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A matrix formalism defined in the complete dynamic phase space is developed to analyze spin relaxation in
the East model and the dynamic slow-down of dissipative systems in general. The truncated basis set expansion
provides a direct route to calculate spin correlation functions systematically and to evaluate the mean relaxation
time. Examining the relaxation time scales of linear and nonlinear modes leads to the observation that thefull
correlation and irreducible correlationfunctions defined in thecomplete spacedescribe the slow dynamics
of a dissipative system and can be related to their equivalent physical quantities in nondissipative systems,
whereas thereduced correlationfunctions and associated memory kernels defined in theprojected space
involve faster time scales and cannot be directly reduced through mode coupling approximations. Matrix
relations allow us to recover the simple mode coupling and extended mode coupling equations first obtained
through an elegant diagrammatic expansion by Pitts and Anderson (J. Chem. Phys.2001, 114, 1101). These
mode coupling approaches are extended to low temperatures by analyzing higher order nonlinear modes and
correcting mode coupling closures with the asymptotic behavior. Further, the second-order full correlation
function can be clearly separated into the short time regime evaluated by basis set expansion and the long-
time regime described by a stretched exponential arising from domain dynamics, and the resulting single-
spin self-correlation function agrees with simulations over the whole temporal range.

I. Introduction

The dynamics of glass-forming liquids is a challenging
problem, which requires a transparent and unified theoretical
framework. Motivated by this challenge, Fredrickson and
Anderson (FA) proposed a kinetic Ising model, where spin
dynamics is controlled by local kinetic constraints instead of
many-body interaction potentials.1,2 The FA model can be
viewed as a physical realization of the hierarchically constrained
mechanism suggested by Abrahams et al.3 and exhibits coopera-
tive motions often described by the thermal-statistical theory
of glass transitions developed by Adams and Gibbs4 and by
Wolynes and co-workers.5,6 Jackle and co-workers extended the
FA model to a large class of kinetically constrained models
(KCM), including the East model,7,8 which is the focus of this
article. A key question one hopes to address with this type of
models is: Can the glass transition be understood from the
perspective of purely kinetic constraints without an underlying
thermodynamic transition? This question has inspired extensive
discussions. For example, Garrahan and Chandler explored the
spatial-temporal structures of domain dynamics in the KCMs
using the intriguing concept of trajectory statistics.9,10However,
we will not discuss this question in this article; instead, we are
interested in another possibility: Given the simplicity of these
models (e.g., the East model), can we achieve a better
understanding of existing theoretical tools for describing viscous
dynamics? To address this possibility, we develop a matrix
formalism based on the complete basis set of the East model
and use it to investigate the assumptions, limitations, and
possible extensions of the standard theoretical techniques, e.g.,
mode coupling theory (MCT).

The East model is a one-dimensional (1D) spin chain where
each spin is only allowed to flip if the next spin on the right is
in the up state. The concentration of up-spins is given by a
constantc, which is related to temperature byc ) 1/(1 + e1/T).
Among various approaches developed to study this model, the
most relevant to our work is the asymptotic relations and mode
coupling closures. Jackle and Eisinger used the effective-
medium approximation (EMA) and the cluster expansion
method (CEM) to calculate response functions.8 Mauch and
Jackle extended CEM and found that the mean relaxation time
increases asτ1 ∼ O(clog2c) in the smallc limit.11 Sollich and
Evans explained this result by analyzing domains composed of
down-spins between two adjacent up-spins.12-15 Aldous and
Diaconis provided a rigorous mathematical proof of this
asymptotic result.16 These known asymptotic relations and the
high-order mode coupling trees (as shown in Figure 1) make
the East model a unique and attractive choice for systematically
studying the dynamic slow-down at low temperatures (i.e., small
c values).

Along a different line, MCT has been applied to the single-
spin self-correlation functionC1(t) of the East model. Jackle
was the first to evaluate the memory kernelM1(t) by a Gaussian
factorization scheme:M(t) ∝ C1

2(t).8 The prediction from this
approximation is not satisfactory when compared with simula-
tions. Kawasaki proposed that the mode coupling (MC) ap-
proximation should be applied to the irreducible memory kernel
M1

ir(t), which is a polynomial ofC1(t).18 Pitts and Anderson
developed an elegant diagrammatic theory for KCMs and
obtained the irreducible memory kernel from a set of irreducible
diagrams.19,20 A subset of these irreducible diagrams leads to
the simple mode coupling approximation (SMC) for the East
model: M1

ir(t) ≈ c(1 - c)C1(t). The resulting correlation
function is reliable forc > 0.5 but does not decay to zero for
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c < 0.5 (Tc ) ∞). It is known that the East model does not
have a glass transition at a nonzero temperature and exhibits a
divergent time scale only atc ) 0 (i.e.,Tg ) 0). To avoid the
unphysical ergodic-to-nonergodic transition, Pitts and Anderson
extended SMC to the extended mode coupling (EMC) by
incorporating higher order diagrams through a difference
function∆(z). The prediction of EMC removes the plateau but
decays too fast forc e 0.5. A central result of this article is to
derive SMC and EMC through matrix algebra and improve the
accuracy of our prediction in the temperature regime between
Tc andTg through the use of the asymptotic relations and better
mode coupling closures. In many ways, Anderson’s diagram-
matic theory inspired our theoretical efforts. An interesting
outcome is the equivalence between the two formalisms for the
East model, as demonstrated in Figure 5.

The matrix formalism and conclusions drawn from our
analysis are not limited to the East model and are completely
general for a class of dissipative systems with detailed balance,
such as colloids and lattice spin models.21,22 In their study of
interacting Brownian particles, Cichocki and Hess found that
the memory function for density fluctuations of colloids cannot
be interpreted as a generalized dynamic viscosity and is not a
good candidate for MC approximations. Instead, they introduced
an irreducible memory kernel, which is related to the memory
kernel and displays the characteristics of dynamic viscosity.23

Kawasaki introduced a rigorous operator definition of the
irreducible memory kernel.18 An important physical insight was
observed by Pitts and Anderson via comparing the dynamic
structures of dissipative and nondissipative systems.24 Their
analysis revealed that the irreducible memory function, rather
than the second-order memory function, has a more fundamental
physical interpretation and is more useful for constructing mode
coupling theories. Our matrix formalism provides an alternative
perspective on the issue of the irreducible memory kernels and
introduces a class of full and irreducible correlation functions
that are slow functions and a class of reducible memory kernels
and correlation functions that are fast functions. This formal
development is presented in section IV and Appendices B and
C. Readers who are mainly interested in the detailed calculations
of the East model can skip the formal analysis.

Outline of the Article. Through the analysis of the East
model, we investigate the nature of the irreducible memory
kernel and collective kinetics in the temperature regime between
Tg and Tc. The starting point of our calculations is the
construction of the complete basis set in section II.20,25,26The
truncated basis set expansion represented symbolically by the
mode coupling tree in section III is a direct and systematic
method to calculate the single-spin self-correlation function. In
section IV, this technique combined with the small-c asymptotics
allows us to calculate the mean relaxation times of linear and
nonlinear spin correlation functions, as well as their relation-
ships. As a general result, we find thatthe complete dynamic
phase space including all the releVant dynamic modes rather

than any subspace where one or more releVant modes are
projected out is required in describing slow dynamics of
dissipatiVe systems. As a result, full correlation functionsCk(t)
and irreducible correlation functionsCk

ir(t) defined in the
complete space are slow functions, whereas reduced correlation
functionsCk

r(t) and standard memory kernelsMk(t) defined in
projected space are not necessarily slow. MC closures or long-
time asymptotic relations must be applied toCk

ir(t) and Ck(t),
which are related through a simple identity. The matrix
derivation in Appendix B obtains recursive expressions forCk-
(t) andCk

ir(t). The equivalence to Kawasaki’s operator defini-
tion of M1

ir(t)18 is shown in Appendix C and is generalized to
higher orders.

Next we study collective kinetics by MC closures. Linear
relations betweenC1(t) andCk

ir(t) allow us to recover Pitts and
Andersen’s SMC19,20 and its higher order generalization in
section V. To remove the plateau predicted by SMC closures,
we calculate perturbatively a difference function∆(z) between
the exactM̂1

ir(z) and the SMC closure in section VIA, resulting
in the EMC formulation proposed by Pitts and Andersen.20 From
accurate long-time asymptotic relationships, we derive a long-
time correction method, which agrees with the simulation for
smallc in section VIB. However, all these microscopic methods
can only describe cooperative motions in a limited temporal
range and are not applicable near the divergence point.

In section VIII, we discuss the stretched exponential func-
tional form in the East model. The stretched exponential form
predicted by domain dynamics is found to fitC1(t) in a limited
temporal range.14,15,19,33From the simulations, we find that the
two-spin correlation functionC2(t) can be clearly separated into
a short-time regime described by the basis set perturbation and
a long-time regime fitted by a stretched exponential form. As a
convolution ofC2(t), the approximation toC1(t) agrees with
simulations over the whole temporal range. This result supports
indirectly the notation of domain dynamics and suggests that it
is a better approach to describe slow relaxations in the East
model.

II. Complete Basis Set of the East Model

We present a brief introduction of the East model in this
section.7,8 The complete basis set of this model is constructed
following the general approach by Oppenheim et al.25,26and is
the fluctuation basis defined by Pitts and Anderson.19,20 Cor-
responding to the adjoint kinetic operatorL , a matrix L is
defined to describe kinetics of all the modes in the complete
basis set.26

The East model is a 1D chain of spins that can have two
values,ni ) 1, 0.7,8 A spin at positioni can change the value of
ni only if its nearest neighbor on the right, spini + 1, is in the
upstate,ni+1 ) 1. The corresponding rate constants arek0f1 )
c andk1f0 ) 1 - c. Satisfying the detailed balance gives the
average concentrationc of up-spins (ni ) 1), which is related

Figure 1. MC tree for sorting the complete basis set and visualizing mode-couplings, where all the modes up toq7 are displayed.
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to the temperature byc ) 1/(1+ e1/T) for 0 e c e 1/2. A general
rate equation is8

where ∆ni is the occupation fluctuation,∆ni ) ni - c. The
equilibrium distribution of the system is trivial,feq(ni ) 1) ) c
andfeq(ni ) 0) ) 1 - c. The correlation function of a dynamic
variableA is defined asCA(t) ≡ 〈feqAeL tA〉, where the angular
bracket is a direct average over phase spaceΓ, 〈A(Γ)〉 )
∫dΓA(Γ)/∫dΓ, andfeq is on the left side as a result of using the
adjoint kinetic operatorL .8,23

By distinguishing linear and nonlinear modes as slow and
fast modes, and applying the Markovian approximation to fast
modes, we can reliably predict relaxations in gas and normal
liquids. In glass-forming liquids, non-Markovian processes
dominate and nonlinear modes become slow and have to be
categorized by their characteristic relaxation time scales. Fol-
lowing this idea, we include all the products of relevant linear
modes in a complete basis setΓ. The value of each dynamic
variable at any given time is a linear combination of projections
onto all the modes, consistent with the Mori continued fraction
method.27 In this article, the complete basis set is the starting
point of our theoretical analysis. In practice, the construction
of the complete basis set is associated with the Gram-Schmidt
orthonormalization method.20,25,26The linear mode in the East
model,A1(i), corresponds to the fluctuation of spini and is given
by8

which satisfies〈feqA1(i)〉 ) 0 and〈feqA1(i) A1(i′)〉 ) δi,i′ where
δ is the Kronecker delta function. Nonlinear modes are generated
from different spins because of the identityns ≡ n (s > 0).
Eachmth-order (m g 1) nonlinear mode factorizes as

where the indexes are ordered as (i1 < i2 < ... < im) to avoid
overcounting. Because each mode is a unique function of its
sequence, (i1i2‚‚‚im) represents modeAm unambiguously. All the
modes in this complete basis set are orthonormal,〈feqAmAm′〉 )
δm,m′.

We expand the adjoint kinetic operatorL in this complete
basis set to construct a matrixL by definingLm,m′ ≡ 〈feqAmLAm′〉.
We prove in Appendix A that the diagonal matrix elementLm,m

is

wherep is the number of spins that satisfyi[k+1] ) ik + 1. Off-
diagonal elements are nonzero for the coupling betweenAm and
modes in the set{Am′}, which is

and all the nonzero off-diagonal matrix elements have the same
value,

We denote the space composed of the modes with the same
first spin i as Γi. Because each mode in the spaceΓi is only
influenced by other modes inΓi, Γi is an independent closed
subspace ofΓ. Our future derivations are restricted toΓ0, which
will be considered the complete space (basis set) in the
remainder of this article.

III. Basis Set Expansion

The structure of matrixL implies that there is no cross
correlation function between different spins in the East model:
C1(i, j;t) ≡ 〈feqA1(i)eL tA1(j)〉 ) C1(t)δi,j, whereC1(t) is the single-
spin self-correlation function. As the first step of our theoretical
analysis, we apply a basis set expansion method to calculate
C1(t) ) 〈feqA1(0)eL tA1(0)〉.

For convenience, we sort all the modes inΓ0 into basis sets
of different orders, denoted byqk where the order index isk.
Note thatk refers to a set, whereasm refers to a single mode.
Beginning with the first-order basis setq1 ) {A1(0)}, each
subsequent (k + 1)th-order basis setqk+1 is composed of modes
that are coupled to one or more modes in thekth-order basis
setqk. Each kinetic block matrix satisfies

As shown in Figure 1, the first four basis sets areq1 ) {A1-
(0)}, q2 ) {A2(01)}, q3 ) {A3(012)}, q4 ) {A2(02),A4(0123)}.
The kinetic matrixL becomes a block tridiagonal matrix after
sorting.

To visualizeL, we introduce theMC treeshown in Figure 1.
Numbers preceding a bracket denote the spin sequence of a
mode, and the number inside the bracket denotes the eigenfre-
quencyΩ of this mode, i.e., negative of the corresponding
diagonal matrix element ofL. For example, 0[c] representsA1-
(0) with Ω1 ) c, and 01[1] representsA2(01) with Ω2 ) 1. The
modes in the same column belong to a basis set of the same
order. Each arrow represents a nonzero kinetic coupling by eq
6 between the two modes connected by this arrow, correspond-
ing to off-diagonal block matricesLk,k+1 andLk+1,k. For example,
arrows betweenq4 ) {A2(02), A4(0123)} andq5 ) {A3(023),
A5(01234),A3(013)} give

Because the Laplace transform ofC1(t) is Ĉ1(z) ) 〈feqq1(zI -
L )-1q1〉, the calculation ofC1(t) is equivalent to inverting the
matrix,

where each block matrix is defined by eq 7,I is the identity
operator, andI is the identity matrix. Applying block matrix
decompositions,Ĉ1(z) becomes

whereΩ1 is the first-order eigenfrequency,M̂1(z) is the first-
order memory kernel, andĈ2

r (z) ) [(zI - L2
r )-1]1,1 is defined

n̆i ) Lni ) -ni+1∆ni (1)

A1(i) )
∆ni

xc(1 - c)
(2)

Am(i1i2‚‚‚im) ) A1(i1) A1(i2) ‚‚‚ A1(im) (3)

Lm,m ) 〈feqAm(i1i2‚‚‚im)LAm(i1i2‚‚‚im)〉

) -[(m - p)c + p(1 - c)] (4)

Am′ ) {Am-1(i1i2‚‚‚iki [k+2]‚‚‚im) if i[k+1] ) ik + 1

Am+1(i1i2‚‚‚ik,[ik + 1] i [k+1]‚‚‚im) if i [k+1] > ik + 1

(5)

Lm,m′ ) 〈feqAmLAm′〉 ) - xc(1 - c) (6)

Lk,k′ ≡ 〈feqqkLqk′〉 ) Lk,k(1δk′,k(1 + Lk,kδk′,k (7)

L4,5 ) - xc(1 - c) [1 0 0
1 1 1]

L5,4 ) - xc(1 - c) [1 1
0 1
0 1] (8)

zI - L ) [zI - L1,1 -L1,2

-L2,1 zI - L2,2
· · ·· · ·
· · ·

] (9)

Ĉ1(z) ) [(zI - L)-1]1,1 ) [z + Ω1 - M̂1(z)]
-1

) [z - L1,1 - L1,2Ĉ2
r (z)L2,1]

-1 (10)
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by a submatrix,

Extending the decomposition to higher orders results in thekth-
order reduced correlation function, Ĉk

r(z) ≡ [(zI - Lk
r)-1]1,1,

where

By removing all the modes on the left side ofqk in Figure 1,
we get the MC tree corresponding toLk

r. Similar to eq 10, we
have a recursive equation forĈk

r(z),

where thekth-order eigenfrequency matrix isΩk ) - Lk,k and
the kth-order memory kernel isM̂k(z) ) Lk,k+1Ĉk+1

r (z)Lk+1,k.
By definition, Ck

r(t) differs from thefull correlation function
Ck(t), where all the modes inΓ0 are taken into account,Ck(t) ≡
〈feqqkeL tqk〉. The recursive expression for full correlation func-
tions is derived in Appendix B. These two correlation functions
are employed to study relaxations of nonlinear modes in the
next section.

Motivated by standard truncation techniques, we apply a basis
set expansion method, which is equivalent to the Mori continued
fraction formalism.27 Truncated at the first-order basis setq1,
we havezI - L ≈ zI - L1,1 ) z + c andĈ1

(1)(z) ) (z + c)-1.
Truncated atq2, we have

and Ĉ1
(2)(z) ) [z + c - c(1 - c)(z + 1)-1]-1. In general,

truncation atqk ignores all the modes higher thanqk. As a result,
we approximate the matrix (zI - L) as

and thekth-order basis set expansion of the single-spin self-
correlation function becomes

where matrix manipulations are implicit.
By plotting C1

(3)(t), C1
(6)(t) and simulations in Figure 2, we

find that with the increase of expansion order, the accuracy of
the theoretical predictions systematically increases. For a large
c (0.8), the truncation atq3 already provides a reliable prediction
of C1(t). As c decreases, the minimum truncation order to
reliably predict C1(t) is aroundc-1, which implies that the
expansion method is not practical near the divergence point,cg

) 0 (Tg ) 0). In fact, C1
(k)(t) predicted from the truncation

technique is a multiexponential function oft. Heterogeneous
cooperative motions suggest thatC1(t) follows a more compli-
cated form as demonstrated by Pitts, Young and Andersen.19

IV. Mean Relaxation Time and Slow Dynamics of
Nonlinear Modes

Because of the truncation at a finite order, the finite basis set
expansion method cannot fully account for many-body effects,
and the predictions ofC1(t) deviate from simulations in the long-
time limit. Using non-Markovian approximations such as MC
closures, kinetics of nonlinear modes is expected to help improve
predictions ofC1(t). For dissipative systems, MC is applied to
the irreducible memory kernelM1

ir(t) rather thanM1(t). Al-
though several explanations ofM1

ir(t) were proposed in the
literatures,23,24 and a generalized operator formalism was
developed by Kawasaki,18 our basis set formalism provides an
alternative perspective. On the basis of the analysis of the East
model, which is a simple dissipative system with established
asymptotics,9,11-16 we demonstrate the preference ofM1

ir(t) to
M1(t) in the MC closure from the view of the complete basis
set.

A. Lowest MC Tree. The mean relaxation time of the linear
mode is defined asτ1 ≡ ∫0

∞ dt C1(t) ) Ĉ1(0), which can be
evaluated by the basis set expansion. Following Mauch and
Jackle’s approach,11 we attempt to achieve the dynamic scaling
by calculatingτ1(N) for a finite N-spin chain beginning with
spin 0. Imposed by a fixed boundary condition,nN(t) ) 1, we
haveτ1(1) ) c-1 for a one-spin chain, and

for a two-spin chain. To facilitate calculations ofτ(N), we apply
the MC tree introduced in section III to finite spin chains.
Because only spini (0 e i < N) is involved in theN-spin chain,
a new finite MC tree for this chain is constructed by excluding
all the modes with spinj(g N). Note that a truncation at spinN
is different from the truncation atqk for C1

(k)(t). As a result, the
highest order reduced correlation function isĈK

r (z) ) (zI +
ΩK)-1, whereK denotes the highest order basis set in the new
MC tree. All the lower order functions are then recursively

Figure 2. Comparison ofC1(t) from basis set expansions and from
simulations forc ) 0.2, 0.4, and 0.8. The dashed lines areC1

(3)(t)
truncated atq3 ) {A3(012)}. The solid lines areC1

(6)(t) truncated atq6

) {A2(03), A4(0124),A4(0134),A4(0234),A6(012345)}. The symbols
are simulation results.

τ1(2) ) (Ω1 - L1,2Ω2
-1

L2,1)
-1

) [c - c(1 - c)]-1 ) c-2 (17)

L2
r ) [L2,2 L2,3

L3,2 L3,3
· · ·· · ·
· · ·

] (11)

Lk
r ) [Lk,k Lk,k+1

Lk+1,k Lk+1,k+1
· · ·· · ·
· · ·

] (12)

Ĉk
r(z) ) [zI + Ωk - M̂k(z)]

-1 (13)

zI - L ≈ [zI - L1,1 -L1,2

-L2,1 zI - L2,2] ) [z + c xc(1 - c)

xc(1 - c) z + 1 ]
(14)

zI - L ≈ [zI - L1,1 -L1,2

-L2,1
· · ·

· · ·· · ·
· · ·

-Lk-1,k

-Lk,k-1 zI - Lk,k
] (15)

Ĉ1
(k)(z) ) 1/z + c - c(1 - c)/z + 1

- c(1 - c)/z + 2 - c - ‚‚‚/z + Ωk (16)
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obtained, e.g.,Ĉ2
r (z) ) (z + 1)-1 andτ1(2) ) c-2 for the two-

spin chain. The MC trees for three-spin and four-spin chains

are shown in Figure 3, givingτ1(3) 98
cf0

O(c-2) and

τ1(4) 98
cf0

O(c-3).
Similar to Mauch and Jackle’s calculations,11 we find that

modes in a finite MC tree contribute toτ1 at different orders of
c. For example, for the four-spin chain, the lowest MC tree,

provides the leading term,τ1(4) ∼ O(c-3), whereas a branch,

only helps modify the coefficient ofc-3. By extrapolating results
for N(e16)-spin chains, we find thatτ1(N) is predominantly
determined by the lowest MC tree in the smallc limit. If s is a
positive integer, the lowest MC tree for anN()2s)-spin chain
is constructed by excluding all the branches beginning with a
mode having more thans + 1 spins in the MC tree for the
N-spin chain. The number of spins in each mode is less than or
equal to (s + 1) for the lowest MC tree, and the leading term

of τ1(N) is given byτ1(N) 98
cf0

O(c-s-1), which is also valid
for an N-spin (2s e N < 2s+1) chain. The lowest MC tree for
an eight-spin chain is shown in Figure 4 as another example.
The proofs for an arbitrary chain of finite length are given in
refs 11-16.

The mean relaxation timeτ1 for an infinite spin chain is
derived from limNf∞τ1(N). Simulations and theoretical calcula-
tions have shown that the relaxation of spin 0 is mainly
controlled by the first up-spin on the right.7,12-15 Because the
mean distance between two adjacent up-spins isc-1 in equi-
librium, it is reasonable to setN ) c-1 as the effective chain

length of the infinite spin chain, givingτ1 98
cf0

O(clog2c). This
result has been derived rigorously elsewhere.11-16

B. Slow Dynamics of Nonlinear Modes.In the previous
subsection, we discussed the dynamic scaling of the East model
by studyingτ1. As the products of linear modes, the relaxation
of nonlinear modes also becomes slow asc f 0. By studying

Ck
r(t) and Ck(t), we investigate slow dynamics of nonlinear

modes in this subsection. In the smallc limit, τ1 scales asτ1 ∼
O(c-s), wheres ∼ O(log2 c-1) 98

cf0
∞. The mean relaxation

time for the second-order reduced correlation function is

whereτ2
r differs fromτ1 in the order ofc and does not diverge

in the smallc limit. By definition, we have

where projection operators are defined asPk ) qk〉〈feqqk andQk

) I - ∑m)1
k Pk. Here we emphasize the notations of the

complete dynamic spaceand theprojected dynamic space, which
are frequently used in this article. The complete dynamic space
Γ0 includes all modes influencing the relaxation of spin 0, i.e.,
all modes with the same first spin 0. A projected dynamic space
is a subspace of theΓ0 by projecting out one or more relevant
modes, e.g.,Q1Γ0 ) Γ0 - {A1(0)}. As a result,τ1 is calculated
over the complete spaceΓ0, whereasτ2

r is calculated over the
projected spaceQ1Γ0. Next we calculate the mean relaxation
time of the second-order full correlation function overΓ0,

The slow dynamics ofq2 is described byC2(t) overΓ0 instead
of C2

r (t) overQ1Γ0. Another interesting result is that the simple
Gaussian factorization scheme is not valid in the East model
because of asymmetrical kinetic constraints.8 Forq2 ) {A2(01)},
the kinetics of spin 0 is controlled by the state of spin 1, whereas
spin 1 is independent of spin 0. From this microscopic picture,
a reasonable factorization scheme isC2(t) ≈ cC1(t) where spin
0 achieves equilibrium quickly and spin 1 has a slow relaxation.
Equation 20 is consistent with this factorization scheme. We

Figure 3. MC trees for three-spin and four-spin chains. As a result of truncation at spin 2 and spin 3,q′4 in the three-spin chain andq′5 andq′6 in
the four-spin chain differ from their counterparts in Figure 1.

Figure 4. Truncated at spin 7, the lowest MC tree for an eight-spin chain, where labels of basis sets are omitted. The number of spins for each
mode is smaller than or equal to 4 (1+ log2 8).

0[c] f 01[1] f 012[2- c] f 02[2c] f 023[1+ c]

0123[3-2c] f 013[1+ c] f 03[2c]

τ2
r ) Ĉ2

r (0) )
c - τ1

-1

c(1 - c)
≈ 1 + c + O(c2) (18)

τ1 ) -(L-1)1,1 ) -〈feqq1L
-1q1〉

τ2
r ) -[(L2

r )-1]1,1 ) -〈feqq2(LQ1)
-1q2〉 (19)

τ2 ) Ĉ2(0) ) -(L-1)2,2 ) - 〈feqq2L
-1q2〉 ≈ O(c-s+1) ≈ cτ1

(20)

6800 J. Phys. Chem. B, Vol. 108, No. 21, 2004 Wu and Cao



extend the calculation of the mean relaxation times to the third
order, obtaining

The slow dynamics ofq3 is again described byC3(t) over Γ0

whereasC3
r (t) over a projected spaceQ2Γ0 is fast.

Although the above argument is specifically derived for the
East model, a preference of full correlation functions to reduced
correlation functions for slow dynamics of nonlinear modes is
universal in dissipative systems. To demonstrate this preference,
we invert an arbitrary kinetic matrixL to calculateτk

r )
-[(Lk

r)-1]1,1 and τk ) -(L-1)k,k. We demonstrate in the first
subsection of Appendix B that the mean relaxation times of
the full and reduced correlation functions are related as

where Ωk
L ≡ Ωk

L(z ) 0) is defined in eq B6 and includes
kinetic contributions from basis sets lower thanqk. Because of
kinetic constraints (Ωk > 0), 0< τk

r < τk holds fork g 2. Near
the divergence point of the East model,τk f ∞ and 0< τk

r ∼
Ωk

L , τk are valid, indicating thatCk(t) always decays much
slower thanCk

r(t) in the long time. In summary, full correlation
functionsCk(t) defined in the complete dynamic space describe
slow dynamics of nonlinear modes, whereas memory kernels
Mk(t) and the corresponding reduced correlation functions
Ck

r(t) defined in projected dynamic spaces are not necessarily
slow.

C. Irreducible Memory Kernel. In this subsection, we
extend slow dynamics of nonlinear modes to explore the nature
of the irreducible memory kernel. Explicit expressions of
Ĉ2

ir(z) and Ĉ2(z) are

whereĈ2
ir(z) is the second-orderirreducible correlation func-

tion, which is related to the irreducible memory kernel by
M̂1

ir(z) ) L1,2Ĉ2
ir(z)L2,1. To be consistent with our previous

discussions ofCk
r(t) and Ck(t), we analyzeC2

ir(t) instead of
M1

ir(t). In Appendix C, we present a detailed proof of the
equivalence between the matrix expression ofC2

ir(t) in eq 23
and the operator expression ofM1

ir(t) introduced by Ka-
wasaki.18 From eqs 23 and 24, the difference betweenĈ2

ir(z)
and Ĉ2(z) is a term involvingq1, which behaves asΩ-1

1 in
Ĉ2

ir(z) and as (zI + Ω1)-1 in Ĉ2(z). As a result, these two
correlation functions have different initial behaviors,C2

ir(t) ≈
exp[-(Ω2 - Ω2

L)t], C2(t) ≈ C2
r (t) ≈ exp(-Ω2t), andC2

ir(t) >
C2(t) for t f 0, but both have slow relaxations with the same
mean relaxation time,Ĉ2

ir(0) ) Ĉ2(0).
As shown in the second subsection of Appendix C, we

construct thekth-order irreducible correlation function,

wherez dependence inΩk
L(z) is omitted,Ωk

L ) Ωk
L(z)0). To be

complete, a recursive expression forĈk
ir(z) is derived in eq

B12. In comparison toCk(t), Ck
ir(t) has slower initial but

similar long-time behavior. Although there are other choices
for nonlinear slow functions based on modifying eitherĈk(z)
or Ck(t), we restrict analysis toCk(t) andCk

ir(t) in this article.
In summary, we observe that full and irreducible correlation

functions are slow functions, whereas reduced correlation
functions and memory kernels are relatively fast in dissipative
systems. The microscopic cause of the difference is that low-
order modes are slow. Relaxations of nonlinear modes in the
long time are strongly affected by the interaction with slow
modes. Once lower order modes are projected out, the resulting
reduced correlation functions and memory kernels fail to capture
the slow relaxation of nonlinear modes. The recursive expres-
sions for Ck(t) and Ck

ir(t) appear in Appendix B and are
applicable in other dissipative systems, e.g., colloids.22

V. Simple Mode Coupling(SMC)

In the remainder of this article, we discuss the relationships
of Ck

ir(t) andCk(t) with MC closures and other nonperturbative
approximations. Studying such a simple kinetic system can help
us improve our understanding of MC in the regime ofTg e T
e Tc. The first-order simple mode coupling(SMC) approxima-
tion is derived in this section after comparingC2

ir(t) with C1(t).
The second-order SMC based onC2(t) and C3

ir(t) is found to
improve the accuracy of predictions ofC1(t) but introduces the
same unphysical phenomena of the ergodic to nonergodic
transition at smallc as the first-order SMC.

A. First-Order SMC. The second-order irreducible correla-
tion function is obtained from eq 23,

Comparing eq 26 withĈ1(z) ) [z + c - M̂1(z)]
-1, we find that

C2
ir(t) has the same initial decay asC1(t), limtf0C2

ir(t) ≈ C1(t) ∼
e-ct, which makesC2

ir(t) a better choice thanC2(t) in the first-
order SMC. Analysis ofτ1 andτ2 gives a long-time expression,
Ĉ2

ir(0) ≈ Ĉ1(0) ∼ O(c-s), where the slight difference between

the orders ofc is ignored becauses ∼ O(log2 c-1) 98
cf0

∞.
Similarities betweenC2

ir(t) and C1(t) at both short and long
times suggest a reasonable linear MC closure,

which is the SMC approximation proposed by Pitts and
Andersen using a diagrammatic method.19,20 The equivalence
between the diagrammatic method and the complete basis set
formalism is demonstrated in Figure 5. Note that eq 27 is not
consistent with our factorization argument in section IVB,
limtf∞C2(t) ≈ cC1(t), which will be explored to improve SMC
in section VIB. Substituting eq 27 into

gives a self-consistent SMC equation,

which was first proposed by Pitts and Andersen.19,20

τ3
r ) -[(L3

r )-1]1,1 ≈ 1 + c + O (c2)

τ3 ) - (L-1)3,3 ≈ O(c-s+2) ≈ c2τ1≈ cτ2 (21)

τk
-1 ) (τk

r)-1 - Ωk
L (22)

Ĉ2
ir(z) ) [zI + Ω2 - Ω2

L - M̂2(z)]
-1

) [zI + Ω2 - L2,1Ω1
-1

L1,2 - M̂2(z)]
-1 (23)

Ĉ2(z) ) [zI + Ω2 - Ω2
L(z) - M̂2(z)]

-1

) [zI + Ω2 - L2,1(zI + Ω1)
-1

L1,2 - M̂2(z)]
-1 (24)

Ĉk
ir(z) ) [zI + Ωk - Ωk

L - M̂k(z)]
-1 (25)

Ĉ2
ir(z) ) [z + 1 -

c(1 - c)
c

- M̂2(z)]-1

) [z + c - M̂2(z)]
-1 (26)

C2
ir(t) ≈ C1(t) (27)

Ĉ1(z) ) {z + c[1 + (1 - c)Ĉ2
ir(z)]-1}-1 (28)

Ĉ1
SMC(z) ) [z + c

1 + (1 - c)Ĉ1
SMC(z)]-1

(29)
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In Figure 6, we plotC1
SMC(t) for c ) 0.8, 0.4, and 0.2.

Predictions ofC1
SMC(t) are accurate in the short time because of

limtf0C2
ir(t) ∼ C1(t), and for large values ofc,20 but C1

SMC(t)
becomes much less reliable asc or T decreases and predicts an
unphysical plateau forc e 0.5, limtf∞C1

SMC(t) ) (1 - 2c)/(1 -
c) g 0. The appearance of this plateau corresponds to a SMC
transition point atcc ) 0.5 (Tc ) ∞), which is different from
the real divergence point,cg ) 0 (Tg ) 0). Figure 7 shows that
each mode in the MC tree forĈ2

ir(z) is replaced by lower order

modes, e.g.,A3(012) is replaced byA2(01), so thatĈ2
ir(z) is

overestimated and we haveTc > Tg. One can further understand
the first-order SMC through a continued fraction,

which corresponds to a MC tree without branches,

indicating that the first-order SMC is a mean-field approximation
in which each spin is affected by a two-spin segment. Only
two eigenfrequencies,Ω1 ) c andΩ2 ) 1, appear in the partial
resummation. However, simulations and theoretical calculations
suggest thatC1(t) is a weighted average over domains at low
T.15

Figure 5. One-to-one correspondence between Pitts and Andersen’s diagrammatic method and the matrix formalism.

Figure 6. Comparison ofC1(t) from the first- and second-order SMC
approximations and from simulations forc ) 0.2, 0.4, and 0.8. The
dashed lines are the first-order SMC results calculated from eq 29. The
solid lines are the second-order SMC results calculated from eq 35.
The symbols are simulation results.

Figure 7. Two MC trees for the first-order SMC approximation. As
an abbreviation of Figure 1, MC tree A corresponds toĈ1(z), whereas
MC tree B is forĈ2

ir(z), where the eigenfrequency of modeA2(01) is
modified to (Ω2 - Ω2

L).

Ĉ1
SMC(z) ) 1/z + c - c(1 - c)/z + 1 - c(1 - c)/z + 1 - ...

(30)

0[c] f 01[1] f 12[1] f 23[1] f ‚‚‚ f (i, i + 1)[1] f ...
(31)
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Our calculations of the East model suggest serious deficien-
cies of MC in the temperature regime betweenTg andTc. For
dissipative and nondissipative liquids, we find that a four-point
correlation function is similarly overestimated by the Gaussian
factorization scheme.22,28Recently, Schweizer combined the MC
approximation with a hopping model by a phenomenological
potential and significantly improved the prediction of the glass
transition point in a hard-sphere liquid.29,30However, it remains
a challenge to develop a microscopic technique to predict a
crossover from the MC trapping to the hopping process forTg

< T < Tc.
B. Second-Order SMC.We now extend Andersen’s SMC

to higher orders. Although different MC closures are possible,
a simple calculation involvingC3

ir(t) and C2(t) is presented as
an example of higher order SMC approximations. Explicit
expressions ofĈ2(z) and Ĉ3

ir(z) are

respectively. The initial relaxations of these two functions are
the same, limtf0C2(t) ≈ C3

ir(t) ∼ e-t. The integrated lifetimes,
τ2 and τ3, give a long-time relationship,Ĉ2(0) ≈ Ĉ3

ir(0) ∼
O(c-s), where we once again ignore the slight difference in the
orders ofc. Because of these two limiting relationships, a linear
SMC closure,

gives

which is used to obtainC1(t).
In Figure 6, we compareC1(t) predicted from eqs 29 and 35

and simulations forc ) 0.8, 0.4, and 0.2. Although a rigorous
calculation shows that the transition point predicted by eq 35
is the same as that by eq 29,cc ) 0.5 (Tc ) ∞), the value of the
long-time plateau ofC1(t) decreases from (1- 2c)(1 - c)-1 to
(1 - 2c) for c e 0.5. Rewriting eq 35 as a continued fraction,

reveals that the second-order SMC is a mean-field approximation
in which three-spin segments are involved. Similar results can
be found for other higher order SMC approximations. Recently,
Szamel improved the MC prediction of the glass transition point
in the hard-sphere Brownian liquid by the second-order calcula-
tion.31 Our results for the East model suggest that higher order
MC approximations have the potential to predict the glass
transition but difficulties remain.22

In this section, we derived two SMC approximations for the
East model, through comparisons betweenC1(t) andC2

ir(t), and

betweenC2(t) andC3
ir(t), respectively. Our calculations suggest

that SMC has difficulties forTg e T e Tc because the partial
resummation overestimates slow functions of nonlinear modes,
e.g., C2

ir(t). The second-order SMC improves prediction but
still fails to remove the unphysical plateau.

VI. Nonlinear Closures beyond SMC

Discussions in the previous section show deficiencies of SMC
approximations in the regime betweenTg andTc. In this section,
we study two alternative MC methods and in next section, we
study a numerical approach on the basis of domain dynamics.

A. Extended Mode Coupling (EMC). As c decreases,
detailed nonlinear kinetics in the East model become increas-
ingly important and cannot be simplified as in SMC. Exact
expressions forĈ1(z) and Ĉ2

ir(z) suggest

where a difference function is defined as∆(z) ≡ M̂1(z) -
M̂2(z). Substituting eq 37 into eq 28 gives the self-consistent
equation,

which is consistent with Andersen’s extended mode coupling
(EMC) approximation. In ref 20, Pitts and Andersen obtained
expressions for∆(z) through a set of diagrams, which represents
corrections to SMC. Here eq 37 gives an explicit definition of
∆(z) that allows systematic calculations. Figure 5 demonstrates
the relationship between the matrix and diagrammatic ap-
proaches.

We evaluate∆(z) by basis set expansion. To be consistent
with section III, the order of∆(z) is defined by the order of the
highest basis set involved in the calculation. For example,
truncated atq2, we get∆(2)(z) ) c(1 - c)(z + 1)-1; ∆(3)(z) is
truncated atq3,

In Figure 8, we plotC1
EMC(t) evaluated by∆(3)(z) and ∆(6)(z)

along with simulations forc ) 0.4 and 0.2. The persisting long-
time plateau ofC1

SMC(t) is removed. Comparing Figures 2 and
8, C1

EMC(t) andC1
(k)(t) at the same order are indistinguishable.

To understand these results, we rewrite eq 38 as

Because∆(0) ∼ O(cs-1) > 0, we haveC1
EMC(t) 98

tf∞
0 and the

plateau is removed. Expanding∆(k)(z) in eq 37, the leading term
of Ĉ1

EMC(z) is

which is indistinguishable fromC1
(k)(t) at the same order.

Equation 41 also shows that the reliable prediction ofC1
EMC(t)

at a givenc is obtained through expansion to order ofc-1,

Ĉ2(z) ) [z + 1 -
c(1 - c)

z + c
- M̂2(z)]-1

(32)

Ĉ3
ir(z) ) [z + 2 - c -

c(1 - c)

1 -
c(1 - c)

c

- M̂3(z)]-1

) [z + 1 - M̂3(z)]
-1 (33)

C3
ir(t) ≈ C2(t) (34)

Ĉ2
SMC(z) ) [z + 1 -

c(1 - c)
z + c

-
c(1 - c)Ĉ2

SMC(z)

1 + (1 - c)Ĉ2
SMC(z)]-1

(35)

Ĉ2
SMC(z) ) 1/z + 1 -

c(1 - c)
z + c

- c(1 - c)/z + 2 - c -

c(1 - c)
z + c

- c(1 - c)/‚‚‚ (36)

Ĉ2
ir(z) ) {z + c - M̂1(z) + [M̂1(z) - M̂2(z)]}

-1

) [Ĉ1
-1(z) + ∆(z)]-1 (37)

Ĉ1
EMC(z) ) {z + c -

c(1 - c)

[Ĉ1
EMC(z)]-1 + ∆(z) + 1 - c}-1

(38)

∆(3)(z) )
c(1 - c)

z + 1 -
c(1 - c)

z + 2 - c

-
c(1 - c)

z + 2 - c
(39)

Ĉ1
EMC(z) )

1/z + c - c(1 - c)/z + 1 + ∆(z) - c(1 - c)/‚‚‚ (40)

Ĉ1
EMC(z) ≈

1/z + c - c(1 - c)/z + 1 - c(1 - c)/‚‚‚/z + Ωk (41)
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indicating that the EMC approximation is not practical in the
small c limit if ∆(z) is evaluated perturbatively.

B. Long-Time Correction. We introduce a long-time cor-
rection by considering accurate asymptotic relationships. In the
first-order SMC, the short-time similarity betweenC1(t) and
C2

ir(t) is guaranteed, but the different long-timec dependence is
ignored. Assuming two limiting expressionsM̂1(0) ≈ c -
O(cs) andM̂2(0) ≈ c - O(cs-1) can be extended to the whole
z axis, we have

Using eq 42 as a closure, we have a new self-consistent equation,

where the superscript 2 inĈ1
LT(2)(z) indicates that the long-time

correction is applied to the second-order memory kernel.
Although this correction removes the plateau inC1

SMC(t), the
underestimation ofM1(t) in the short time makesC1

LT(2)(t)
decay much faster than simulations in the long time. A long-
time correction based onM̂2(z) andM̂3(z) gives

CalculatingM̂3(z) andM̂4(z) in the eight-spin chain, we obtain
another long-time correction,

which is solved self-consistently withĈ1
LT(4)(z). In Figure 9, we

compareC1
LT(t) predicted by these three long-time corrections

and from the simulation forc ) 0.2. We find thatC1
LT(4)(t)

agrees with the simulation in a broad temporal range, but one
must still truncate the expansion at high orders for small values
of c.

In this section, we developed two MC-based methods to
improve SMC. Although the incorrect long-time plateau of
C1

SMC(t) is removed by both methods, the improvement of
predictive power depends on the truncation of the basis set,
scaling asc-1 for c f 0. EMC results are indistinguishable from
those by the basis set expansion, whereas the long-time
correction method becomes less systematic as truncation order
increases. In general, MC-based closures become difficult near
the glass transition point because of cooperative motions on
large scales.

VII. Stretched Exponential Form

From the previous sections, we find that the analytic methods
associated with the basis set expansion are not practical in the
smallc limit. In this section, we discuss the stretched exponential
form, which is commonly applied to systems exhibiting slow
dynamics. In principle, the correlation functionCA(t) for a many-
particle system can be obtained by averaging over all the
configurations,

whereF(L) is the equilibrium density of a configurationL, and
CA(L,t) is the correlation function associated with this config-
uration. Although kinetics differ asL varies, a scaling behavior
is valid in many systems,32 CA(L,t) ≈ G[t/τ(L),{RL}], whereG

is a scaling function,τ(L) is the relaxation time associated with
configurationL, and{RL} is a relevant parameter set dependent
on L. This scaling has been demonstrated for the large length
and long-time scales.14,33

Our scaling argument for the East model is motivated by
Garrahan and Chandler’s study of domain dynamics.9 As we
mentioned in section IVA, simulations and theoretical calcula-
tions indicate that the relaxation of spin 0 is mainly controlled
by the first up-spin on the right. Down spins between two
adjacent up-spins form a dynamic domainL, the size of which
is denoted byl. Because kinetic contributions from spins outside
L are negligible beforeL relaxes, the relaxation of spin 0 is
approximated as a weighted average over all the domains (0e
l < ∞). In the continuum limit, the equilibrium domain density

Figure 8. Comparison ofC1(t) from the EMC approximations and
from simulations forc ) 0.2 and 0.4. Using eq 39, the dashed lines
are calculated from∆(3)(z) truncated atq3. Similarly, the solid lines
are calculated from∆(6)(z) truncated atq6 and cannot be distinguished
from C1

(6)(t) by basis set expansion in Figure 2. The symbols are
simulation results.

M̂1(z) ≈ c + c[M̂2(z) - c] (42)

Ĉ1
LT(2)(z) ) {z + c -

c2(1 - c)

[Ĉ1
LT(2)(z)]-1 - (1 - c)(z - c)}-1

(43)

Ĉ1
LT(3)(z) )

{z + c -
c(1 - c)

z + 1 -
c3(1 - c)

[Ĉ1
LT(3)(z)]-1 + c2(1 - c) - (1 - c2)z}

-1

(44)

M̂3(z) ≈

c2
(1 - 3c2 - c3 - c5)[Ĉ1

LT(4)(z)]-1 - (1 - c)(1 + c)2[z - c2(1 + c)2]

(1 - c){[Ĉ1
LT(4)(z)]-1 + c2(1 + c)2 - z}2

(45)

Figure 9. Comparison ofC1(t) from long-time corrections and from
simulations forc ) 0.2. The dashed line is the long-time correction
result calculated from eq 43. The dot-dashed line is calculated from
eq 44. The solid line is calculated from substituting eq 45 into eq 13.
The symbols are the simulation results.

CA(t) ) ∑
L

F(L)CA(L,t) (46)
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is given by a Poisson distribution,Feq(l) ) ce-cl, which gives

whereC1(l,t) is the correlation function for a domain of sizel.
In the second article on the East model from our group,34 C1-
(l,t) is evaluated by simulating domain lifetimes; the corre-
sponding averaged lifetime accurately reproducesC1(t) except
for short times. The initial relaxation is mainly controlled by a
first few modes, which differs from domain dynamics. For
simplicity, we evaluateC1(l,t) with a simple exponential form,
C1(l,t) ≈ exp{-t/τ(l)}, whereτ(l) is the mean relaxation time
for a finite chain,τ(l) ∼ O(c-log2l). Using the saddle point
approximation, (∂/∂l) exp{-[cl + clog2lt]}|lm ) 0, a crude estimate
of C1(t) in eq 47 is

where limcf0â ∼ O([log2 c-1]-1) f 0 is applied. Thus, the long-
time decay ofC1(t) follows a stretched exponential, which was
first shown by Garrahan and Chandler.9

The stretched exponential is applicable in the long-time limit
and cannot describeC1(t) in a broad temporal range. In fact,
the simulation by Andersen and co-workers indicates the lack
of evidence for exponential or stretched exponential behavior
over a broad range of time scales.19 Recently, Sollich and Evans
argued that a real functional form ofC1(t) is more complicated
than eq 48.14,15 The fact that predictions ofC1(t) are improved
by high-order SMC suggests testing the stretched exponential
form for slow functions of nonlinear modes. To facilitate
comparisons with simulations, we considerC2(t) instead of
C2

ir(t). Simulations in Figure 10 suggest thatC2(t) exhibits a
clear time-scale separation. A multiexponential function from
the basis set expansion truncated atq5 is applied in the short
time, whereas a stretched exponential is fitted in the long time.
The overall fitting function is

where the perturbation functionC2
(5)(t) with {ai} and {ωi} is

truncated atq5 similar to C1
(5)(t), and an asymptotic function

C2
fit(t) is fitted by three parameters,b, τ, andâ. Here,Θ(t) is

the Heaviside step function, andt0 is determined byC2
(5)(t0) )

C2
fit(t0). The fast equilibration of spin 0 inA2(01) determinesb

∼ O(c), and τ ∼ O(clog 2c) and â ∼ O([log2 c-1]-1) are
determined by eq 48. As shown in Figure 10,C2

fit(t) agrees
with simulations for several values ofc. Equation 49 is valid
not only for small values ofc (0.05) but also for intermediate
values (0.4). The stretched exponential form is applicable to
C2(t) over a wide temperature range. Next we calculateC1(t)
from C2(t) by substituting eq 49 into eq B8. The results are
plotted with simulations in Figure 11, exhibiting agreement in
the whole temporal range. The fitting parameters for each value
of c are displayed in Table 1. As a convolution ofC2

fit(t), C1(t)
has a more complicated form than the stretched exponential.

In summary, we discussed the stretched exponential form
arising from domain dynamics. The second-order correlation
function C2(t) is fitted phenomenologically to a stretched
exponential in the long time, and calculated according to
truncated basis set expansion in the short time. Using the
matchedC2(t), we find agreement between the approximated
C1(t) and simulations. Compared to analytical methods in the
previous sections, this functional form describes kinetics near
the glass transition point. However, as a first-principle theory,
we need to develop more systematic approaches to describe
domain dynamics.

VIII. Conclusions and Discussions

A. Summary of Results. In this article we systematically
analyze kinetics of the East model on the basis of the complete
basis set and the kinetic matrixL. A mode coupling (MC) tree
is designed to organize the infinite matrixL. The finite-order
truncation of the complete basis set leads to a systematic
approach to calculate the single-spin self-correlation function.
The complete basis set is general and can be applied to other
dissipative systems. For example, in our recent article on a 2D
rotor lattice, we calculated reorientational relaxation in the

Figure 10. Comparison ofC2(t) from simulations and the stretched
exponential approximation forc ) 0.4, 0.2, 0.1, and 0.05. The symbols
are simulation results. The solid lines are calculated from eq 49, where
b, τ, andâ are fitting parameters as shown in Table 1.

Figure 11. Comparison ofC1(t) from simulations and from the
asymptotic approximation forc ) 0.4, 0.2, 0.1, and 0.05. The solid
lines are calculated by substitutingC2(t) from eq 49 into eq B8. The
symbols are simulation results.

TABLE 1: Fitting Parameters for C2
fit(t) in Eq 49

c b τ â t0

0.40 0.3358 1.937× 10 0.6483 4.174
0.20 0.1839 2.989× 102 0.5339 5.290
0.10 0.09474 9.732× 103 0.4443 36.93
0.05 0.04911 8.122× 105 0.3346 149.1

C1(t) ≈ ∫0

∞
dl ce-cl

C1(l, t) (47)

C1(t) ≈ ∫0

∞
dl ce-cl exp(-tclog2l)

∼ e-clm(t) exp{-t[lm(t)]log2c} ∼ e-ctâ (48)

C2(t) ≈ C2
(5)(t)Θ(t0 - t) + C2

fit(t)Θ(t - t0)

) ∑
i)1

8

aie
-ωitΘ(t0 - t) + be-(t/τ)â

Θ(t - t0) (49)
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intermediate temperature range using the same method.21

Applications to colloids have produced promising results in
predicting glass transition points.22 Our matrix calculation in
the complete basis set not only recovers earlier results obtained
through the projection operator technique but also provides new
insights into the irreducible memory kernels, mode coupling
and ergodic to nonergodic transitions. Our effort establishes a
one-to-one correspondence between the elegant diagram theory
by Pitts and Andersen20 and our matrix formalism, as shown in
Figure 5.

An important observation of this article is a characteristic
feature of dissipative systems:full and irreducible correlation
functions defined in the complete dynamic space are categorized
as slow functions, whereas reduced correlation functions and
memory kernels defined in projected spaces are relatiVely fast
and do not capture the slow relaxation of nonlinear modes.On
the basis of this observation, we clarify the nature of the
irreducible memory kernel introduced by Cichocki and Hess,23

Kawasaki,18 and Pitts and Andersen.24 For the East model and
dissipative systems in general, we can systematically derive
recursive expressions for slow or fast functions, which is the
starting point of applying MC closures and asymptotic relations.

Applying the algebraic relations betweenC1(t) andC2
ir(t) in

the East model, we findC2
ir(t) ≈ C1(t) at short time and∫0

∞

C2
ir(t) dt ≈ ∫0

∞
C1(t) dt at low temperatures, which leads to the

SMC closure,C2
ir(t) ≈ C1(t), first proposed by Andersen and

co-workers.19,20 Although the first-order SMC approximation
provides reliable predictions ofC1(t) for largec, it fails for c e
0.5, predicting the transition point atcc ) 0.5 instead ofcg )
0. As a mean-field approximation, the first-order SMC cannot
describe cooperative motions on large length scales. In com-
parison, the second-order SMC improves the agreement but fails
to remove the emerging plateau atTc, indicating the difficulty
of describing the slow but finite relaxation in the East model
using a mean-field approach.

Two analytic methods, EMC and long-time correction, extend
SMC. By introducing a difference function into the irreducible
memory kernel to account for nonlinear kinetics, we recovered
Andersen’s EMC approximation.20 The long-time correlation
method is obtained from new MC closures based on asymptotic
relationships. These analytic methods predict the correct diver-
gence point,cg ) 0, and can reliably predictC1(t) by increasing
the order of approximation. However, the minimum truncation
order to reliably predictC1(t) from these two methods scales
asc-1, indicating the difficulties of these methods in the small
c limit.

Hierarchical domain dynamics in the East model have been
explored recently.9,10,12-15 Using the saddle point argument, we
obtained a stretched exponential form. The second-order full
correlation functionC2(t) is found to have time-scale separation
and becomes a natural candidate for the basis set expansion in
the short time and the stretched exponential approximation in
the long time. The resultingC1(t) agrees with simulations and
supports indirectly the notion of domain dynamics in the long
time at low temperatures.

The East model is probably one of the simplest nontrivial
dissipative systems that exhibit dynamic slow-down and diver-
gence of time scales at low temperatures. The simplicity of the
East model provides a unique opportunity to construct the mode
coupling tree to high orders and to explain the intrinsic dynamic
structures in detail. The insights gained from such analysis are
not only valuable for understanding existing issues of mode
coupling theory, but also shed light on how to improve MC for
realistic systems.

B. Implication of Results. The purpose of this paper is not
restricted to the East model but is aimed at a general under-
standing of mode coupling theory by demonstrating its construc-
tion, deficiency, and possible improvement. Here, we assess the
predictive power of our analysis of the East model and explore
the broader implication of the matrix formulation.

Our analytical results of the East model should be evaluated
in the context of earlier studies on the same model. Because of
the simplicity of the East model, several theorists have proposed
exact mathematical procedures to predict its dynamics and long-
time behavior. But most of these proposals are model-dependent
and lack the generality of the matrix formulation. Because mode
coupling theory is the standard tool for studying the dynamics
of low temperature liquids, it is meaningful to apply the mode-
coupling description to the simple East model and calibrate the
underlying approximation systematically. Pitts and Anderson
were the first to develop mode coupling closures to the east
model and proposed simple and extended mode coupling
expression.19,20 Using the matrix formulation, we are able to
show that the results of extended mode-coupling (EMC) are
almost indistinguishable from those of the basis set expansion
method. The proposed long-time correction works well forc )
0.2, when the system exhibits strong slow relaxation. Thus, both
EMC and the long-time MC closure successfully extend the
validity of standard mode-coupling theory to lower temperatures.

The strength of the matrix formalism lies in its simple and
transparent structure. To properly assess its predictive power,
we must emphasize the differences between the East model and
colloid systems. (1) Mode-coupling approximations belong to
a class of mean-field approximation, which by definition work
better if the interactions are more homogeneous. The East model
has strong directional local dynamic constraints, which render
mode coupling approximations less accurate. (2) Because of
the unique coupling, the East model has a linear closure, whereas
Gaussian factorization and quadratic closures are often used for
colloids and liquids. (3) The East model has dynamic divergence
at c ) 0, whereas the hard-sphere colloid system has a finite
transition density observed experimentally.17 More importantly,
the length scale of dynamic domains in the East model diverge
at the glass transition temperature. In real systems, the length
scale does not grow to infinity. Consequently, the East model
may very well represent a more difficult case than colloid
suspensions and other realistic systems, for which the matrix
formulation will be more reliable.

To support the above arguments, we recently applied the
matrix formalism to calculate the dynamic scattering function
of the hard-sphere colloidal system. The matrix formalism not
only recovers the standard mode coupling memory kernel
functions23,35 but also improves mode coupling transition
predictions and provides a general factorization scheme for the
slow functions of nonlinear modes. The standard MCT calcula-
tion predicts the glass transition at a reduced density of 0.52,
which is significantly lower than the experimental value of
0.58.31 Our second-order MCT prediction gives 0.54 and the
third order gives 0.55, which is probably the closest prediction
to the observed colloidal glass transition point. Our prediction
of the nonergodic parameter below the glass transition is also
significantly improved. These encouraging results will be
reported in a coming paper.22

It is known that the standard MCT formalism is not adequate
for describing the glass transition or the long-time behavior of
low temperature liquids. However, combining complementary
perspectives significantly extends the validity of standard MCT.
For example, in the 2-D rotor paper, we used the hydrodynamic
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basis set for the high-temperature phase and the spin wave basis
set for the low-temperature phase.21 The connection between
the two different basis sets remains a challenge. Another
possibility is to use the low-temperature phase to guide high-
order corrections. In a sense, the stretched exponential ap-
proximation is an example motivated by this possibility. Scaling
relations combined with thermodynamics may very well provide
the basis for understanding the low-temperature behavior and
serve as the proper input for constructing high-order MCT
closures. This paper and other recent publications from my group
represent our effort along this direction.
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Appendix A: Kinetic Matrix in the East Model

We construct a matrixL to represent operatorL in the
complete basis set of the East model introduced in section II.
The detailed calculations on the matrix elements of L are
presented below on the basis of the fundamental rate equation,
LA1(i) ) -A1(i)ni+1. For an arbitrary modeAm(i1i2‚‚‚im), LAm

is given by a linear summation expression,

and the identityns ≡ n (s > 0) is used to simplify this equation.
Because the spin sequence is specified as (i1 < i2 < ... < im) to
avoid overcounting, only spinsi[k+1] andik + 1 can be the same,
giving

Substituting eq A2 into eq A1,LAm is simplified to

wherep spins satisfyi[k+1] ) ik + 1 and are denoted byik and
all the other spins are denoted byik′. All the matrix elements of
L are obtained by substituting eq A3 into the definition,Lm,m′
≡ 〈feqAmLAm′〉, which leads to eqs 4-6.

Appendix B: Recursive Expressions for Slow Functions
of Nonlinear Modes

In this appendix, we use the block matrix decomposition in
the complete dynamic space to derive recursive expressions for
the full and irreducible correlation functions.

1. Full Correlation Functions. Similar to Ĉ1(z), the kth-
order full correlation functionĈk(z) is given by the (k, k) block

matrix element of (zI - L)-1. We rewrite eq 9 as

where the submatrix coupling to lower order basis sets is defined
as

and the submatrixLk
r coupling to higher order basis sets is

defined by eq 12. Off-diagonal row block matrices are denoted
by (Lk-1,k) ) [0 0 ‚‚‚ Lk-1,k], and the superscriptT denotes the
transpose matrix. We obtain thekth-order full correlation
function,

whereΩk
L(z) is the contribution from lower order basis sets,

Following eqs 13 and B4, an expression relating the reduced
and full correlation function at the same order is

whereΩk
L ≡ Ωk

L(z)0). Using eq B5, we recast eq B3 into

Following a matrix formula, [I - A(I + BA)-1B]-1 ) I + AB,
where the matricesAB andBA are invertible, eq B7 is simplified
to a recursive expression for full correlation functions,

2. Irreducible Correlation Functions. We construct thekth-
order irreducible correlation functions by omittingzdependence
in kinetic contributions from all the basis sets lower thanqk,
i.e., Ωk

L(z) is replaced byΩk
L ) Ωk

L(z ) 0) in eq B3,

Comparing eq B9 to eq 13, we obtain

LAm(i1i2‚‚‚im) ) ∑
k)1

m

[ ∏
j)1(*k)

m

A1(i j)]LA1(ik)

) - ∑
k)1

m

∏
j)1(*k)

m

A1(i j) A1(ik)nik+1 (A1)

A1(ik+1)nik+1 )

{(1 - c)A1(ik + 1) + xc(1 - c) if i [k+1] ) ik + 1

cA1(ik+1) + xc(1 - c)A1(ik + 1)A1(ik+1) if i[k+1] > ik + 1

(A2)

D+Am(i1i2‚‚‚im) ) -[(m - p)c + p(1 - c)]Am(i1i2‚‚‚im) -

xc(1 - c)[∑
{k}

Am-1(i1‚‚‚iki [k+2]‚‚‚im) +

∑
{k′}

Am+1(i1‚‚‚ik,[ik′ + 1], i [k′+1]‚‚‚im)] (A3)

zI - L ) [zI - Lk-1
L -(Lk-1,k) 0

-(Lk-1,k)
T zI - Lk,k -(Lk,k+1)

0 -(Lk,k+1)
T zI - Lk+1

r ] (B1)

Lk
L ) [L1,1 L1,2

L2,1
· · ·

· · ·· · ·
· · ·

Lk-1,k

Lk,k-1 Lk,k
] (B2)

Ĉk(z) ) [zI + Ωk - Ωk
L(z) - M̂k(z)]

-1 (B3)

Ωk
L(z) ) Lk,k-1[zI + Ωk-1 - Ωk-1

L (z)]-1
Lk-1,k

) Lk,k-1[zI + Ωk-1 - Lk-1,k-2(zI + Ωk-2 -

‚‚‚)-1
Lk-2,k-1]

-1
Lk-1,k (B4)

[Ĉk
r(z)]-1 ) Ĉk

-1(z) + Ωk
L(z) (B5)

[τk
r]-1 ) τk

-1 + ΩL
k (B6)

Ĉk(z) ) {zI + Ωk - Ωk
L(z) - Lk,k+1[ I

Ĉk+1(z)
+

Lk+1,k
I

zI + Ωk - Ωk
L(z)

Lk,k+1]-1
Lk+1,k}-1

(B7)

Ĉk(z) ) I

z + Ωk - Ωk
L(z)

+

I

z + Ωk - Ωk
L(z)

[Lk,k+1Ĉk+1(z)Lk+1,k]
I

z + Ωk - Ωk
L(z)

(B8)

Ĉk
ir(z) ) [zI + Ωk - Ωk

L - M̂k(z)]
-1 (B9)

[Ĉk
r(z)]-1 ) [Ĉk

ir(z)]-1 + ΩL
k (B10)
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which allows us to rewrite eq B9 as

By applying the block matrix inversion method, we obtain a
recursive expression for irreducible correlation functions,

Appendix C: Equivalence between Operator and Matrix
Formalisms for the Irreducible Memory Kernel

In ref 18, Kawasaki introduced the irreducible operator,

which is used to define the irreducible memory kernel

The projection operatorsPk andQk are defined in section IV.A.
On the other hand, the operation expression for the second-
order reduced correlation function is

By substituting eq C1 into eq C4,Ĉ2(z) becomes

which is consistent with eq B10 and demonstrates the equiva-
lence between our matrix formalism and Kawasaki’s operator
formalism for the first-order irreducible memory kernel.

To be consistent withĈ2
ir(z) in eq C3, we define the

kth-order irreducible correlation function as

which arises from the operator definition,Ĉk
r(z) ) 〈feqqk[zI -

LQ k-1]-1qk〉. In eq C6 we introduce the (k - 1)th-order
irreducible operatorLk-1. The operator formalism in eq C5 gives

which is combined with eq B10 to give

References and Notes

(1) Fredickson, G. H.; Andersen, H. C.Phys. ReV. Lett.1984, 53, 1244.
(2) Fredickson, G. H.; Andersen, H. C.J. Chem. Phys.1985, 83, 5822.
(3) Abrahams, E.; Palmer, R. G.; Stein, D. L.; Andersen, P. W.Phys.

ReV. Lett. 1984, 53, 958.
(4) Adam, G.; Gibbs, J. H.J. Chem. Phys.1965, 43, 139.
(5) Xia, X. Y.; Wolynes, P. G.Proc. Natl. Acad. Sci. U.S.A.2000, 97,

2990.
(6) Xia, X. Y.; Wolynes, P. G.Phys. ReV. Lett. 2001, 86, 5526.
(7) Jackle, J.; Eisinger, S.Z. Phys. B1991, 84, 11-124.
(8) Eisinger, S.; Jackle, J.J. Stat. Phys.1993, 73, 643.
(9) Garrahan, J. P.; Chandler, D.Phys. ReV. Lett. 2002, 89, 035704.

(10) Garrahan, J. P.; Chandler, D.Proc. Natl. Acad. Sci. U.S.A.2003,
100, 9710.

(11) Mauch, F.; Jackle, J.Physica A1999, 262, 98.
(12) Sollich, P.; Evans, M. R.Phys. ReV. Lett. 1999, 83, 3238.
(13) Ritort, F.; Sollich, P.AdV. Phys.2003, 52, 219.
(14) Evans, M. R.J. Phys.: Condens. Matter2002, 14, 1397.
(15) Sollich, P.; Evans, M. R.Phys. ReV. E 2003, 68, 031504.
(16) Aldous, D.; Diaconis, P.J. Stat. Phys.2002, 107, 945.
(17) Götze, W. InLiquids, Freezing and Glass Transition; Hansen, J.

P., Levesque, D., Zinn-Justin, J., Eds.; North-Holland, Amsterdam, 1991.
(18) Kawasaki, K.Physica A1995, 215, 61.
(19) Pitts, S. J.; Young, T.; Andersen, H. C.J. Chem. Phys.2000, 113,

8671.
(20) Pitts, S. J.; Andersen, H. C.J. Chem. Phys.2001, 114, 1101
(21) Witkoskie, J. B.; Wu, J. L.; Cao, J. S.J. Chem. Phys.2004, 120,

5695.
(22) Wu, J. L.; Cao, J. S., submitted.
(23) Cichocki, B.; Hess, W.Physica A1987, 141, 475.
(24) Pitts, S. J.; Andersen, H. C.J. Chem. Phys.2000, 113, 3945.
(25) Kawasaki, K.Ann. Phys.1970, 61, 1.
(26) Schofield, J.; Lim, R.; Oppenheim, I.Physica A1992, 181, 89.
(27) Mori, H. Prog. Theo. Phys.1965, 34, 399.
(28) Wu, J. L.; Cao, J. S.Phys. ReV. E 2003, 67, 061116.
(29) Schweizer, K. S.; Saltzman, E. J.J. Chem. Phys.2003, 119, 1181.
(30) Saltzman, E. J.; Schweizer, K. S.J. Chem. Phys.2003, 119, 1197.
(31) Szamel, G.Phys. ReV. Lett. 2003, 90, 228301.
(32) Honbenberg, P. C.; Halperin, B. I.ReV. Mod. Phys.1977, 49, 435.
(33) Berthier, L.; Garrahan, J. P.J. Chem. Phys.2003, 119, 4367.
(34) Witkoskie, J. B.; Cao, J. S.Phys. ReV. E, in press.
(35) Kawasaki, K.J. Stat. Phys.1997, 87, 981.

Ĉk
ir(z) ) {zI + Ωk - Ωk

L - Lk,k+1[ I

Ĉk+1
ir (z)

+

Lk+1,k
I

Ωk - Ωk
L
Lk,k+1]-1

Lk+1,k}-1
(B11)

Ĉk
ir(z) ) [zI +

(Ωk - Ωk
L)

I

Ωk - Ωk
L + Lk,k+1Ĉk+1

ir (z)Lk+1,k

(Ωk - Ωk
L)]-1

(B12)

L1 ) L - L0 ) L + Lq1〉Ω1
-1〈feqq1L (C1)

M̂1
ir(z) ) 〈feqq1LQ1[zI - L1Q1]

-1Q1Lq1〉

) L1,2Ĉ2
ir(z)L2,1 (C2)

Ĉ2
ir(z) ) 〈feqq2[zI - L1Q1]

-1q2〉 (C3)

Ĉ2
r (z) ) 〈feqq2[zI - LQ1]

-1q2〉 (C4)

Ĉ2
r (z) ) 〈feqq2[(zI - L1Q1)

-1 +

(zI - LQ1)
-1L0Q1(zI - L1Q1)

-1]q2〉

) Ĉ2
ir(z) - Ĉ2

r (z)Ω2
L

Ĉ2
ir(z) (C5)

Ĉk
ir(z) ) 〈feqqk[zI - L k-1Qk-1]

-1qk〉 (C6)

Ĉk
r(z) ) 〈feqqk[ 1

zI - L k-1Qk-1
+ 1

zI - LQ k-1
(L -

L k-1)Qk-1
1

zI - L k-1Qk-1]qk〉 (C7)

L k-1 ) L - Lqk-1〉〈feqqk-1[L ∑
m)1

k-1

Pm]-1qk-1〉〈feqqk-1L

) L - Lqk-1〉(Ωk-1 - Ωk-1
L )-1〈feqqk-1L (C8)
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