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ABSTRACT: Mechanical characteristics of DNA in the sub-persistence-length (I, ~
150 base pairs) regime are vital to many of its biological functions but not well
understood. Recent experimental studies in this regime have shown a dramatic departure
from the traditional worm-like chain model, which is designed for long DNA chains and
predicts a constant flexibility at all length scales. Here, we report an improved model
with explicit considerations of a new length scale I, & 10 base pairs, over which DNA
local bend angles are correlated. In this correlated worm-like chain model, a finite length
correction term is analytically derived, and DNA flexibility is found to be contour-
length-dependent. While our model reduces to the traditional worm-like chain model at
length scales much larger than Iy, it predicts that DNA becomes much more flexible at
shorter sizes, in good agreement with recent cyclization measurements of short DNA

(.
)

fragments around 100 base pairs.
SECTION: Biophysical Chemistry and Biomolecules

he flexibility of DNA has great impacts on its overall shape A - .

as well as on many of its biological functions, such as " Ez t3 h ts
chromosomal DNA packaging,' DNA damage repalr, regu- t ty —
lation of gene expressmn,3 and protein—DNA binding.* Many ~d Oy

experimental techniques® and theoretical descriptions® have
been developed to investigate the structural details of DNA
underlying its mechanical characteristics. At very small length
scales with atomic resolution, DNA is well studied from X-ray
crystallography and NMR spectroscopy in conjunction with
computer simulations.” At much larger length scales,
experimental investigations of long DNA of more than 1000
base pairs (bps) have supported the worm-like chain (WLC)
model,® where DNA is described as a continuous semiflexible
polymer with all local details coarse-grained into one parameter,
the persistence length I, ~ 150 bps.”'® However, for a wide
range of problems of biological significance, the length scale of
importance falls in between the atomistic description and the
continuous description. Experiments are now beginning to
bridge the gap, and the newly observed DNA mechanical
properties at these intermediate length scales strongly challenge
the application of the WLC model.''~"* Here, we propose a
more comprehensive model by incorporating structural details
of DNA underlying these newly observed mechanical proper-
ties.

The development of the WLC model starts from a discrete
description of DNA, constructed by linking successive equal-
sized segments with length I, pointing to the direction 7 for the
ith segment (Figure 1A). In 3D, we use b = O, to characterize
local bending between the ith and the (i + l)th segments with
respect to the local axis #; = =7 x1,, with amplitude cos 0, = 7, -
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Figure 1. Description of the WLC model. (A) Ilustration of the KP
model. (B) Ilustration of the WLC model.

1. In the most naive Freely Jointed Chain (FJC) model, these

segments are considered as uncorrelated, that is, {&-1.) = o
where §; is the Kronecker delta function. As an improved
description, the Kratky—Porod (KP) model'* assumes that
DNA resists to bending deformation, characterized by an elastic

energy of bending defined through

Z(l frti41)

011

Z (1 = cos 6)

011

(1)

where B = lpkgT is the bending modulus. Building upon this
assumption, it can be shown that the orientations of different
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chain segments are correlated such that (7, - £,,) = e ™7 The
WLC model is obtained by taking the continuous limit ([, — 0,
N — oo, with NIy =L) of eq 1 as

2
) ds
()

where the DNA chain is fully described by a continuous chain
(Figure 1B) parametrized by s with unit tangent vector #(s) and
bending is characterized locally by the change of chain tangent
di/ds. Correspondingly, the tangent vectors at different chain
locations are correlated such that (f(s,) - f(s,)) = e ™™V/h,
Calculations based on this continuous description (eq 2) show
excellent agreement between theory and experiment for long
DNA chains of L > I,.. For example, the experimentally
observed force-extension behavior of a long DNA chain of
contour length of about 100 000 bps"® fits extremely well with
the WLC prediction®'® at persistence length I, = 53 nm.
However, the agreement between the WLC model and the
classical force-extension measurements at long chain limit
cannot unveil any information about local bend angle
distribution at short length scales because at the long chain
limit, the iterated convolution of any arbitrary local bend angle
distribution with itself always converges to a Gaussian form, as
predicted by the WLC model. While there is no experimental
evidence supporting the direct extrapolation of WLC to short
length scales, recent experimental studies of DNA ring-closure
probablhty in the sub-persistence-length regime show signifi-
cant “softening” of DNA'>'” and challenge the application of
the WLC model under two extreme conditions, short length
scales as well as strong bending. Previous efforts for improving
the WLC model have focused on strong bending and proposed
the 1ntroduct10n of new structural features (e.g, bubbles,'®
kinks," or subelastic modes®) that lower the bending energy
from quadratic to a softer form beyond a critical curvature.
While the response of DNA upon strong bending is an active
field of research, systematic estimation of the critical curvature
leads to a DNA mini-circle of contour length L¥ ~ 70 bps.*'
This estimate is considerably smaller than the contour
lengths'>"” at which the softening behavior of DNA is
observed, rendering strong bending irrelevant and suggesting
additional mechanisms at work. Furthermore, experiments on
short DNA fragments in the weakly bending limit also indicate
the WLC model to be 1nsuﬂic1ent and suggest a length-
dependent DNA flexibility.'> We believe that these measure-
ments provide the exact data needed to investigate the local
bend angle distribution and propose an improved descrlptlon of
DNA by considering the effect of a newly observed* and
studied®” feature, the interaction between local deformations.
According to these recent studies, upon a local deformation, all
units of the mechanical network of DNA have to relocate until
force balance is restored, resulting a structural change that is no
longer local but propagates along the DNA chain with a new
length scale I, & 10 bps, mamfested in the form of allosteric
protein binding through DNA.**> Here, we assume that there
exists a similar interaction between local bending deformations
so that the bending energy (eq 1) that the KP model is built
upon, where local bend angles are treated as independent, is
only valid for I; > I. Then, the WLC predictions, obtained at
large N limit as the continuous limit of the KP model, only
apply for sufficiently long DNA chains as L = Nl,. For shorter
chains of interest, the interaction between local bend angles
needs to be incorporated into the definition of a more general
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bending energy. Because the details about bending at the
shortest length scale (bp level) are still not available, here in our
correlated WLC (C-WLC) model, the system is coarse-grained
at a length scale |, comparable to I, and the bending energy is
approximated by truncation of interactions beyond nearest-

neighbor bend angles
2Cb, b,
S e
(3)

where B’ = IpkyT(1 + C*)/(1 — C?) is the local bending
modulus, which is shown to be related to I, later, and C is the
coupling strength. This more generally defined bending energy
predicts a correlated distribution of {b; = 0} asa multivariate
Gaussian characterized by covariance matrix A™" such that ( b
b, i) = (A),I1 In the case of the simple tridiagonal Toephtz matrix
A the inverse can be analytically obtained as (A);' = (2lo/I;) X
(=C)"™" (see the Supporting Information (SI) for the
derivation), resulting in an additional short-range correlation
for the binormal vector b(s) = 1(s) x (dt/ds)(s) as (b(sl)
b(s,)) ~ e ™=b which is absent in the WLC model.

In an approximate but simple way, the flexibility of a C-WLC
can be quantitatively studied by mapping it to a WLC of the
same contour length with an effective persistence length Igp, so
that earlier analytical results can apply.>>* For a DNA chain
of contour length L = (N + 1)I,, the mapping can be done by
matching the end-to-end tangent correlations. In our C-WLC
model, the end-to-end tangent correlation is (see the SI for

derivation)
N
- @) -~
(T) X (1 = (beb )V
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For a WLC with effective persistent length Ip, the end-to-end
tangent correlation is

<?(0)?(N10)>WLC = e_NIO/lEP (5)

A comparison between eqs 4 and S shows that the effective
WLC has a contour-length-dependent persistence length

1 -1
C
g ) ©)

From eq 6, we see that the effective persistence length I;p(L)
approaches its long chain limit quickly as N = L/l, —
increases. At this long chain limit (L > I, ~ 10 bps), our C-
WLC model can be reduced to the WLC model by setting
lep(o0) = (1 — 2C)™" = I,. For a short chain, our model
introduces a correction term and predicts a contour-length-
dependent persistence length

-1

) (7)

which is illustrated in Figure 2 by setting 2Cl,/(1 — 2C) = 15
bps.

The predictions from our C-WLC model may be compared
to the recent J factor measurements of the probability of DNA
forming a ring, defined as the ratio of equlhbrlum constants for
cyclization and bimolecular association.”® These results have
been previously compared to theoretical predictions, obtained

N —

lp(L) = (1 - 22 - 20y

2CI
Lp(L) = x |1 + ——2—
(L) = I ( (1-20)L
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Figure 2. Contour-length-dependent persistence length. The flexibility
of a C-WLC, characterized by a persistence length Igp(L), is a function
of the contour length L.

by Shimada and Yamakawa in their seminal paper”> where
DNA is modeled as a twisted WLC (TWLC). In this detailed
variation of the WLC model, the twist degree of freedom is
considered explicitly by introducing an additional independent
parameter, the twisting persisitence length lr. With the local
orientation of the DNA segment at 7(s) described by an
orthonormal triad (s) (i = 1—3), where (s) = #(s) is the
tangent of the chain contour, the corresponding torsional
energy can be written as Erygen = 0.5IksT /(w5 — 7)*ds,
where w5(s) = @(s) - &(s) is the local twist with @(s)
determined from the relationship dé(s)/ds = @(s) X €;(s) and =
is the intrinsic twist. The ] factor, Jrwic(L/lp,7), is then
obtained in terms of three parameters, L/Ip, # = I/l — 1, and
7. It has been shown®'” that the experimentally observed ]
factors at shorter contour lengths can fit well to this theoretical
prediction but as a softer WLC with I, = 47 nm, # = —0.2, and 7
= 27/10.5 = 0.6. Because I in the WLC model is an intrinsic
parameter that is a constant at all length scales, the difference
between I, = 53 nm obtained at the long chain limit and [, = 47
nm obtained at shorter length scales should not be overlooked.

Here, we attempt to resolve this difference and explain the
short chain behavior using our C-WLC model. To highlight the
effect of the new feature introduced in our model, for the |
factor problem, we minimize the number of free parameters by
fixing # = —0.2 and 7 = 0.6. Our C-WLC model then predicts
the J factor as

Jewe ) = Ty L/ lp(L), —0.2, 0.6)

21, ) )
= L+ /I, =02, 0.6
h “LC(( ’ (8)

1-2C

Equations 7 and 8 show that, in addition to the persistence
length I, for an infinitely long chain, our model derives another
free parameter, the finite length correction I, = [2Cly/(1 —
2C)]. Here, we fix I, = 53 nm because it is obtained at the long
chain limit and fit the J factor measurements'>”*® to our
theoretical predictions (eq 8) with a single parameter, the finite
length correction I.. A good fit is obtained at I, = [2Cl,/(1 —
20)] 1S bps, and our theoretical predictions show a
significant enhancement in terms of the J factor over the WLC
predictions for short chains (Figure 3A).
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Figure 3. Ring closure probability (J factor) as a function of the
contour length. (A) The experimental data taken from Du et al.’” (red
circles), Vologgodskaia and Vologodskii27 (red asterisks), and Shore
and Baldwin®® (red triangles) are compared with the WLC predictions
(green solid line) and our C-WLC predictions (blue solid line). (B)
The experimental data taken from Du et al."” (solid black circles) are
compared with our C-WLC predictions Jowrc when torsional
alignment is considered (blue solid line) and Ji;) when torsional
alignment is not considered (blue dashed line). The experimental data
for a finite capture radius R taken from Vafabakhsh and Ha'? (open
black squares) are compared to the theoretical predictions of Quc
(green dashed line), Q¢ (red dashed line), and Qe c (red solid
line) at fixed capture radius R = 6 nm. DNA parameters used in both
the WLC model and C-WLC model include I, = 53 bps, 7 = =02, 7 =
0.6, and helical pitch H = 10.5 bps = 3.57 nm, while the C-WLC model
has one more parameter, the finite length correction I, = 15 bps.

Despite that our model predicts a much higher flexibility for
short DNA chains, it still falls short in explaining the recent
experimental observations by Vafabakhsh and Ha,'> which
reported a ] factor about 3 orders of magnitude larger than the
classical results by Du et al.'” at the same contour length of L =
105 bps (Figure 3B). In this work,'> Vafabakhsh and Ha argued
that there may exist a capture radius, that is, instead of
measuring the ring closure probability, their results correspond
to the probability of the two DNA ends being segarated by a
distance R. This probability has been evaluated® within the
WLC framework without consideration of the twist degree of
freedom. However, the result Quc(L/Ip,R/L) (eq 21 in ref 29)
still fell short in explaining the high flexibility observed.'* While
the underlying mechanism is an issue under heated debate,*"*°
here, we show that by replacing I, with the contour-length-
dependent persistence length I;p(L) with the same correction I,
= 15 bps, the modified function Q¢ significantly enhances
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Figure 4. Contribution of the twist degree of freedom. (A) The results (symbols) of the ratio P(L) = Jwrc(L/lp—0.2,0.6)/J1y(L/1) fit well to a
Gaussian function (line) in each color-coded region. (B) The standard deviations and the corresponding center locations (black circles), obtained
from the Gaussian fits in (A), fit well to a linear function (red line) with slope a = 0.505 and intercept b = —0.931 in a logarithm—logarithm plot.

the resulting probability over the WLC result and matches
qualitatively with the experimental measurements at R = 6 nm
(Figure 3B).

The oscillatory behavior displayed by the measurements"
suggests a certain degree of torsional alignment of the two
DNA ends, which can be interpreted by including the twist
degree of freedom into the theoretical consideration. In an
approximate but simple treatment, we assume that at short
length scales, the number of microstates that deviate strongly
from the most probable configuration is negligibly small. This
approximation suggests that the contour and twist degrees of
freedom are decoupled. Using the mini-circle formed by DNA
(orientation described by €(s) for i = 1-3 or the equivalent
Euler angles Q(s) = [0,¢,)]) as an example, with the contour
degree of freedom “frozen” at configuration {#*(s)} (a circle of
radius L/27), we have Jryic(L) = Ji)(L) X P(L), where
Jrwic(L), the J factor with torsional alignment, can be obtained
as the simple product of contour contribution J(;)(L) and twist
contribution P(L). Here, the twist contribution is modeled as
the normalized probability density at torsional alignment, P(L)
= 2af[y*(L)]/ f 7 f(y) dy, where f(y) denotes the probability
density associated with any total twist deformation of y, and y*
is the total twist deformation needed in order to have torsional
alignment. Assuming that f(y) is dominated by the lowest
twisting energy configuration, where the total twist deformation
is evenly distributed along the chain (w4(s) — 7 = y/L), in our

model, we have f(y) = e=(h/2L)Y, Furthermore, as the contour
degree of freedom is “frozen” at {#*(s)}, y* can be obtained as

= [ @) - o) s
- /0 " (du(s)/ds — 7) ds

=272(M — L/H) )
where M is the closest integer to L/H and H is the helical pitch
length H = 10.5 bps. As a result, the twist contribution is
obtained as

H
N2mo'

P(L) = ey

(10)
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a series of Gaussian functions with ¢’ (L) = (H/2z)(L/13)"? or
log,6'(L) = 0.5 X log;o L — 0.9.

This twist contribution can also be obtained as the ratio of
Jrwic(L) and J(;)(L). Using the analytical expressions derived
by Shimada and Yamakawa (eq 73 for Jrywic(L) and eq 74 for
Ja)(L), as in ref 23), this ratio is calculated and is found to fit
well to a series of Gaussian functions (Figure 4A). The standard
deviations obtained from the fitting procedure fit well to
function log;o0’(L) = alog,, L + b, with a = 0.505 and b =
—0.931 (Figure 4B), in close agreement with the results derived
from our simple treatment. This agreement supports a similar
treatment of the probabilities obtained experimentally in ref 12
as a product of contour contribution and twist contribution,
Qrcwrc(LR) = Qcwic(L,R) X P(L), where contour
contribution Qcwic(L,R) has been evaluated earlier and twist
contribution P(L) is again modeled by eq 10. To better explain
the experimental data, a tolerance angle of a = 0.9 rad is
introduced so that instead of requiring perfect torsional
alignment, the configuration captured in experiment can allow
an orientation shift with lw(L) — w(0)| < a. Equation 9 is
modified accordingly as y* = 0 when 122(M — L/H)| < a and
y* = Ra(M — L/H)l — a otherwise, and our results of
Qrcwrc(L,6 nm) show a clear oscillatory behavior and match
the experimental measurements reasonably well (Figure 3B).

The introduction of a simple bending energy characterized
by persistence length I, &~ 150 bps in the WLC model gives rise
to fundamentally different physics from the FJC model and has
been successful in describing the DNA flexibility at large length
scales. By treating successive local bending as a Markov process,
the WLC model predicts a correlation between the tangent
vectors (£(s;) - i(s,)) = e ™™k which is valid only at the long
chain limit. With a more generally defined bending energy (eq
3) that enables explicit consideration of the fact that at short
length scales local bending is actually a non-Markov process,
our C-WLC model gives rise to a new paradigm and extends
the description of DNA flexibility to the biologically relevant
sub-persistence-length regime. Our model shows analytically
that there exists a finite length correction term [, leading to a
contour-length-dependent tangent correlation (£(s;) - (s,)) =
e/ “(eq 4). While our model reduces to the WLC
model as Igp(L) converges to I, at long chain limit, short DNA
chains show notable “softening” as I/L approaches 1, yielding a
significant enhancement of the ] factor, in quantitative
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The Journal of Physical Chemistry Letters

agreement with existing measurements with the same [, = 15
bps. Furthermore, the cooperative bending behavior is
supported by recent experimental observations of the end-to-
end distance distribution of DNA in the sub-persistence-length
regime.13

In this study, DNA deformation is characterized by the sum
of the energy directly associated with a local deformed site
(self-term) and the interaction between different deformed sites
(interaction term). For simplicity, the DNA system is assumed
to be linear,?® that is, the restoration forces are linearly
dependent on the deformation so that each energy term can be
effectively modeled as an elastic spring. Because the self-term
and the interaction term originate from different interactions in
nature (e.g, in the case of the major groove width
deformation,?' the self-term is associated with the dihedral
angle while the interaction term is associated with base
stacking), the corresponding springs can differ significantly in
properties such as the spring constant and the elastic limit.
Accordin% to models of DNA excitations (e.g, the kink
model*” ), at large bending curvatures, the harmonic potential
assumption breaks down for the self-term. Assuming that it is
within the elastic limit for the stronger interaction term,
strongly bent DNA can be described by an energy more general
than eq 3, Egz = (B'/2ly) X,[f(8) + 2Cb; - b,,,/(1 + CH)],
where f(6,) is quadratic below critical curvature 6* and
becomes softer beyond. While systematic study of Egp is
beyond current work, it is worth noting that extending previous
excitation models into the sub-persistence-length regime
without modification will produce erroneous results as the
use of local bend angles as normal modes without consideration
of the interaction term is no longer justified. It is also worth
noting that despite that our model is fundamentally different
from excitation models, distinguishing their contributions to
the J factor measurements may not be a simple task as short
contour length coincides with strong bending when forming a
DNA mini-circle. To highlight the difference, systematic studies
of short DNA fragments in the weakly bending limit shall
follow.
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Explicit derivations leading to the key equations in the main
text are presented. In the first part, the correlated local bending
distribution of {b; = 01,} is shown as the direct consequence of
eq 3. Then, a detailed derivation leading to eq 4 is shown in the
second part. This material is available free of charge via the
Internet at http://pubs.acs.org.
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