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A matrix formalism defined in the complete dynamic phase space is developed to analyze spin relaxation in
the East model and the dynamic slow-down of dissipative systems in general. The truncated basis set expansion
provides a direct route to calculate spin correlation functions systematically and to evaluate the mean relaxation
time. Examining the relaxation time scales of linear and nonlinear modes leads to the observatiorfuliat the
correlation andirreducible correlationfunctions defined in theomplete spacdescribe the slow dynamics

of a dissipative system and can be related to their equivalent physical quantities in nondissipative systems,
whereas theeduced correlatiorfunctions and associated memory kernels defined inptiogected space

involve faster time scales and cannot be directly reduced through mode coupling approximations. Matrix
relations allow us to recover the simple mode coupling and extended mode coupling equations first obtained
through an elegant diagrammatic expansion by Pitts and Andeds@hém. Phys2001, 114, 1101). These

mode coupling approaches are extended to low temperatures by analyzing higher order nonlinear modes and
correcting mode coupling closures with the asymptotic behavior. Further, the second-order full correlation
function can be clearly separated into the short time regime evaluated by basis set expansion and the long-
time regime described by a stretched exponential arising from domain dynamics, and the resulting single-
spin self-correlation function agrees with simulations over the whole temporal range.

I. Introduction The East model is a one-dimensional (1D) spin chain where
) . o . each spin is only allowed to flip if the next spin on the right is
The dynamics of glass-forming liquids is a challenging i, the up state. The concentration of up-spins is given by a
problem, which requires a transparent and unified theoretical cqnstant. which is related to temperature by= 1/(1 + €'
framework. Motivated by this challenge, Fredrickson and among various approaches developed to study this model, the
Anderson (FA) proposed a kinetic Ising model, where spin o relevant to our work is the asymptotic relations and mode
dynamics is controlled by local kinetic constraints instead of coupling closures. Jackle and Eisinger used the effective-
many-body interaction potentialé. The FA model can be  odium approximation (EMA) and the cluster expansion
viewed as a physical realization of the hierarchically constrained ,othod (CEM) to calculate response functiérigauch and
mechanism suggested by Abrahams étaald exhibits coopera-  j5cyje extended CEM and found that the mean relaxation time
tive motions qﬁen described by the thermal-statistical theory , reases as; ~ ((c°%%) in the smallc limit.1! Sollich and
of glass transitions developed by Adams and Gitisd by gy 4ng explained this result by analyzing domains composed of
Wolynes and co-worker®? Jackle and co-workers extended the down-spins between two adjacent up-sgifis Aldous and
FA model to a large class of kinetically constrained models Diaconis provided a rigorous mathematical proof of this

. . B .
(KCM)’ including th_e East modél? which is the chus Qf this asymptotic result® These known asymptotic relations and the
article. A key question one hopes to address with this type of high-order mode coupling trees (as shown in Figure 1) make

models IS: Can the g_Ias; transition be l_mderstood from_thethe East model a unique and attractive choice for systematically
perspective Of. purelyllflnetlc constraints W'thO.Ut an underlym_g studying the dynamic slow-down at low temperatures (i.e., small
thermodynamic transition? This question has inspired extensive . values) '
discussions. For example, Garrahan and Chandler explored the | ' giff i has b lied to the sinl
spatial-temporal structures of domain dynamics in the KCMs  Along a different line, MCT has been applied to the single-
spin self-correlation functiorC,(t) of the East model. Jackle

using the intriguing concept of trajectory statistié8 However, ) ;
we will not discuss this question in this article; instead, we are Was the first to evaluate the memory kerhéj(t) by a Gaussian

interested in another possibility: Given the simplicity of these factorization schemeni(t) O C{(t).% The prediction from this

models (e.g., the East model), can we achieve a bettera_\pproxmatlon is not satisfactory when compareo_l with simula-
understanding of existing theoretical tools for describing viscous tions. Kawasaki proposed that the mode coupling (MC) ap-
dynamics? To address this possibility, we develop a matrix Proximation should be applied to the irreducible memory kernel
formalism based on the complete basis set of the East model™(t), which is a polynomial ofCy(t).*® Pitts and Anderson

and use it to investigate the assumptions, limitations, and developed an elegant diagrammatic theory for KCMs and
possible extensions of the standard theoretical techniques, e.g.pbtained the irreducible memory kernel from a set of irreducible

mode coupling theory (MCT). diagrams'®2° A subset of these irreducible diagrams leads to
the simple mode coupling approximation (SMC) for the East
tPart of the special issue “Hans C. Andersen Festschrift”. model: Mg(t)_ ~ ¢(1 — c)Cy(t). The resulting correlation
* Corresponding author. E-mail: jianshu@mit.edu. function is reliable forc > 0.5 but does not decay to zero for
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Figure 1. MC tree for sorting the complete basis set and visualizing mode-couplings, where all the modey apetalisplayed.

c < 0.5 (T = ). It is known that the East model does not than any subspace where one or more val® modes are
have a glass transition at a nonzero temperature and exhibits grojected out is required in describing slow dynamics of
divergent time scale only &= 0 (i.e., Ty = 0). To avoid the dissipatie systemsAs a result, full correlation functionS(t)
unphysical ergodic-to-nonergodic transition, Pitts and Anderson and irreducible correlation functiong€y(t) defined in the
extended SMC to the extended mode coupling (EMC) by complete space are slow functions, whereas reduced correlation
incorporating higher order diagrams through a difference functionsCi(t) and standard memory kernelg(t) defined in
function A(2). The prediction of EMC removes the plateau but projected space are not necessarily slow. MC closures or long-
decays too fast foc < 0.5. A central result of this article isto  time asymptotic relations must be applied@(t) and Cy(t),
derive SMC and EMC through matrix algebra and improve the which are related through a simple identity. The matrix
accuracy of our prediction in the temperature regime between gerivation in Appendix B obtains recursive expressionsder

T. andTg through the use of the asymptotic relations and better (t) and CL'(t). The equivalence to Kawasaki’'s operator defini-

mod_e coupling clo_sures. In many ways, Anderson_’s diagr_am- tion of M (t)8 is shown in Appendix C and is generalized to
matic theory inspired our theoretical efforts. An interesting higher orélers

outcome is the equivalence between the two formalisms for the Next we study collective kinetics by MC closures. Linear

East model,' as demqnstrated n Flgurg > relations betweert;(t) andC, (t) allow us to recover Pitts and
The matrix formalism and conclusions drawn from our , 20 K P
. - Andersen’s SM&-2° and its higher order generalization in
analysis are not limited to the East model and are completely - ;
N . . section V. To remove the plateau predicted by SMC closures,
general for a class of dissipative systems with detailed balance, . ; -
we calculate perturbatively a difference functia(z) between

such as colloids and lattice spin mod&l8? In their study of th " d the SMC cl ) fion VIA "
interacting Brownian particles, Cichocki and Hess found that . e exaciM, (2) and the closure in section , resuiting

the memory function for density fluctuations of colloids cannot in the EMC formulatlon prOpo.Sed by'P|tts gnd Ander@tj' rom

be interpreted as a generalized dynamic viscosity and is not aaccurate Ion_g-tlme asympto_tlc relatlonshl_ps, we c_ierlve a long-
good candidate for MC approximations. Instead, they introduced time correction method, which agrees W'th the S|mulat|on for
an irreducible memory kernel, which is related to the memory smallcin section VIB. Howe\{er, all these microscopic methods
kernel and displays the characteristics of dynamic viscasity. can only ddescnbet cool:_)ergilve mOtt'lflde.'n a limited t_ertnporal
Kawasaki introduced a rigorous operator definition of the rarllge anf ar\e/”nlo apzllca € ?r?art e’; hlvzrgence pc;!nl.f
irreducible memory kernéf An important physical insight was _In section » We discuss the stretched exponential func-
observed by Pitts and Anderson via comparing the dynamic t|ona_l form in the E_ast mOdel' The stretched e>_<pon(_ant_|al form
structures of dissipative and nondissipative syst&hiEheir predicted by domgulg gynamlcs |s.found_to(ﬂ1(t) na limited
analysis revealed that the irreducible memory function, rather temporal rangé?>19*%From the simulations, we find that the

than the second-order memory function, has a more fundamentafWO'Spin_correlaﬁon functi(_)rﬁjz(t) can be C'?a”y separated_into
physical interpretation and is more useful for constructing mode a short-time regime described by the basis set perturbation and

coupling theories. Our matrix formalism provides an alternative a Iongl-tlt(ne refg(lcmt:' f'tttﬁd by a stretc?ed ?;g)otnentlal form..tﬁ\s a
perspective on the issue of the irreducible memory kernels angconvolution o 2(t), the approximation taCy(t) agrees wi

introduces a class of full and irreducible correlation functions simulations over the whole temporal range. This result supports

that are slow functions and a class of reducible memory kernels?ndi'rec“y the notation of domain dynamics and suggests that it

and correlation functions that are fast functions. This formal '> & better approach to describe slow relaxations in the East
development is presented in section IV and Appendices B and mode.

C. Readers who are mainly interested in the detailed calculations
of the East model can skip the formal analysis.

Outline of the Article. Through the analysis of the East We present a brief introduction of the East model in this
model, we investigate the nature of the irreducible memory section’® The complete basis set of this model is constructed
kernel and collective kinetics in the temperature regime between following the general approach by Oppenheim e&f.and is
Ty and T.. The starting point of our calculations is the the fluctuation basis defined by Pitts and Andersdtf.Cor-
construction of the complete basis set in sectio#:#.26The responding to the adjoint kinetic operathr a matrix L is
truncated basis set expansion represented symbolically by thedefined to describe kinetics of all the modes in the complete
mode coupling tree in section Il is a direct and systematic basis set®
method to calculate the single-spin self-correlation function. In ~ The East model is a 1D chain of spins that can have two
section 1V, this technique combined with the snwadisymptotics valuesn, = 1, 078 A spin at positiori can change the value of
allows us to calculate the mean relaxation times of linear and n; only if its nearest neighbor on the right, spid- 1, is in the
nonlinear spin correlation functions, as well as their relation- upstaten+1 = 1. The corresponding rate constants laye, =
ships. As a general result, we find the complete dynamic ¢ andk;—~o = 1 — c. Satisfying the detailed balance gives the
phase space including all the relent dynamic modes rather  average concentratianof up-spins ; = 1), which is related

[I. Complete Basis Set of the East Model
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to the temperature bhy= 1/(1+ €T for 0 < ¢ < 1/2. A general
rate equation fs
n=Ln=

—Ni AN, (1)
where An; is the occupation fluctuatioAn; = nj — c. The
equilibrium distribution of the system is trivid(n = 1) = ¢
andfe(n; = 0) = 1 — c. The correlation function of a dynamic
variableA is defined aCa(t) = feAe-'ALl where the angular
bracket is a direct average over phase spRceA(I')=
JALAI)/ fdI, andfeqis on the left side as a result of using the
adjoint kinetic operatot..8:23

By distinguishing linear and nonlinear modes as slow and

fast modes, and applying the Markovian approximation to fast
RPYNg PP | Calt) = Tee(0)€- 1Ay (0)0)

modes, we can reliably predict relaxations in gas and normal
liquids. In glass-forming liquids, non-Markovian processes

dominate and nonlinear modes become slow and have to be .
. Note thatk refers to a set, whereas refers to a single mode.

categorized by their characteristic relaxation time scales. Fo
lowing this idea, we include all the products of relevant linear
modes in a complete basis dét The value of each dynamic
variable at any given time is a linear combination of projections
onto all the modes, consistent with the Mori continued fraction
method?’ In this article, the complete basis set is the starting
point of our theoretical analysis. In practice, the construction
of the complete basis set is associated with the Gr8ohmidt
orthonormalization methotf:2526The linear mode in the East
model,Aq(i), corresponds to the fluctuation of spiand is given
by

n;
Vel —c)

which satisfiesTeqA1(i) 0= 0 andFeqfa(i) Au(i")O= 6i where

A) = 2)

Wu and Cao

We denote the space composed of the modes with the same
first spini asT;. Because each mode in the spdgds only
influenced by other modes i, T is an independent closed
subspace of. Our future derivations are restrictedlig, which

will be considered the complete space (basis set) in the
remainder of this article.

[ll. Basis Set Expansion

The structure of matrixL implies that there is no cross
correlation function between different spins in the East model:
Ca(i, jit) = Dequ(i)e-'Ac() = Ca(t)0ij, whereCy(t) is the single-
spin self-correlation function. As the first step of our theoretical
analysis, we apply a basis set expansion method to calculate

For convenience, we sort all the modedninto basis sets
of different orders, denoted by where the order index ik.

Beginning with the first-order basis sei = {A;(0)}, each
subsequentk(+ 1)th-order basis sej.+1 is composed of modes
that are coupled to one or more modes in kifeorder basis
setgk. Each kinetic block matrix satisfies

Ly = Bt Q0= Ly ar T LiciOie (7)

As shown in Figure 1, the first four basis sets gie= {As-
(0)}, g2 = {A2(01)}, gs = {As(012}, au = { A(02), A4(0123}.
The kinetic matrixL becomes a block tridiagonal matrix after
sorting.

To visualizeL, we introduce thé/C treeshown in Figure 1.
Numbers preceding a bracket denote the spin sequence of a
mode, and the number inside the bracket denotes the eigenfre-
quency Q of this mode, i.e., negative of the corresponding
diagonal matrix element df. For example, @f representg\;-

d is the Kronecker delta function. Nonlinear modes are generated(0) with Q; = ¢, and 01[1] represeni&,(01) with Q, = 1. The

from different spins because of the identity= n (s > 0).
Eachmth-order (n = 1) nonlinear mode factorizes as

Aniqip=eig) = A(iy) Ag(in) === Aglin)

where the indexes are ordered as< i» < ...

®)

< im) to avoid

overcounting. Because each mode is a unique function of its

sequence {iz:++im) represents mod&, unambiguously. All the
modes in this complete basis set are orthonorffighmnAn =
(Sm'm.

We expand the adjoint kinetic operatbrin this complete
basis set to construct a matiixoy definingLmm = HeqAml Anll
We prove in Appendix A that the diagonal matrix elemegpty,
is

Loym= [ﬂeﬁm(iliz"'im)LAm(i1i2"'im)D
= —[(m=p)c+p(1—oc)] 4)

wherep is the number of spins that satisfy;q) = ix + 1. Off-
diagonal elements are nonzero for the coupling betwggsand
modes in the sefAy}, which is

Amfl(iliZ."iki[kJrZ]."im) if i[k+1] =i +1

P = [Amﬂ(iliz"'ik'[ik"' Wigepayeim) gy > e+ 1
®)

and all the nonzero off-diagonal matrix elements have the same

value,

Loyt = oAk A= — ve(1 — ) (6)

modes in the same column belong to a basis set of the same
order. Each arrow represents a nonzero kinetic coupling by eq
6 between the two modes connected by this arrow, correspond-
ing to off-diagonal block matricel k1 andLis1x. For example,
arrows betweeny = {Ax(02), A4(0123} andgs = {A3(023),
As(01234),A3(013)} give

0

1

Lys=—+c(l—0) [

Ls4=—vc(l =) [ ®)

e =)

1
1
1
0
0

Because the Laplace transform ©f(t) is Cl(z) = [fequ(zd —
L)~1g;[J the calculation ofC;(t) is equivalent to inverting the
matrix,
A—-1Ly,
Z-L=|"Lz

_Ll,Z

A= Loy -, ©)

where each block matrix is defined by eql7is the identity
operator, and is the identity matrix. Applying block matrix
decompositionsC,(z) becomes

C@=[@-1)",=z+Q - @]
=[z—- Ly, — Ll,Z@rZ(Z)LZ,]] - (10)

whereQ;j is the first-orderA eigenfrequench(z) is the first-
order memory kernel, andy(2) = [(zZ — L) Y11 is defined
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by a submatrix,

L2,2 L2,3

Ly=|Ls2 Las ", (11)

Extending the decomposition to higher orders results irktie
order reduced correlation functignCy(2) = [(Z — Ly 11,
where

Lk,k Lk,k+l

er= Livix Liraprr - . (12)

By removing all the modes on the left side @fin Figure 1,
we get the MC tree corresponding . Similar to eq 10, we
have a recursive equation fal(2),

C@ =2+ M2 (13)
where thekth-order eigenfrequency matrix @ = — Lxx and
the kth-order memory kernel i$4(2) = Lix+1Ch1(2Lit1k
By definition, C(t) differs from thefull correlation function
Ck(t), where all the modes iy are taken into accoungy(t) =

feqoke-'ak The recursive expression for full correlation func-
tions is derived in Appendix B. These two correlation functions

are employed to study relaxations of nonlinear modes in the

next section.

Motivated by standard truncation techniques, we apply a basis

set expansion method, which is equivalent to the Mori continued
fraction formalism?’” Truncated at the first-order basis sgt

we haveZl — L~z — L1y =z+ candC{(@) = (z+ )L
Truncated aty,, we have

a- Ll,l _Ll,Z
_LZ,l a- Lz,z

z+c Ve —c)
Je@d—c) z+1

Z-L~

(14)

and CP@z) =[z+ ¢ — ¢l — ¢)z + 1)L In general,
truncation aty ignores all the modes higher thgg As a result,
we approximate the matrixz{ — L) as

_Ll,Z
15
.. _kal,k (19)

_Lk,kfl a- Lk,k

and thekth-order basis set expansion of the single-spin self-
correlation function becomes

Y@ =1z+c—cl—c)z+1
—c(l—c)fz+2—c— 2+ Q, (16)

where matrix manipulations are implicit.
By plotting C(t), C®(t) and simulations in Figure 2, we
find that with the increase of expansion order, the accuracy of
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Figure 2. Comparison ofC4(t) from basis set expansions and from
simulations forc = 0.2, 0.4, and 0.8. The dashed lines a]'@(t)
truncated aty; = {As(012)}. The solid lines ar&®(t) truncated atys

= {A;(03), Ay(0124),A4(0134),A4(0234),As(012345}. The symbols
are simulation results.

technique is a multiexponential function bf Heterogeneous
cooperative motions suggest tl@i(t) follows a more compli-
cated form as demonstrated by Pitts, Young and Andéfsen.

IV. Mean Relaxation Time and Slow Dynamics of
Nonlinear Modes

Because of the truncation at a finite order, the finite basis set
expansion method cannot fully account for many-body effects,
and the predictions af(t) deviate from simulations in the long-
time limit. Using non-Markovian approximations such as MC
closures, kinetics of nonlinear modes is expected to help improve
predictions ofCy(t). For dissipative systems, MC is applied to
the irreducible memory kernel](t) rather thanM(t). Al-
though several explanations ofj(t) were proposed in the
literatures’>24 and a generalized operator formalism was
developed by Kawasak® our basis set formalism provides an
alternative perspective. On the basis of the analysis of the East
model, which is a simple dissipative system with established
asymptotic$;1-16 we demonstrate the preferenceldt (t) to
M;(t) in the MC closure from the view of the complete basis
set.

A. Lowest MC Tree. The mean relaxation time of the linear
mode is defined as; = /3 dt Ci(t) = @1(0), which can be
evaluated by the basis set expansion. Following Mauch and
Jackle's approach,we attempt to achieve the dynamic scaling
by calculatingz;(N) for a finite N-spin chain beginning with
spin 0. Imposed by a fixed boundary conditior(t) = 1, we
haver;(1) = ¢! for a one-spin chain, and

7,(2) = (2, — Ll,ZQZ_lLZ,])_l
=[c—cl-0)]'=c? (17)

for a two-spin chain. To facilitate calculations«{N), we apply
the MC tree introduced in section Ill to finite spin chains.
Because only spin(0 = i < N) is involved in theN-spin chain,

the theoretical predictions systematically increases. For a largea new finite MC tree for this chain is constructed by excluding

¢ (0.8), the truncation ajz already provides a reliable prediction
of C4(t). As c decreases, the minimum truncation order to
reliably predictCy(t) is aroundc™, which implies that the

expansion method is not practical near the divergence pgint,

=0 (Tq = 0). In fact, C(lk)(t) predicted from the truncation

all the modes with spif(= N). Note that a truncation at sph

is different from the truncation aj for C(lk)(t). As a result, the
highest order reduced correlation function@&(z) =@+
Qk)~1, whereK denotes the highest order basis set in the new
MC tree. All the lower order functions are then recursively
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3-Spin Chain:  O[c] —= O01[1]—= 012[2-c]—= 02[2c]

qQ % 9 g
02[2c] 023[1+c]
4-Spin Chain: O[c]—>= O01[1]—> 012[2-c]<
0123[3-2¢] 013[1+c]—> 03[2c]
qu [¢F) qs Q4 [*H g5

Figure 3. MC trees for three-spin and four-spin chains. As a result of truncation at spin 2 and sfjim3he three-spin chain argl anddj in
the four-spin chain differ from their counterparts in Figure 1.

0245[1+2c]

02[2c] 023[1+c}—=0234[2]— 024[3C]<
O[c]—>01[1]—>012[2-c]< E 0124[2]—MC1

0123[3-2c}—MC2

04[2c] 0146[1+2c]
MC1: 0]4[1+c]< > 045[1+c]—> 0456[2]— 046[3c<

0145[2] 0467[1+2c]

03[2c] 0135[1+2c]
MC2: 01 3[1+c]< > 034[1+c]—> 0345[2]— 035[3c]<

0134[2] 0356[1+2c]

Figure 4. Truncated at spin 7, the lowest MC tree for an eight-spin chain, where labels of basis sets are omitted. The number of spins for each
mode is smaller than or equal to 4 f1log. 8).

obtained, e.g.@z(z) = (z+ 1)t andty(2) = ¢ 2 for the two- Ci(t) and C(t), we investigate slow dynamics of nonlinear
spin chain. The MC trees for three-spin and four-spin chains modes in this subsection. In the smalimit, 7, scales as; ~
are shown in Figure 3, givingri(3) 2 d(c™? and A(c™9), wheres ~ (log, ¢ ™) % w. The mean relaxation
71(4) 0 o(cd). time for the second-order reduced correlation function is

Similar to Mauch and Jackle’s calculatioHswe find that
modes in a finite MC tree contribute tg at different orders of
c. For example, for the four-spin chain, the lowest MC tree,

_ -1

7, = C5(0) ST 1qc+ O(c?) (18)
()

O[c] — 01[1] — 012[2— ¢] — 02[2c] — 023[1+ (] wherer, differs from; in the order ofc and does not diverge
in the smallc limit. By definition, we have

= _(L_l)l,l = —EaL _lChD
7= —[(L) 111 = ~Hfi(LQy) gy (19)

where projection operators are definedPas= g0k andQx

=1 — YX_, P« Here we emphasize the notations of the
complete dynamic spaemd theprojected dynamic spacehich

are frequently used in this article. The complete dynamic space
- . L . I'o includes all modes influencing the relaxation of spin 0, i.e.,
N-spin chain. The number of spins in each mode is Ie_ss than OF all modes with the same first spin 0. A projected dynamic space
equal to ¢+ 1) for the lowﬁﬁt MC tree, and the leading term is a subspace of thEy by projecting out one or more relevant
of 73(N) is given byzy(N) — ¢(c™>), which is also valid modes, e.gQ1lo = I'o — {A1(0)}. As a resultz is calculated

for anN-spin (2 < N < 2°™) chain. The lowest MC tree for  oyer the complete spade, whereasr, is calculated over the

an eight-spin chain is shown in Figure 4 as another example. projected spac®:lo. Next we calculate the mean relaxation

The proofs for an arbitrary chain of finite length are given in  time of the second-order full correlation function ov&y;
refs 11-16.

The mean relaxation time; for an infinite spin chainis  ; = ¢ Q)= —(L ™Y, = — L %g,0~ o(c Y ~cr
derived from lim—.71(N). Simulations and theoretical calcula- 2 20) ( )2'2 [ﬁeqqz % ( ) (201)
tions have shown that the relaxation of spin 0 is mainly

controlled by the first up-spin on the rigﬁ%?‘lS Because the The slow dynamics ofj,; is described byC,(t) overT'y instead

provides the leading termry(4) ~ @(c~3), whereas a branch,
0123[3—2c] — 013[1+ c] — 03[2C]

only helps modify the coefficient af 3. By extrapolating results
for N(=16)-spin chains, we find that;(N) is predominantly
determined by the lowest MC tree in the smalimit. If sis a
positive integer, the lowest MC tree for &{=2%-spin chain

is constructed by excluding all the branches beginning with a
mode having more thas + 1 spins in the MC tree for the

mean distance between two adjacent up-spins isin equi- of C4(t) overQiTl'o. Another interesting result is that the simple
librium, it is reasonable to s = c™* as Ctﬂoe effective chain  Gayssian factorization scheme is not valid in the East model
length of the infinite spin chain, giving; — (c'°%F). This because of asymmetrical kinetic constrafifear g, = { Ay(01)},
result has been derived rigorously elsewhéréé the kinetics of spin 0 is controlled by the state of spin 1, whereas

B. Slow Dynamics of Nonlinear Modes.In the previous spin 1 is independent of spin 0. From this microscopic picture,
subsection, we discussed the dynamic scaling of the East modeh reasonable factorization schemeigt) ~ cCy(t) where spin
by studyingri. As the products of linear modes, the relaxation 0 achieves equilibrium quickly and spin 1 has a slow relaxation.
of nonlinear modes also becomes slowcas 0. By studying Equation 20 is consistent with this factorization scheme. We
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extend the calculation of the mean relaxation times to the third wherez dependence i®(2) is omitted,Q; = Q,(z=0). To be

order, obtaining complete, a recursive expression faf(2) is derived in eq
- B12. In comparison toCk(t), Cy(t) has slower initial but
3= —[(Ly l]lyl% 1+c+ o similar long-time behavior. Although there are other choices
for nonlinear slow functions based on modifying eittig(z)
T,=— (L_1)3,3% ¢ ~ P~ cr, (21) or Ck(t), we restrict analysis t@x(t) and Cy(t) in this article.
In summary, we observe that full and irreducible correlation
The slow dynamics ofj; is again described bgs(t) over Iy functions are slow functions, whereas reduced correlation
whereasCj(t) over a projected spad@.l is fast. functions and memory kernels are relatively fast in dissipative

Although the above argument is specifically derived for the Systems. The microscopic cause of the difference is that low-
East model, a preference of full correlation functions to reduced order modes are slow. Relaxations of nonlinear modes in the
correlation functions for slow dynamics of nonlinear modes is ong time are strongly affected by the interaction with slow
universal in dissipative systems. To demonstrate this preference modes. Once lower order modes are projected out, the resulting

we invert an arbitrary kinetic matrix. to calculater, = reduced correlation functions and memory kernels fail to capture
—[(L) Y11 and 7 = —(L Y We demonstrate in the first the slow relaxation of nonlinear modes. The recursive expres-
’ 5 R . ir . .
subsection of Appendix B that the mean relaxation times of Sions for Ci(t) and Cy(t) appear in Appendix B and are
the full and reduced correlation functions are related as applicable in other dissipative systems, e.g., colléfds.
_L_lzl _ (Trk)—l _ Qk 22) V. Simple Mode Coupling(SMC)

In the remainder of this article, we discuss the relationships
where Q- = Qk(z = 0) is defined in eq B6 and includes of Cy(t) andC(t) with MC closures and other nonperturbative
kinetic contributions from basis sets lower thgnBecause of ~ approximations. Studying such a simple kinetic system can help
kinetic constraints@y > 0), 0 < 7, < 7, holds fork = 2. Near ~US improve our understanding of MC in the regimeTgi= T
the divergence point of the East model,—~ o and 0< 7, ~ 5 Tc: The 'flrst-.ordelr S|mp!e mode coupllng(SMC).approxma-
Qt < 7 are valid, indicating thati(t) always decays much tion is derived in this section after compancir.ré(t).wnh Ca(t).
slower thanCy(t) in the long time. In summary, full correlation The second-order SMC base'zdlo‘]a(t) and C3('.[) is found to
functionsCi(t) defined in the complete dynamic space describe MProve the accuracy of predictions Gi(t) but introduces the
slow dynamics of nonlinear modes, whereas memory kernels S2Me€ _unphysmal phenom_ena of the ergodic to nonergodic
M(t) and the corresponding reduced correlation functions transition at smalt as the first-order SMC.

r ' : : . . A. First-Order SMC. The second-order irreducible correla-
Cy(t) defined in projected dynamic spaces are not necessarllytion function is obtained from eq 23,

slow.
C. Irreducible Memory Kernel. In this subsection, we . cl—¢ . -1
extend slow dynamics of nonlinear modes to explore the nature Cy@d=|z+t1-———"-M,2
91‘_ the irrgducible memory kernel. Explicit expressions of ¢
C3(2) andC(2) are =[z+c—M,2] " (26)
Ol =[a+Q,— Q5 — N, Comparing eq 26 witlt;(2) = [z + ¢ — M,(2)] %, we find that
9 . 9 C3(t) has the same initial decay @s(t), lim«oC3(t) ~ Ca(t) ~
=[2+Q,—1,,Q; L, — My2)] (23) e ¢, which makesCh(t) a better choice tha(t) in the first-
. _ L N 1 grder SMC. Analysis of; andt, gives a long-time expression,
G0 =[2 + Q, — Q;3(2) — My(2)] Ch(0) ~ C4(0) ~ ((c™9), where the slight difference between

~ . : _ c—0
=[d+Q,— L, (& + Ql)_lLl’Z ~ VL@ (24) the orders ofc is |gnoirred because ~ ((log; ¢t) — oo
Similarities betweenC,(t) and Cy(t) at both short and long

where@izr(z) is the second-orddrreducible correlation func- times suggest a reasonable linear MC closure,

tion, which is related to the irreducible memory kernel by
M{(2) = L1Cy(2)Lz1 To be consistent with our previous
discussions ofCi(t) and C(t), we analyzeC3(t) instead of  \yhich is the SMC approximation proposed by Pitts and
M; (). In Appendix C, we present a detailed proof of the Andersen using a diagrammatic metH8@° The equivalence
equivalence between the matrix expressionCbft) in eq 23 between the diagrammatic method and the complete basis set

C() ~ Cy(0) (27)

and the operator expression Mi{(t) introduced by Ka- formalism is demonstrated in Figure 5. Note that eq 27 is not
wasakil® From eqgs 23 and 24, the difference betweg)(z) consistent with our factorization argument in section VB,
and C,(2) is a term involvingg;, which behaves a®!, in lim—.Ca(t) ~ cCa(t), which will be explored to improve SMC

Cl'2 and as #1 + Q)1 in C,(2). As a result, these two  in section VIB. Substituting eq 27 into
correlation functions have different initial behaviofs,(t) ~ A _ ity a1y 1
expl-(Q2 — QY Calt) ~ Ci(t) ~ exp(-Qat), and CE(t) > Gl@)={z+dl+ 1= aG0@] 3 (28)
Ca(t) for t — 0, but both have slow relaxations with the same
mean relaxation time(h(0) = C,(0).

As shown in the second subsection of Appendix C, we
construct thekth-order irreducible correlation function,

gives a self-consistent SMC equation,

c -1
1+ @1 - oM

M =|z+ (29)

Cikr(z) =[a+Q - Q:Z - I\AAIk(Z)]ﬂ (25) which was first proposed by Pitts and Anders@e
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Pitts and Andersen’s diagr tic expressi Matrix expressions
L —_— l 37 Lm,m H L mm + ]
c I-c Je(l-c)

wal /7 N+ /N N\ + R/\+ oo | LiCioLu

Mi(2) /_\ _|_ / \ + / :; \ + PP Liz C2(2) Las

SMcC f\ + /‘ \ + N + oo Ci(z)=Ci(2)

EMC Cig-_S1@
A@2) + + eee 1+A(z)C1(2)

Figure 5. One-to-one correspondence between Pitts and Andersen’s diagrammatic method and the matrix formalism.

1 - 02[2c]
1 MC Tree A: O[c] — O1[1] — 012[2—c]< o 0o o
0.8 o - 0123[3-2¢]
R Q %@ B Qs
0.6 02[2c]
:-‘:/_ MC Tree B: O1[1-c(1-c)/c=c] — 012[2—c]< o 0 0
O
04 | 0123[3-2c]
R q Q% s
" Figure 7. Two MC trees for the first-order SMC approximation. As
0.2~ N an abbreviation of Figure 1, MC tree A correspond€:{(), whereas
| \ s A%A : MC tree B is forCy(2), where the eigenfrequency of modeg01) is
— " S oosenpitaes S baaml i aisiad modified to @, — Q5).
801 1 100 10000 . iy
t modes, e.9.A3(012) is replaced byAx(01), so thatCy(2) is

Figure 6. Comparison ofCy(t) from the first- and second-order SMC  overestimated and we haVg > Ty One can further understand
approximations and from simulations for= 0.2, 0.4, and 0.8. The the first-order SMC through a continued fraction,

dashed lines are the first-order SMC results calculated from eq 29. The

solid lines are the second-order SMC results calculated from eq 35. C3M%z) =1/z+ c—c(1—c)/lz+1—c(1—c)/z+1— ...
The symbols are simulation results. (30)

which corresponds to a MC tree without branches,

In Figure 6, we plotC;"(t) for ¢ = 0.8, 0.4, and 0.2. .
Predictions ofc3"'(t) are accurate in the short time because of O[c] = 01[1] = 12[1] = 23[1] = =+ — (i, i + 1) — ...
lim—oCj(t) ~ Ca(t), and for large values of,2° but CV'(t) (31)
becomes much less reliable@er T decreases and predicts an  indicating that the first-order SMC is a mean-field approximation
unphysical plateau faz < 0.5, lim—C$"(t) = (1 — 2¢)/(1 — in which each spin is affected by a two-spin segment. Only
c) = 0. The appearance of this plateau corresponds to a SMCtwo eigenfrequencie€; = c andQ, = 1, appear in the partial
transition point aic; = 0.5 (T = ), which is different from resummation. However, simulations and theoretical calculations
the real divergence pointg = 0 (Tg = 0). Figure 7 shows that  suggest thaty(t) is a weighted average over domains at low
each mode in the MC tree f@f]‘g(z) is replaced by lower order ~ T.15
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Our calculations of the East model suggest serious deficien-
cies of MC in the temperature regime betwelgrand T.. For
dissipative and nondissipative liquids, we find that a four-point
correlation function is similarly overestimated by the Gaussian
factorization schem&:28Recently, Schweizer combined the MC
approximation with a hopping model by a phenomenological
potential and significantly improved the prediction of the glass
transition point in a hard-sphere liquigi*®However, it remains
a challenge to develop a microscopic technigue to predict a
crossover from the MC trapping to the hopping processTfor
<T<Te

B. Second-Order SMC.We now extend Andersen’s SMC
to higher orders. Although different MC closures are possible,
a simple calculation involving>3(t) and G(t) is presented as
an example of higher order SMC approximations. Explicit
expressions of5,(2) and C(2) are

&d=[z+1- 9 i B (32)
. i 1- NN
Ci@=|z+2- c—%— My(2)
L Cc
=[z+1-Ny2] " (33)

respectively. The initial relaxations of these two functions are
the same, lim-oCa(t) ~ C3(t) ~ e"t. The integrated lifetimes,
7, and 73, give a long-time relationship(,(0) ~ C%(0) ~
O(c™9), where we once again ignore the slight difference in the
orders ofc. Because of these two limiting relationships, a linear
SMC closure,

CH() ~ Cy(1) (34)
gives
cl-¢ c(1-9G"@ |
ztc 14+ 1-0oCMR)

(35)

C?Mc(z) =|lz+1-

which is used to obtailt(t).

In Figure 6, we comparé€;(t) predicted from eqgs 29 and 35
and simulations foc = 0.8, 0.4, and 0.2. Although a rigorous
calculation shows that the transition point predicted by eq 35
is the same as that by eq 29, = 0.5 (T, = ), the value of the
long-time plateau of1(t) decreases from (+ 2c)(1 — c) "1 to
(1 — 2c) for ¢ < 0.5. Rewriting eq 35 as a continued fraction,

ASMC ) — _lm9_ 4 oo
CC"™@=1z+1 ST o cl—o/lz+2—-c
c(l-¢o _
7T C c(1—c)/-- (36)

reveals that the second-order SMC is a mean-field approximation

in which three-spin segments are involved. Similar results can
be found for other higher order SMC approximations. Recently,
Szamel improved the MC prediction of the glass transition point
in the hard-sphere Brownian liquid by the second-order calcula-
tion.31 Our results for the East model suggest that higher order
MC approximations have the potential to predict the glass
transition but difficulties remaif?
In this section, we derived two SMC approximations for the

East model, through comparisons betweég(t) andCj(t), and
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betweenC(t) andC3(t), respectively. Our calculations suggest
that SMC has difficulties foifg < T < T. because the partial
resummation overestimates slow functions of nonlinear modes,
e.g., Cy(t). The second-order SMC improves prediction but
still fails to remove the unphysical plateau.

VI. Nonlinear Closures beyond SMC

Discussions in the previous section show deficiencies of SMC
approximations in the regime betweg&pandTe.. In this section,
we study two alternative MC methods and in next section, we
study a numerical approach on the basis of domain dynamics.
A. Extended Mode Coupling (EMC). As c¢ decreases,
detailed nonlinear kinetics in the East model become increas-
ingly important and cannot be simplified as in SMC. Exact
expressions fo€,(z) and C(2) suggest
C@={z+tc— M@ + M) — VL,
=[C@+A@] (37)

where a difference function is defined a§7) = Ml(z) -
M,(2). Substituting eq 37 into eq 28 gives the self-consistent
equation,

c1—oc
[CIM@I ' +A@ +1-c

(38)

CE ={z+c—

which is consistent with Andersen’s extended mode coupling
(EMC) approximation. In ref 20, Pitts and Andersen obtained

expressions foA(2) through a set of diagrams, which represents

corrections to SMC. Here eq 37 gives an explicit definition of

A(2) that allows systematic calculations. Figure 5 demonstrates
the relationship between the matrix and diagrammatic ap-
proaches.

We evaluateA(z) by basis set expansion. To be consistent
with section lll, the order oAA(2) is defined by the order of the
highest basis set involved in the calculation. For example,
truncated aty,, we getA@(2) = ¢(1 — c)(z+ 1)L AG(D) is
truncated atys,

A% = « ;(;)— C) B 205_1 2_ —C )c (39)
ZJrl_z+2—c

In Figure 8, we plotCT“(t) evaluated byA®)(z) and A©®)(2)
along with simulations foc = 0.4 and 0.2. The persisting long-
time plateau ofcV(t) is removed. Comparing Figures 2 and
8, CEY(t) and c¥(t) at the same order are indistinguishable.
To understand these results, we rewrite eq 38 as

@ =
/z+c—c(A—0c)fz+ 1+ A2 — c(1 — ¢)/--- (40)

BecauseA(0) ~ ((c?) > 0, we haveCES(t) > 0 and the

plateau is removed. Expandifd¥(2) in eq 37, the leading term

of CEV(2) is

i@~
liz+c—c(l—c)lz+1—c(l—c)lz+ Q, (41)

which is indistinguishable fromc¥(t) at the same order.

Equation 41 also shows that the reliable predictiorcp“(t)
at a givenc is obtained through expansion to order of,
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Figure 8. Comparison ofCsy(t) from the EMC approximations and
from simulations forc = 0.2 and 0.4. Using eq 39, the dashed lines
are calculated from\@)(2) truncated at. Similarly, the solid lines
are calculated fromA©®)(2) truncated atjs and cannot be distinguished

from C(t) by basis set expansion in Figure 2. The symbols are

simulation results.

indicating that the EMC approximation is not practical in the

smallc limit if A(2) is evaluated perturbatively.

B. Long-Time Correction. We introduce a long-time cor-
rection by considering accurate asymptotic relationships. In the
first-order SMC, the short-time similarity betweem(t) and
C5(t) is guaranteed, but the different long-timelependence is
ignored. Assuming two limiting expressionig,(0) ~ ¢ —
(c) ansz(O) ~ ¢ — (O(cs1) can be extended to the whole

Z axis, we have

My(2) ~ ¢+ c[M,(2) — c]

Ly | IR & | nip
8‘01 1 100 10000
t

Wu and Cao
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Figure 9. Comparison ofCs(t) from long-time corrections and from
simulations forc = 0.2. The dashed line is the long-time correction
result calculated from eq 43. The datashed line is calculated from
eq 44. The solid line is calculated from substituting eq 45 into eq 13.
The symbols are the simulation results.

agrees with the simulation in a broad temporal range, but one
must still truncate the expansion at high orders for small values
of c.

In this section, we developed two MC-based methods to
improve SMC. Although the incorrect long-time plateau of
c3M(t) is removed by both methods, the improvement of
predictive power depends on the truncation of the basis set,
scaling a1 for c— 0. EMC results are indistinguishable from
those by the basis set expansion, whereas the long-time
correction method becomes less systematic as truncation order
increases. In general, MC-based closures become difficult near
the glass transition point because of cooperative motions on

Using eq 42 as a closure, we have a new self-consistent equationjarge scales.

c(1—c)

@'iT(z)(z) ={z+cC

where the superscript 2 itl;"®(2) indicates that the long-time
correction is applied to the second-order memory kernel.
Although this correction removes the plateaudi'(t), the
underestimation ofVIy(t) in the short time makes:"(t)
decay much faster than simulations in the long time. A long-

time correction based oll,(z) andVi,(2) gives

G =
c(l—o0

O - (1 -z

z+c— 5
c(1—oc)

1 —
[CI"9@] '+ 1-0 - (21— D)z

CalculatingVi(2) andM,(2) in the eight-spin chain, we obtain

another long-time correction,

M4(2) ~

1-3 - - Q- 9@+ ofz— A1+ 0]
C

@A - H{ICT@1 T+ A+ 0 - 22

which is solved self-consistently with;"“(2). In Figure 9, we
compareCiT(t) predicted by these three long-time corrections
and from the simulation foc = 0.2. We find thatC;"“(t)

VII. Stretched Exponential Form

From the previous sections, we find that the analytic methods
associated with the basis set expansion are not practical in the
smallc limit. In this section, we discuss the stretched exponential
form, which is commonly applied to systems exhibiting slow
dynamics. In principle, the correlation functian(t) for a many-
particle system can be obtained by averaging over all the
configurations,

Calt) = Zp(L)CA(Lt) (46)

wherep(L) is the equilibrium density of a configuratidn and
Ca(L,t) is the correlation function associated with this config-
uration. Although kinetics differ als varies, a scaling behavior
is valid in many system®, Ca(L,t) ~ G[t/z(L),{a.}], whereG
is a scaling functiong(L) is the relaxation time associated with
configurationL, and{ o } is a relevant parameter set dependent
on L. This scaling has been demonstrated for the large length
and long-time scale:33

Our scaling argument for the East model is motivated by
Garrahan and Chandler’s study of domain dynarbigs. we
mentioned in section IVA, simulations and theoretical calcula-
tions indicate that the relaxation of spin 0 is mainly controlled
by the first up-spin on the right. Down spins between two
adjacent up-spins form a dynamic domairthe size of which
is denoted by. Because kinetic contributions from spins outside
L are negligible beford relaxes, the relaxation of spin O is
approximated as a weighted average over all the domaiss (0
| < ). In the continuum limit, the equilibrium domain density
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Figure 10. Comparison ofCy(t) from simulations and the stretched
exponential approximation far= 0.4, 0.2, 0.1, and 0.05. The symbols
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Figure 11. Comparison ofCs(t) from simulations and from the
asymptotic approximation foc = 0.4, 0.2, 0.1, and 0.05. The solid

le+06

are simulation results. The solid lines are calculated from eq 49, where lines are calculated by substitutirigy(t) from eq 49 into eq B8. The

b, 7, andf are fitting parameters as shown in Table 1.

is given by a Poisson distributiopeql) = ce™®, which gives
Cyt) ~ [7dice®'Cy(l, 1) (47)

whereCy(l,t) is the correlation function for a domain of sike
In the second article on the East model from our grfup;-

(I,t) is evaluated by simulating domain lifetimes; the corre-

sponding averaged lifetime accurately reproducgs) except

for short times. The initial relaxation is mainly controlled by a
first few modes, which differs from domain dynamics. For

simplicity, we evaluate;(1,t) with a simple exponential form,
Ca(l,t) =~ exp[—t/z(l)}, wherez(l) is the mean relaxation time
for a finite chain,z(l) ~ @(c™'°%). Using the saddle point
approximation, §a;) exp{ —[cl + c°%']} |, = 0, a crude estimate
of Cy(t) in eq 47 is

Cy(t) ~ [ di ce ™ exp(~tc°®)
~ & exp{ —t[l,(1)]°%} ~ e (48)

where lim—q3 ~ ([log, c™1]71) — O is applied. Thus, the long-

time decay ofC(t) follows a stretched exponential, which was

first shown by Garrahan and Chandfer.

The stretched exponential is applicable in the long-time limit
and cannot describ€y(t) in a broad temporal range. In fact,

symbols are simulation results.

TABLE 1: Fitting Parameters for Cgt(t) in Eq 49

C b T ﬂ to
0.40 0.3358 1.93% 10 0.6483 4.174
0.20 0.1839 2.98% 107 0.5339 5.290
0.10 0.09474 9.73% 1¢° 0.4443 36.93
0.05 0.04911 8.12% 1¢° 0.3346 149.1

truncated aigs similar to C(f)(t), and an asymptotic function

(sz“(t) is fitted by three parameterb, 7, and. Here,O(t) is

the Heaviside step function, anglis determined byC5(to) =

sz"(to). The fast equilibration of spin 0 iAx(01) determine®

~ c), andt ~ (c*9=) and § ~ ([log. ¢ are

determined by eq 48. As shown in Figure cht(t) agrees

with simulations for several values of Equation 49 is valid

not only for small values of (0.05) but also for intermediate

values (0.4). The stretched exponential form is applicable to

Co(t) over a wide temperature range. Next we calculaié)

from Cay(t) by substituting eq 49 into eq B8. The results are

plotted with simulations in Figure 11, exhibiting agreement in

the whole temporal range. The fitting parameters for each value

of c are displayed in Table 1. As a convolution@(t), Ca(t)

has a more complicated form than the stretched exponential.
In summary, we discussed the stretched exponential form

arising from domain dynamics. The second-order correlation

function Cy(t) is fitted phenomenologically to a stretched

the simulation by Andersen and co-workers indicates the lack exponential in the long time, and calculated according to
of evidence for exponential or stretched exponential behavior truncated basis set expansion in the short time. Using the

over a broad range of time scaféRecently, Sollich and Evans
argued that a real functional form @Gfi(t) is more complicated
than eq 48415The fact that predictions af;(t) are improved

matchedCx(t), we find agreement between the approximated
Cy(t) and simulations. Compared to analytical methods in the
previous sections, this functional form describes kinetics near

by high-order SMC suggests testing the stretched exponentialthe glass transition point. However, as a first-principle theory,
form for slow functions of nonlinear modes. To facilitate e need to develop more systematic approaches to describe

comparisons with simulations, we considés(t) instead of
C5(t). Simulations in Figure 10 suggest thai(t) exhibits a

clear time-scale separation. A multiexponential function from

the basis set expansion truncatedyais applied in the short

time, whereas a stretched exponential is fitted in the long time.

The overall fitting function is

Cylt) ~ CPMO(t, — 1) + CH 1Ot — t))
8
= Yae “'O(t, — t) + be Ot -ty

(49)

where the perturbation functio@(zs)(t) with {a} and{w} is

domain dynamics.

VIII. Conclusions and Discussions

A. Summary of Results.In this article we systematically
analyze kinetics of the East model on the basis of the complete
basis set and the kinetic matfix A mode coupling (MC) tree
is designed to organize the infinite matiix The finite-order
truncation of the complete basis set leads to a systematic
approach to calculate the single-spin self-correlation function.
The complete basis set is general and can be applied to other
dissipative systems. For example, in our recent article on a 2D
rotor lattice, we calculated reorientational relaxation in the
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intermediate temperature range using the same méthod. B. Implication of Results. The purpose of this paper is not
Applications to colloids have produced promising results in restricted to the East model but is aimed at a general under-
predicting glass transition point3.Our matrix calculation in standing of mode coupling theory by demonstrating its construc-
the complete basis set not only recovers earlier results obtainedion, deficiency, and possible improvement. Here, we assess the
through the projection operator technique but also provides newpredictive power of our analysis of the East model and explore
insights into the irreducible memory kernels, mode coupling the broader implication of the matrix formulation.

and ergodic to nonergodic transitions. Our effort establishes a  Qur analytical results of the East model should be evaluated
one-to-one correspondence between the elegant diagram theor, the context of earlier studies on the same model. Because of
by Pitts and Anderséfand our matrix formalism, as shown in  the simplicity of the East model, several theorists have proposed
Figure 5. exact mathematical procedures to predict its dynamics and long-
An important observation of this article is a characteristic time behavior. But most of these proposals are model-dependent
feature of dissipative systemsull and irreducible correlation and lack the generality of the matrix formulation. Because mode
functions defined in the complete dynamic space are categorizedcoupling theory is the standard tool for studying the dynamics
as slow functions, whereas reduced correlation functions and of low temperature liquids, it is meaningful to apply the mode-
memory kernels defined in projected spaces are r#tifast  coupling description to the simple East model and calibrate the
and do not capture the slow relaxation of nonlinear modzas. underlying approximation systematically. Pitts and Anderson
the basis of this observation, we clarify the nature of the were the first to develop mode coupling closures to the east
irreducible memory kernel introduced by Cichocki and H&ss, model and proposed simple and extended mode coupling
Kawasaki}® and Pitts and Anderséf.For the East model and  expressiort?2° Using the matrix formulation, we are able to
dissipative systems in general, we can systematically derive show that the results of extended mode-coupling (EMC) are
recursive expressions for slow or fast functions, which is the almost indistinguishable from those of the basis set expansion
starting point of applying MC closures and asymptotic relations. method. The proposed long-time correction works wellder

Applying the algebraic relations betweén(t) and (Cizr(t) in 0.2, when the system exhibits strong slow relaxation. Thus, both
the East model, we findCh(t) ~ Ci(t) at short time and’g EMC and the long-time MC closure successfully extend the
Cizr(t) dt &~ [5Cy(t) dt at low temperatures, which leads to the validity of standard mode-coupling theory to lower temperatures.
SMC closure,C5(t) ~ Ca(t), first proposed by Andersen and The strength of the matrix formalism lies in its simple and
co-workerst®2° Although the first-order SMC approximation  transparent structure. To properly assess its predictive power,
provides reliable predictions @fy(t) for largec, it fails for ¢ < we must emphasize the differences between the East model and
0.5, predicting the transition point at = 0.5 instead oy = colloid systems. (1) Mode-coupling approximations belong to

0. As a mean-field approximation, the first-order SMC cannot a class of mean-field approximation, which by definition work
describe cooperative motions on large length scales. In com-better if the interactions are more homogeneous. The East model
parison, the second-order SMC improves the agreement but failshas strong directional local dynamic constraints, which render
to remove the emerging plateauTat indicating the difficulty mode coupling approximations less accurate. (2) Because of
of describing the slow but finite relaxation in the East model the unique coupling, the East model has a linear closure, whereas
using a mean-field approach. Gaussian factorization and quadratic closures are often used for
Two analytic methods, EMC and long-time correction, extend colloids and liquids. (3) The East model has dynamic divergence
SMC. By introducing a difference function into the irreducible at ¢ = 0, whereas the hard-sphere colloid system has a finite
memory kernel to account for nonlinear kinetics, we recovered transition density observed experimentafijiore importantly,
Andersen’s EMC approximatioff. The long-time correlation  the length scale of dynamic domains in the East model diverge
method is obtained from new MC closures based on asymptoticat the glass transition temperature. In real systems, the length
relationships. These analytic methods predict the correct diver-Scale does not grow to infinity. Consequently, the East model
gence pointgg = 0, and can reliably prediaty(t) by increasing may very well represent a more difficult case than colloid
the order of approximation. However, the minimum truncation Suspensions and other realistic systems, for which the matrix
order to reliably predicC;(t) from these two methods scales formulation will be more reliable.
asc™1, indicating the difficulties of these methods in the small To support the above arguments, we recently applied the
c limit. matrix formalism to calculate the dynamic scattering function
Hierarchical domain dynamics in the East model have been of the hard-sphere colloidal system. The matrix formalism not
explored recently:10.12-15 Using the saddle point argument, we only recovers the standard mode coupling memory kernel
obtained a stretched exponential form. The second-order full functiong*3 but also improves mode coupling transition
correlation functionCx(t) is found to have time-scale separation predictions and provides a general factorization scheme for the
and becomes a natural candidate for the basis set expansion islow functions of nonlinear modes. The standard MCT calcula-
the short time and the stretched exponential approximation in tion predicts the glass transition at a reduced density of 0.52,
the long time. The resulting1(t) agrees with simulations and ~ which is significantly lower than the experimental value of
supports indirectly the notion of domain dynamics in the long 0.583! Our second-order MCT prediction gives 0.54 and the
time at low temperatures. third order gives 0.55, which is probably the closest prediction
The East model is probably one of the simplest nontrivial to the observed colloidal glass transition point. Our prediction
dissipative systems that exhibit dynamic slow-down and diver- of the nonergodic parameter below the glass transition is also
gence of time scales at low temperatures. The simplicity of the significantly improved. These encouraging results will be
East model provides a unique opportunity to construct the mode reported in a coming papét.
coupling tree to high orders and to explain the intrinsic dynamic It is known that the standard MCT formalism is not adequate
structures in detail. The insights gained from such analysis arefor describing the glass transition or the long-time behavior of
not only valuable for understanding existing issues of mode low temperature liquids. However, combining complementary
coupling theory, but also shed light on how to improve MC for perspectives significantly extends the validity of standard MCT.
realistic systems. For example, in the 2-D rotor paper, we used the hydrodynamic
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basis set for the high-temperature phase and the spin wave basimatrix element of £ — L)~%. We rewrite eq 9 as

set for the low-temperature pha8eThe connection between

the two different basis sets remains a challenge. Another Z-Lg, (L) O

possibility is to use the low-temperature phase to guide_high- A—1L= _(Lk—l,k)T A-Ly  —(Lern) (B1)
order corrections. In a sense, the stretched exponential ap- T ;
proximation is an example motivated by this possibility. Scaling 0 (L) A~ L
relations combined with thermodynamics may very well provide
the basis for understanding the low-temperature behavior an
serve as the proper input for constructing high-order MCT as

closures. This paper and other recent publications from my group L.. L
represent our effort along this direction. 112

dwhere the submatrix coupling to lower order basis sets is defined

pL= |k (B2)
Acknowledgment. The research is supported by the Petro- k ’ . o Leag
leum Research Fund administrated by the American Chemical Lypo1 Ly
Society, the NSF Career Award(Che-0093210), and the Camille
Dreyfus Teacher-Scholar Award. and the submatrix, coupling to higher order basis sets is
defined by eq 12. Off-diagonal row block matrices are denoted
Appendix A: Kinetic Matrix in the East Model by (Li_1x) = [0 O **» Li_1,J, and the superscripk denotes the
We construct a matrix to represent operatar in the transpose matrix. We obtain thkth-order full correlation
complete basis set of the East model introduced in section I1. function,
The detailed calculations on the matrix elements of L are A L A .
presented below on the basis of the fundamental rate equation, C@ =1z +Q — (@ — M(2] (B3)
LA:(i) = —Au(i)ni+1. For an arbitrary modém(isize=+im), LAn Lo o ]
is given by a linear summation expression, whereQ,(2) is the contribution from lower order basis sets,
m Q2 = Lyp-a[Z + 9y — Q. 4(2)] 1Lk—1,k

LA (i, i) = k;[j:ﬂk)Al(ij)]LAl(ik) L [+ Qs — Lo+ @y

m m . _ '")71Lk72,k71] 71kal,k (B4)
== ;1 |_| Agip) Ay (A1) , , ,
=1 j=1(=K) Following egs 13 and B4, an expression relating the reduced
and full correlation function at the same order is
and the identityn®= n (s > 0) is used to simplify this equation.

Because the spin sequence is specifiedas {; < ... <ip) to [@L(Z)]—l = @k—l(z) + Qt(z) (B5)
avoid overcounting, only spirig-+1) andix + 1 can be the same,
giving [ =1+ Q" (B6)

Al )My =

[(1 — OAi,+ 1) + VoL — o if iy = i+ 1

whereQ} = Qi (z=0). Using eq B5, we recast eq B3 into

. . A L I
cA(iay) + ve@ — DA, + DAy Flpey > ik +1 C(2 = {211 + € — Q2 — Lyyia W)
(A2) I -1 -1
Lgy————L, L B7
Substituting eq A2 into eq Al Ay is simplified to k+l’kz]1 +Q, — Q:;(Z) ket k“’k} B7)
D A(isiy i) = —[(m— p)c + p(1 — OIA(iziy+i,) — Following a matrix formula, [ — A(I + BA)~1B] -1 =1 + AB,
\/7 . ) where the matrice&B andBA are invertible, eq B7 is simplified
c(l- C)[%Am—l('l""k'[kﬂl""m) + to a recursive expression for full correlation functions,
%Amﬂ(il"'ika[ik' + 1], igerqyin)] (A3) C (2= . +
2+ Q, — Q2
wherep spins satisfyif+1) = ik + 1 and are denoted Ly and +[Lk k+1@k+1(Z)Lk+1 d# (B8)
all the other spins are denoted iy All the matrix elements of z+ Q- Q@ T2+ 9, — Q2
L are obtained by substituting eq A3 into the definitid@m,n
= [feAnL An[) which leads to eqs—46. 2. Irreducible Correlation Functions. We construct théth-

order irreducible correlation functions by omittingependence

Appendix B: Recursive Expressions for Slow Functions in kinetic contributions from all the basis sets lower thgn

of Nonlinear Modes i.e., Qi(2) is replaced by, = Q(z= 0) in eq B3,
i _ L O -1
In this appendix, we use the block matrix decomposition in C@ = [z + Q — Q — M(2)] (B9)
the complete dynamic space to derive recursive expressions for . .
the full and irreducible correlation functions. Comparing eq B9 to eq 13, we obtain

1. Full Correlation Functions. Similar to Cl(z), the kth- A1 Nt a1 L
order full correlation functiorC,(2) is given by the K, k) block [C] "= I[C @] ~+ Q7 (B10)
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which allows us to rewrite eq B9 as
1
A~ir +
@

Cira
I
Lyax ikt

Qk_ Qk

Ci(@ = {21I +Q - Q- Lyer1

-1 -1
Lk+1,k} (B11)

By applying the block matrix inversion method, we obtain a
recursive expression for irreducible correlation functions,

&g = [211 +

I
- —
Q — € + Lk,k+1cll(r+1(z)][‘k+1,k

0 oh) (© o ]1
( k k/ ==k k)
(B12)

Appendix C: Equivalence between Operator and Matrix
Formalisms for the Irreducible Memory Kernel

In ref 18, Kawasaki introduced the irreducible operator,
Ly =L —Lo=L+Lo,®, mal (C1)
which is used to define the irreducible memory kernel
M(2) = B@hlQ4[2 — L,Qy1 "QsLqy0]
= Ll,zéizr(Z)Lz,l
C3@ = Aol — L,Q) ',

The projection operatoi® andQy are defined in section IV.A.
On the other hand, the operation expression for the second-
order reduced correlation function is

(C2)
(C3)

CY2) = B[ — LQ,] 'q,0 (C4)
By substituting eq C1 into eq C4;,(2) becomes
Cy2) = Bl — L,Q) '+
@ — LQ) 'L Q,@ — L,Q) a,0
=C3(2) — G995 G (C5)

which is consistent with eq B10 and demonstrates the equiva-
lence between our matrix formalism and Kawasaki's operator
formalism for the first-order irreducible memory kernel.

To be consistent withCh(z) in eq C3, we define the
kth-order irreducible correlation function as

Cikr(z) = Mo l2d — LkﬂQkﬂ]_lQKD

which arises from the operator definitioﬁ{((z) = [feqol2d —

(C6)

Wu and Cao

LQk-1]"tod In eq C6 we introduce thek(— 1)th-order
irreducible operatok 1. The operator formalism in eq C5 gives

Crk(z) = qqk[zl —L

1

1
+ (
1Q-1 24 —LQ k—l\

L k—1)Qk—1#_le_l] qu (C7)

L_

which is combined with eq B10 to give

k-1
Ls =L — Lo Moo [L ZPnJ71Qk71DEquk71L
m=

=L - Lo 409, — Qy) ‘T 4L (C8)
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