(t,7)
starts from zero and reaches a maximum at an intermediate
which, after Gaussian factorization, becomes time, and then decays to zero in the hydrodynamics limit.

Therefore, the difference function explains the non-Gaussian

d? . o g g2 behavior observed numericaly12,13. If the system is in
<WA1('E)A1> == 2w N7F (1) —2NF (1) the hydrodynamic limit, the bilinear time correlation func-
G tion is Gaussian in the second-order time derivative. In this
2 N? limit, the mode-coupling equation for the bilinear density is
——2 C(k,q) consistent with the mode-coupling equation for the linear
mk*BV S, {7k

density up to the second-order time derivative. Thus, up to
t second order, Gaussian factorization is a good approximation
xj Frg(t—7n)Fg(t—7)F(t—17) for normal liquids in the long-time limit becausk(t,7) is
0 small compared toFi(t)S,. The relaxation in glasses
33) strongly deviates from exponential decay, making the nonex-
ponential factorA(t,7) important in determining the non-
To simplify the above equation, we notice thag(t Gaussian behavior of the glass system. , ,
— 7)F¢(7) reduces td{(t)S, whenr—0 ort. This equiva- As the last ftep, we galculate the. thlrd—order. time deriva-
lence holds for the exponential expression, which correfive Of (A1(t)A7). The higher-order time derivatives are un-
sponds to the hydrodynamic limit. Therefore, we introduce d'€cessary because the original equations for this basis set are
difference function defined byF(t—7)F(7)=F(t)S, o_nly.exact at the third order, and the higher-order time (_je—
+A(t,7). To be consistent, the mode-coupling equation ofivatives repeat the results of these three lower-order deriva-
the intermediate scattering functidhy(t) is used for its tves. From Eq.(29), the third-order time derivative of

XF()F()dr.

second-order derivative, giving (A1(t)AT) is written as
e 2 - n > d3 k> . k.
Fr(t)=— kak(t)_gﬁ miggy C(K.9) <WA1('[)A’{> = —2m<A1(t)AI>—2W(A3(t)AI>
t . d [t .
><fOFE_a(t—T)Fa(t—r)Fa(r)dr- (34) —aJOKzg(t—TXAl(T)A’I)dT. (37)
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Similarly to the second-order calculations, we rewrite theamong the rotational, translational, and vibrational degrees
equation as of freedom. For the linear molecule liquid, we study the
) ) ) ) coupling among different degrees of freedom, which pro-

Fr(t— (A (1) AT g=N2S [ 2F(1)F () + F(t)F(7) vides guidance for understanding more complicated liquids

. [30,31. The coupling between rotation and translation is

+F(T)F() ]+ Aq(t,7), more important than couplings involving vibrations since

these two degrees of freedom have similar relaxation time

N?Smg .. scales. In our derivation, we focus on the rotation-
Ppp(t=1)(Ax(T)AT)6= 2 FROF(7)+As(t,7), translational couplings and consider the molecule as a rigid
rotor without vibrations. In this section, we use our simpli-
N2m? . ) fied scheme to explore the hydrodynamic equations of mo-
Dpp (t— T)(As(T)/-\’f)G:v Fr()Fe(7)+As(t, 7). tion in linear molecular liquids. The resulting MCT equations

(38) are essentially equivalent to those based on angular expan-
sion[32,33 but are different in format from those based on
Ai(t,7) are quantities similar ta(t,7) used in the second- the interaction-site picturg4].
order time derivative and also vanish in the hydrodynamic Because of the coupling between translation and rotation,
limit. The factored result for the third-order time derivative the collective density of linear molecular liquids is expanded

of (A1(t)A*) is both in the wave vector space and in the sE)hericaI
5 s harmonic space, resulting in the expressign(k,t)

<d_A (t)A*> =d_<A (H)A%) =3N | explik-Fr{®)}YA(Qn(1)). In this definition, the basis-
det"™ ! dts e set function of the rotational spaceYs({2,(t)), where\ is

26N t a set of eigenvalues representing the spherical harmonic
n s . function, A ={I,m}. Unlike the atomic liquid, where the ba-
+ C(k drFyp_g(t— ’ o ’
mié g& ( 'q)fo 7Fi-d(t=) sis set for the GLE is the collective density and the longitu-
dinal translational current, the basis set of hydrodynamic
XFg(t—7n)AFL,7), (39  modes for the linear molecular liquid is A
={p(k,1),]T(Kk,1),i%(k,t)}, which includes both transla-
tional and rotational currents. In this basis set, the longitudi-
7. o nal current is j; ,(K,t) =3 vp (t)explik-F(O YA (Qn(1)),
AL =3 FOF(7) —FilFil7) and the rotational current is iR (Kt

3
:Enwn,y(t)exp[iIZr*n(t)}YA(Qn(t)), where y=x,y,z repre-

3
— _Flz(t)Fg(T)Jrz A(t,7), (40) sents the Cartesian coordlna_te_s_. For th_ls basis set, the non
3 i=1 zero elements of the susceptibility matrix are

with

which vanishes in the hydrodynamic limit. Thus, in agree- <Px(|Z)P:f(|Z)>=NS\w(k),

ment with the second-derivative resyl(d®/dt3)A;(t)A})g

and @%/dt®)(A,(t)A¥)s are the same in the hydrodynamic . N

||m|t( )< l( ) 1>G / g <j}(f,y(k)j;’ay’(k)>: mﬁaa’éyy’ 5)\)\’ ’ (41)
Our results demonstrate the strong correlation between “

the non-Gaussian behavior of the bilinear correlation funcwith

tion and the nonexponential decay of linear hydrodynamic

modes. For simple liquids close to the hydrodynamic limit, M, a=T,

Gaussian factorization is a good approximation to the bilin- =1, =R (42)

ear correlation function becaudef(t, r) is a small quantity. ’ '

For complex liquid systemsy F(t,7) is significant and the | the above equatiorM is the mass of the linear molecule
non-Gaussian behavior becomes more prominent. For glasgixd| is its inertial moment tensor. To construct the GLE, we

systems, the regime of nonhydrodynamic relaxation and thgajculate the first-order time derivative of the collective den-
peak value of the non-Gaussian behavior increase with desity,

creasing temperature. These conclusions are consistent with
experiments and simulations. d _ N .
G (k=2 kv OV, (2n(1)
V. LINEAR MOLECULAR LIQUIDS

N
_ In th!s section, we derive MCT for I_|qU|d systems consist- + z e”"“n“)i[I:YA(Qn(t))](Bn(t), (43)
ing of linear molecules such as €SLinear molecular lig- n=1

uids are a bridge between atomic liquids that have no rota- R

tion and vibration degrees of freedom and nonlineawherelL is the angular momentum operator. This equation
molecule liquids that have more complicated couplingsimplifies to
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m™ where U(N\1,A,,q) is the two-body interaction term ex-
dtpk(k t)=ikjy (K, t)+ J<x+ (K, t)+ i (Kb panded in the wave vector and spherical harmonic spaces.
The constanD(\,Nq,\3) IS

+ —

S iy (K- == 5 -y (KD HImIT (k)

(21, +1)(21,+1)]¥2
D()\l,)\z,)\g): 2| 1 C(|1|2|3,000)
(44) st
with XC(|1|2|31m1m2m3)1 (50)
mt =+ -mm+1), m =Il+1)—m(m—1), V\{here C(I1I2I3;m1m2m3) are the Clebsch-Gordan coeffi—_
cients. The mode-coupling memory kernels between the dif-
—{I,m+1}, A ={,m-1}. (45) ferent longitudinal-translational currents are
Using these equations, we derive the first-order time de- T _ n’q,U;D D,
rivative of the longitudinal translational current. Since there <f>\,z(k’t)fw,z(k)>—a{%A,} M? K, (81)
is no equilibrium coupling between the first-order moments o
of the current, the only nonzero eigenfrequencies come fro ere
the coupling between the longitudinal-translational current
and the collective density. The first-order time derivative of L R
the longitudinal-translational current is K(t)=0aU2Fy, ay(k=d,0Fy, x(4,0)
d ; - . o« a . +(k—d2)UzF, ) (k- q.HFx, x4,
Gk D=1 o0 (KD +KTS *J1 + KD,
46 - PN
48 Ui=U(AauG), Up=UN A5.0),
where KAM, represents the memory kernels between the )
longitudinal- Aranslational currents and all the other possible Us,=U(N1 N5, k—0),
currents. The repeated symbols indicate summation over all
modes. The resulting eigenfrequencies are D;=D(AA1hg), Da=D(N'\],\S). (52)
|QI§,—(JX AK), px,,( ))(pw(IZ)p:,(lZ))’l=—B(S’l)m,, The same_approach_can be_ us_ed to derive the nonlinear
4 terms of the first-order time derivatives of the other currents.
s a result, we obtain all possible mode-coupling memory
@n A | btain all possible mod i
and the random forces for the longitudinal-translational Curkernels from these nonlinear terms:
rents are 20 U.D.D
- nm;U;D,0,
. (FRARDER)== > ————K(),
T (kt)=—j  (kt)———— (S (K,t) CHIVEIG
PPARAY: dtJ)\,Z J M,B AAPN (53
_wha s
Koy iy (48 (R X(kt (k))
If the potential of the system is dominated by the two-body n%(m; Dy +m;D;)U;D,
interaction, the first-order time derivative pf ,(k,t) can be = > , SMI K(t),
expanded in the wave vector space and the spherical har- A
monic space. From the previous sections, the mode-coupling (59
memory kernels arise from the bilinear-bilinear terms and the
other terms vanish in the mean-field approximation. As a <fR (k’t)fT,* (IZ))
result, only the bilinear-bilinear terms remain in the first- y A
order time derivative for the longitudinal-translational cur- n2(m; D —m; D;)U;D,
rent, giving = E i oM K(1),
q. AN
d.r - (55)
T
- k,t —ZU(\ A
grina(k= qMZM N MV (A1h2,0)
. R . N n?m;m;U,D,D,
XD(N N1, (Ag)py (K= G, D)py(G,1), (FRARDITA K= = 2 Ka(b),
a0
(49 (56)
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(K DFRK)
n?(m; Dy +m;D;)m;U,D,
= > 212 Ka(1),
RN
(57)
n?U,

(m;m;"D; D,

(FRAkOIARY= 2
q. N

+m;m; D;D,+m;m; D;D,

+m;m; Dy D, )Ky(t), (58)

(FR (KD K))

n*(m; Dy —m; Dy)miU;D,
= K (1),
. 21°
Q0L

(59

2

n<yU,
(RYKOIEAKR)= 3 7 (mym;'D; D3

.y
+m;m;"D;D, —m;m; DD,

—mym; Dy D;)K(t), (60)

_ R in?U,

(MYKOIFERY= X
Ay

+m;m, D;D;

L (m;m;*D;D;

—m;m;"DyD;

—mym; Dy D;)K(t), (61)
2
(FRYyRKOAR)= 3 7 (m{m"DyD;

RV
+m;m; D;D, —m;m; DD,
—mym; "Dy D3)Ka(D), (62)
where
Ka(t)=U,F )y, (K=G,0F, 11(G,t)
+UFy ag(k=G.DF i (d),
Dy =D(A",A;,h3), Di=D(N",Aq,\3),

Dy =D\ "A1,N5), Dy=D(\ " ,\j,\3). (63

PHYSICAL REVIEW E67, 061116 (2003

2
. D,D
(foukDT5Z (K))=2, e AT A ("

—qz>uqu‘;_d|]F<|2—cit)F(q,t),
(64)

which reduces to the mode-coupling kernel for the atomic
liquid.

VI. CONCLUDING REMARKS

The goals of this paper are to apply the Gaussian factor-
ization approximation to derive ideal mode-coupling
memory kernels for linear and nonlinear hydrodynamic
modes and to examine the non-Gaussian behavior of the bi-
linear density correlation functiofiL0]. Based on the obser-
vation that the random forcE=QIiLA is related to pair in-
teractions in liquids, mode-coupling memory kernels can be
expressed in terms of bilinear hydrodynamic modes. Then
direct Gaussian factorization of the memory kernels and the
random phase approximation for the direct pair distribution
function lead to standard mode-coupling expressions. In this
paper, we adopt a more rigorous approach introduced by
Zaccarelliet al.[11] to derive essentially the same results. In
this approach, a self-consistent equation for the random force
arises directly from the fluctuation-dissipation relation and
the pair interaction term of the force on the slow variables.
The mode-coupling memory kernel is obtained by removing
the self-consistent coupling terms with the mean-field ap-
proximation and factoring multiple-point time correlation
functions. Thus, the random phase approximation, or other
approximations of mean-field nature, is necessary for remov-
ing the coupling terms that are difficult to evaluate in the
self-consistent expression of the memory kernel. Effectively,
this derivation justifies the simpler scheme of applying fac-
torization directly to the bilinear term in the memory kernel.

Within the Gaussian factorization scheme, we derived
mode-coupling memory kernels for the velocity autocorrela-
tion function (VAF) in Sec. Ill, the bilinear density mode in
Sec. IVA, and the density fluctuation of linear molecular
liquids in Sec. V. In Sec. Ill, we used the random phase
approximation for the direct pair correlation function be-
tween the tagged particle and the solvent to obtain the stan-
dard mode-coupling expression for the VAF. In Sec. V A, we
applied Gaussian factorization to the six-point correlation
function and used the RPA to recast the three- and four-body
distribution functions. The resulting equation takes into ac-
count the initial distribution as well as mode-coupling ef-
fects. The four-point correlation function can be useful for
calculating third-order Raman spectra and for further exami-
nation of non-Gaussian effects. In Sec. V, we expanded the
collective density of a linear molecule liquid in terms of
spherical harmonics and derived mode-coupling expressions
in the spherical harmonic function space. The zero compo-

For A=0, the linear molecular liquid becomes an atomicnent of the spherical harmonic function recovers the limit of

molecular liquid, and the above expressions vanish exceptomic liquids. These results for linear molecular liquids are

for the correlation function for the longitudinal-translational useful for analyzing rotational spectra and Raman spectra in
currents. For Eq(51), all harmonic eigenvalues are zero, and molecular liquids and solvents.

we have

A key result of this paper is the investigation of non-
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Gaussian effects in bilineafour-poiny density correlation the results from several numerical simulatiqd®,13. Our
functions in Sec. IVB. In the hydrodynamic limit, we can analysis confirms and quantifies the correlation between the
directly factor the four-point correlation function into the non-Gaussian behavior in multiple-point correlation func-
product of two pairs of density correlation functions. In prin- tions and the nonhydrodynamic behavior of linear modes.
ciple, the same Gaussian factorization can also be applied to The key relation established in Sec. IV B is also relevant
the GLE of the four-point density correlation function. In tg experimental measurements. Scattering experiments have
order to examine the Consistency of direct factorization an%een Carried out to quantify the nonexponentia| re'axation in
mode-coupling equations, we compare the difference bedensity fluctuation§35—3§. Recent nonlinear experiments
tween applying factorization before and after taking the timeyre designed to investigate non-Gaussian behavior and dy-
derivatives of the GLE for the four-point correlation func- ngmic heterogeneitiegl5,16,39. Equations(36) and (40)

tion. The two procedures are identical for the first-order timegemonstrate that the information content from these two
deriVatiVe, but different for the second- and third-order timekinds Of experiments can be Corre|ated W|th|n the mode_
derivatives. The differences depend ar=Fy(t—7)Fi(7)  coupling formalism. In other words, if the system is not far
—F(t)S, the deviation from exponential behavior of the from the hydrodynamic regime, the two aspects of nonhydro-
linear density mode predicted from hydrodynamics. This dif-gynamic deviation, i.e., the nonexponential decay and non-
ference function starts small initially and then approachessaussian fluctuations, are related quantitatively. The validity
zero in the long-time hydrodynamic limit. It then follows of this quantitative relation becomes questionable when the
that the non-Gaussian indicator has a maximum at an inteksystem is far away from the hydrodynamic limit and is dy-
mediate time. The amplitude of the maximum depends on thAamically heterogeneous. To interpret measurements in these
Strength of the non-Markovian behavior in the |IqU|d For systems, we should introduce non-Gaussian Coup"ng exp”c-

liquids close to the hydrodynamic limit, the nonexponentialitly, as in stochastic diffusion/hopping moddi0—42 and
deviation of the linear mode is small and direct Gaussiarjynamic frustration modelgt3—45.

factorization is a good approximation for the four-point cor-

relation function in the long-time limit. In contrast, low-

temperature systems exhibit strong nonhydrodynamic behav- ACKNOWLEDGMENTS

ior in density fluctuations so that the non-Gaussian behavior
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