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ABSTRACT: We report a study of DNA deformations using a coarse-
grained mechanical model and quantitatively interpret the allosteric
effects in protein−DNA binding affinity. A recent single-molecule study
(Kim et al. Science 2013, 339, 816) showed that when a DNA molecule is
deformed by specific binding of a protein, the binding affinity of a second
protein separated from the first protein is altered. Experimental
observations together with molecular dynamics simulations suggested
that the origin of the DNA allostery is related to the observed
deformation of DNA’s structure, in particular, the major groove width.
To unveil and quantify the underlying mechanism for the observed major
groove deformation behavior related to the DNA allostery, here we
provide a simple but effective analytical model where DNA deformations
upon protein binding are analyzed and spatial correlations of local
deformations along the DNA are examined. The deformation of the DNA base orientations, which directly affect the major
groove width, is found in both an analytical derivation and coarse-grained Monte Carlo simulations. This deformation oscillates
with a period of 10 base pairs with an amplitude decaying exponentially from the binding site with a decay length lD ≈10 base
pairs as a result of the balance between two competing terms in DNA base-stacking energy. This length scale is in agreement with
that reported from the single-molecule experiment. Our model can be reduced to the worm-like chain form at length scales larger
than lP but is able to explain DNA’s mechanical properties on shorter length scales, in particular, the DNA allostery of protein−
DNA interactions.

I. INTRODUCTION

Protein−DNA interactions play a vital role in many important
biological functions, such as chromosomal DNA packaging,1,2

repair of damaged DNA sites,3,4 target location,5,6 and
unwinding of DNA.7 Many studies have explored the local
deviations from the canonical helical structure of DNA8 as the
consequence of protein−DNA binding interactions.9,10 None-
theless, understanding of protein−DNA interactions at the
microscopic level is still incomplete, in part because the relevant
interactions span a wide range of length scales. In particular,
previous theoretical descriptions of DNA typically work well on
either very small length scales with atomic resolution or very
large length scales, at least comparable to the persistent length.
This leaves an important lacuna for intermediate length scales.
In this connection, our understanding of protein−DNA
interactions has recently been advanced by single-molecule

measurements by Kim et al.11 of the binding affinities of specific
binding of protein to DNA under the influence of the binding
of another protein to the same DNA at a distance of
intermediate length scales, which presents the challenge to
create a theoretical model to bridge the mesoscopic
thermodynamic or mechanical properties observed and the
underlying molecular mechanism. In the following, we expand
on these issues.
At one end of the length scale spectrum, with local details

incorporated at the atomic level, molecular dynamic (MD)
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simulations based on force fields such as CHARMM,12 and
AMBER13 have been proven to be very successful in studying
many different phenomena of DNA including DNA allostery,11

especially with the aid of other numerical techniques such as
umbrella sampling14 and replica exchange.15 However, the
complexity of the DNA molecule with its atomic level details
together with the lack of a sufficiently realistic continuous field
model in describing the solvent makes these simulations
computationally expensive. These studies are generally limited
by their computational requirements to length scales on the
order of 10 base pairs (bps) and time scales on the order of
microseconds.
At the other end of the length scale spectrum, a widely used

theoretical modelthe worm-like chain (WLC) model,16

proposes to treat DNA as a semiflexible polymer chain that
behaves like an elastic rod.17 In this continuous description of
DNA, all of the local details of the DNA molecule are coarse-
grained into a quadratic bending potential that can be
characterized by one single parameter, the bending persistence
length lP. By fitting to experimental results that measure
extensions of DNA molecules subject to external forces, the
model shows a very good agreement between theory and
experiment with lP ∼ 150 bps ∼ 50 nm for double-stranded
DNA under physiological conditions18 as well as in a flow
field.19 Detailed variations of this model have been proposed
over the years by introducing a small number of additional
independent parameters,20 such as the twisting persistence
length, lt. Because they have only a few parameters, models of
this type prove to be very efficient and accurate in treating long
DNA molecules on length scales larger than 103 bps, but the
coarse graining of all local details also deprives these models of
any ability to describe DNA on molecular length scales smaller
than the persistence lengths.
For a number of problems of biological significance, the

length scale of interest falls in the gap between the atomistic
description and the continuous description. These problems
call for the creation of a model at the intermediate level, which
incorporates the correct amount of local details while at the
same time provides the computational efficiency for relatively
long chains of DNA. An excellent example is a recent
experimental single-molecule study by Kim et al.,11 which has
motivated the present study. In this experiment, a single DNA
molecule of medium size (contour length 100∼200 bps) is
deformed by specific binding of a protein, and the rate constant
of the dissociation of a second protein from the same DNA
chain was measured as a function of the separation L between
the two binding sites. The experimental results were analyzed
with the assumption that the measured dissociation rate
constant k is related to the free-energy difference between
the binding of the protein and DNA through ΔF = −kBT
ln(KD), where the dissociation constant KD is the dissociation
rate k divided by the bimolecular association constant. With this
assumption, the experimental results showed that the binding
free-energy difference of the second protein oscillates with a
period of 10 bps (the helical pitch of the double helical
structure of B form DNA), while the envelope of the amplitude
decays very quickly and becomes virtually zero at separations
larger than 40 bps. Additional experiments were conducted
with the DNA deformation caused by attachment to a hairpin
loop instead of the specific binding of the first protein. A similar
oscillation of the dissociation rate was observed, indicating that
this observed free-energy landscape is related to the underlying
correlations between deformed structures along the DNA chain

under study rather than to direct protein−protein interactions.
The observed allostery was interpreted in terms of the
modulation of the major groove width of the DNA induced
by the binding of a protein,11 but given the observed length
scales involved, a quantitative description of the observed
correlation requires a mesoscopic model with base-pair
resolution that applies to a DNA chain of contour length on
the order of 100 bps.
Following several pioneering works21−23 in the development

of models of intermediate length scale, here we propose a
mechanical model of DNA to interpret the observed allosteric
phenomenon. As one component of this model, the stacking
potential between neighboring bases is modeled by a variant of
the Gay−Berne potential24,25 between ellipsoids, while the
sugar−phosphate backbone as well as the hydrogen bonding
between bases within a base pair is modeled as springs. We find
that interhelical distance changes caused by either protein
binding or the attached hairpin loop (as used in the
experimental study11) induce deformation in the DNA base
orientations. Analysis of our model shows that the deformation
of the major groove width, which is related to DNA base
orientation, exhibits an oscillatory change with an exponentially
decaying amplitude. The length scale for the decay is derived
analytically and confirmed by our coarse-grained Monte Carlo
simulation. These results are in good agreement with the
experimental observations of ref 11.
The outline of the remainder of this contribution is as

follows. In Section 2, the description of the model is given and
an analytic theory is developed, which produces the key decay
and oscillation lengths results. (Some portions of the analysis
are given in an Appendix.) The Monte Carlo simulation
procedures are described in Section 3. Our analytical theory
results are successfully compared with both experiment and the
Monte Carlo simulations in Section 4. Section 5 offers
concluding remarks and discussion, including some directions
for future efforts.

II. MODEL DESCRIPTION

Here we present and analytically develop a mechanical model
to study DNA deformations at zero temperature. We show in
Section 5 that the mechanism underlying the behavior of the
major groove deformations is an intrinsic feature of the DNA
system and that our study is applicable to the DNA
deformations at room temperature. In this coarse-grained
representation of a DNA molecule, which incorporates an
intrinsic twist at every base pair step, the double-helical
structure of an ideal B-type DNA helps us define a right-handed
coordinate system with the z axis in the longitudinal direction
(Figure 1). As illustrated in Figure 2, in our model each
phosphate-sugar-base unit of DNA is modeled by a sphere
representing the phosphate-sugar group attached to a thin plate
(representing the base) with thickness c, depth of the short side
b, and length of the long side a. These units are connected into
two strands, color-coded as blue and red. The two strands are
connected together, forming a double-helical structure, by
springs representing the hydrogen bonds between each base
pair. The orientation for each DNA unit is defined by the unit
vector u ̂ normal to the corresponding thin plate and by
definition u ̂ = z ̂ for all units of an ideal B-type double-helical
structure (Figure 3A). According to previous studies,23 the
stacking interactions between neighboring bases within each
strand with orientation u ̂ns and ûn+1

s , where s = blue for the blue
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strand and s = red for the red strand, can be well-modeled by a
variant of the Gay−Berne potential as a product of three terms:

η χ̂ ̂ = * ̂ ̂ * ̂ ̂+ + +U u u r U u u u u( , , ) ( , ) ( , )n
s

n
s

r n
s

n
s

n
s

n
s

1 1 1 (1)

The first term, in a form of a simple Lennard-Jones potential,
controls the distance dependence of the interaction, while the

last two terms relate the interaction to the orientation un̂
s and

the relative orientation u ̂n+1s u ̂ns .
As suggested by the experimental studies of ref 11, here we

assume that one base pair with index n = 0 is pulled apart along
its long side. This deformation causes an interhelical distance
change that involves backbone chemical bonds, stacking
interactions, and hydrogen bonds. Because the stiffness of the
backbone bonds as well as the distance-dependent part of the
stacking interactions (Ur in eq 1) is much higher than those for
other kinds of energies, these two kinds of bonds can be
regarded as almost rigid. This approximation exerts a strong
geometric constraint such that the distorted interhelical
distance at the base pair n = 0 will relax along the DNA
chain back to equilibrium length in a few base pair steps, by the
induction of an alteration of orientations for neighboring bases,
from u ̂ = z ̂ at equilibrium to an altered orientation u ̂(θ, φ) = sin
θ*cos φx ̂ + sin θ*sin φy ̂ + cos θz ̂ (Figure 3A,B). The induced
alteration of orientations itself relaxes slowly back to u ̂ = z ̂ along
the DNA chain. Because of the symmetry of the system, the
orientations of the two bases in a base pair û (θred, φred) and u ̂
(θblue, φblue) satisfy the conditions θred = θblue and φred = π +
φblue. Depending on the alignment between the alteration of
orientation and the long side of the base plate, such induced
alteration of orientation can be manifest as a combination of a
buckling deformation and a propeller twist deformation (Figure
3C). Because the stacking energy prefers adjacent bases on the
same strand to have the same orientations, the induced
alteration of orientations decays very slowly, as noted above.
For illustration purposes we show in Figure 4 a case where it is
a constant within one helical pitch of DNA. This Figure shows
that as a result of the intrinsic twist, the relative alignment
between the alteration of orientation and the long side of the
base plate changes periodically, yielding periodic structure
changes from buckling backward to propeller twist outward to
buckling forward to propeller twist inward within each helical
pitch.
To quantitatively describe the deformation relaxation along

the DNA chain, we propose here a simplified 2D model that
yields analytical results. In this simplified model illustrated in
Figure 5, centers of identical solid rectangles (side length a ≫
c), each representing one DNA base, are connected into two
strands (color-coded as blue and red), extending to infinity on
both sides. By means of the pairing of each rectangle on one
strand to its corresponding rectangle on the other strand with
springs of stiffness kHY and equilibrium length 2lHY, the two
parallel strands are connected together and form a 2D network.
Here we denote the direction parallel to each strand as the z
axis and the direction perpendicular as the x axis, with the two
strands at xblue = lHY and xred = −lHY, respectively. The
orientation of each rectangle can be characterized by the angle
θ between its main axis perpendicular to side a and the z axis.
For an ideal B-type DNA molecule, θ = 0 for all bases. To study
the relaxation of an interhelical distance deformation, one pair
of rectangles (denoted as the zeroth pair in sequence) is pulled
slightly apart in the x direction as their centers are now located
at xblue_0 = lHY + d0 and xred_0 = −lHY − d0, respectively. As a
result of this deformation, all rectangles relocate (to xblue_n =
lHY + dn and xred_n = −lHY − dn) and reorient (θn for the nth
base in the blue strand and −θn for the nth base in the red
strand) so that on each rectangle force balance and the torque
balance are restored. If we assume that all rectangles in one
strand (e.g., the blue strand) are properly relocated so that the

Figure 1. Coordinate system. The coordinate system used is defined as
illustrated: the longitudinal direction of the double helical structure is
defined as z. In the plane perpendicular to z, an arbitrary direction is
selected as x. Then y is defined through the right-hand rule.

Figure 2. Our coarse-grained model of DNA. DNA is modeled as two
strands (color-coded red and blue) of identical units. Each unit of
DNA is modeled as a sphere representing the sugar−phosphate group
attached to a thin plate representing a base, where the long sides of the
plates are represented by solid lines with length a, short sides of the
plates are represented by dotted lines with length b, and the thickness
of the plates is represented by dashed lines with length c. (A)
Projection of our 3D model in the xz plane. (B) Projection of our 3D
model in the xy plane.
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distance-dependent contribution Ur in eq 1 stays fixed, then we
can simplify the interaction defined in that equation as:

θ θ ω θ ω θ

ω θ

= * − * −

* − Δ
+ +U const( , ) (1 ) (1 )

(1 )
n n n n

n

1 1
2

1 1
2

2
2

(2)

where θn is the orientation of the nth base in the blue strand,
Δθn = θn+1 − θn, and the coefficients ω1 and ω2 can be obtained
from eq 1. Because of the symmetry of the system, the
orientation of the nth base in the other strand (in this case the
red strand) is − θn. Now for the nth rectangle away from the
deformed boundary, the torque balance requires that

ω θ θ ω θ ω θ θ τ* − − * − * − + =+ −( ) ( ) 0n n n n n n2 1 1 2 1 (3)

where τn is the torque on the base exerted by the hydrogen
bonds within the nth base pair.
Solution of eq 3 is not straightforward because the torque τn

is coupled to the orientation deformation θn. For a simpler
problem of interest, in which we have torque τ′n = τ*δi,n, where
τ is a constant and δi,n is the Kronecker delta function (a
constant torque at the ith base and 0 torque at any other bases),
eq 3 can be reduced to a simpler form for j > 0

θ
ω
ω

θ θ− + * + =+ − + + +

⎛
⎝⎜

⎞
⎠⎟2 0i j i j i j1

1

2
1

(4)

Equation 4 should hold for all j > 0, which means that the
ratio θi+j/θi+j−1 = α is independent of j and is parametrized by
ω1 and ω2 through the quadratic equation 1 − (2 + ω1/ω2)*α
+ α2 = 0. There are two solutions to this equation satisfying
α*α2 = 1, corresponding to one decaying mode |α1| < 1 and
one growing mode |α2| > 1. It is implied in this derivation that
the deformation is induced by the external torque at the ith
base and decays toward the boundary at infinity where θ∞ = 0,
so that the constant ratio θi+j/θi+j−1 = α is uniquely determined
as α1. The amplitude of the deformation characterized by θn is
then determined to decay exponentially along the chain as θi+j =
θi*α1

j = θi*e
−j/lD ∼ τ*e−j/lD, where the deformation correlation

Figure 3. DNA unit orientations (u ̂(θred, φred) for units in the red strand and u ̂(θblue, φblue) for units in the blue strand). The orientation of each unit
of DNA is defined as the unit vector normal to the corresponding base plate. (A) By definition, the orientations for all units of an ideal B-type DNA
are in the z direction; that is, u ̂ = z.̂ (B) The orientation of each unit can change as the DNA molecule is deformed from the ideal double-helical
structure. The change in orientation can be characterized by two parameters θ and φ as shown. (C) In the case that θred = θblue = θconst and φred = π +
φblue = φconst for two units within one base pair, the deformation can manifest in the form of a buckling deformation or in the form of a propeller
twist deformation, depending on the angle between the long sides of the plates and φ.

Figure 4. Alteration of orientations. As the base pair with index n = 0
is pulled apart, it induces orientation changes in neighboring base
pairs. For the case where the change of orientation is a constant over
one DNA helical pitch, we see periodic structure changes from
buckling backward (n = 1) to propeller twist outward (n = 3 or 4) to
buckling forward (n = 6) to propeller twist inward (n = 8 or 9) as a
result of the intrinsic twist of DNA.
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length scale lD = −(ln α1)
−1. In the limiting case where ω1 ≪

ω2, this can be reduced to a simple form lD = (ω2/ω1)
1/2.

An analytical approximation to the complete solution to the
full eq 3 as opposed to the simplified eq 4 can be found in the
Appendix. To summarize the result, for the nth base away from
the deformed boundary we find

θ ∼ − *− −(1 e ) en
n l n l/ /1 D (5)

where l1 shows the relaxation length scale of interhelical
distance changes and is estimated to be on the order of one
base-pair step.
The last two terms in eq 1 have been studied previously,23

providing some information on the ratio ω2/ω1. An evaluation
of these two terms following this early formulation shows that η
(θn = ε, θn+1 = ε + Δ) ∼ 1 − ε2 − (X2/(2c2))Δ2 and χ (θn = ε,
θn+1 = ε + Δ) ∼ 1 − 2ε2 − (X2/c2)Δ2 for small ε and Δ, where
X = a for orientation changes parallel to the long side of the
plate and X = b for orientation changes parallel to the short side
of the plate. Comparing this result to eq 2, we see that ω2/ω1 =
X2/c2.
Our modeling of the DNA base as a rectangular thin plate

with long side length a, short side length b, and thickness c is of
course a phenomenological approximation, and the appropriate
values for these parameters must yield the minimum center-to-
center distance for perfect stacking. Previous study23 shows that
one good choice is that a = 9 Å, b = 4 Å, and c = 0.7 Å. From
this, we obtain an expectation of the ratio ω2/ω1 = X2/c2 ∼ (a2

+ b2)/2c2 ∼ 100 ≫ 1. This supports the simple approximation
for lD obtained at the end of the discussion of the solution of eq
4 and gives a decay length scale lD = (ω2/ω1)

1/2 ∼ 10 (bps).
In our development above, we have dealt with the simplified

2D case. In a more realistic 3D DNA model the unit vector
representing the orientation is characterized by both θ and φ,
where θ characterizes the overall amplitude of the change of
orientation from equilibrium where u ̂ = z ̂ and φ characterize

the relative direction of the change of orientation. As illustrated
by our own Monte Carlo simulation results shown later in
Section 4, the change in φ at each base-pair step is small, and as
an approximation we can assume that in the real DNA system
the change in φ is negligible. Under this approximation our
results on {θn} for the simplified 2D model can be extended to
the orientations of bases {u ̂n(θn′, φn′)} in a realistic 3D DNA
model that incorporates the intrinsic twist, in a fashion that θn′ =
θn and φn′ = const. If we assume that the backbone phosphate
group relocates according to the edge of the base plate in the
longitudinal direction by attachment, we have the major groove
width of the DNA molecule defined as the distance between
the phosphate group in the nth blue unit and the phosphate
group in the (n + 7)th red unit

θ π θ

π θ

= | ⃗ − ⃗ | = + −

+ + Ο

+ +
⎛
⎝⎜

⎞
⎠⎟

W P P h a
n

n

6 cos
5

cos
( 7)

5
( )

n n n n nBlue ( 7) Red 7

ind
2

(6)

where h = 3.4 Å is the base step of an ideal B-type DNA and
θind is the overall induced amplitude defined through θn =
θind*(1 − e−n/l1)*e−n/lD (see eq 5), which is assumed to be small
so that all higher order terms can be neglected.

III. MONTE CARLO SIMULATION
To test if the analytical approach of Section 3 is reasonable, we
carried out a simple coarse-grained Monte Carlo simulation on
a DNA molecule with N = 100 base pairs. We simplified the
system by keeping only base stacking, hydrogen bonding
between bases within each base pair, and backbone bonding
interactions. The base-stacking interaction has been limited to
the interaction between neighboring bases within the same
strand; it is decoupled into a distance-dependent part and an
orientation-dependent part as U(un̂, un̂+1, r) = Ur*UΘ(u ̂n, ûn+1),

Figure 5. Simplified 2D model. Identical solid rectangles each representing one DNA base are connected into two strands (one colored blue and the
other colored red). By pairing one rectangle in the blue strand to its corresponding rectangle in the red strand we form a 2D network resembling a
DNA molecule. The behavior of the orientation change for each DNA base, as defined by the angle between the z axis and the corresponding plate
main axis perpendicular to side a, can be studied by examining the torque balance of the network.

Table 1. Parameters Used in Monte Carlo Simulation

Parameters Used for Ideal B-type DNA

base step in z direction base step intrinsic twist radius of the double helix

h = 3.4 Å̇ ω0 = π/5 R0 = 9 Å
Other Parameters Used in Monte Carlo Simulation

backbone strength base stacking distance part hydrogen bond strength base stacking orientation part I base stacking orientation part II

KP = 50kBT/Å̇
2 Kr = 50kBT/Å

2 KHY = 3kBT/Å
2 U0ω1 = −2kBT U0ω2 = −200kBT
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where the distance r between two neighboring bases is obtained
from r ≡ min (|ri⃗ − rj⃗|), ∀(i, j) with i ∈ plate n and j ∈ plate n +
1. All of the distance-dependent interactions included in our
simulation are modeled as elastic springs around their
corresponding equilibrium distances. That is, we use an elastic
spring of stiffness Kr for the distance-dependent part Ur, an
elastic spring with stiffness kHY for hydrogen bonding, and an
elastic spring with stiffness KP for backbone bonding. (See
Table 1 for the parameters used in the simulation.) The
orientation-dependent part of the stacking is modeled as UΘ
(un̂(θn, φn), u ̂n+1(θn+1, φn+1)) = U0*[1 − ω1θn

2 − ω1θn+1
2 − 2ω2(1

− u ̂n·u ̂n+1)] with amplitude U0, which reduces to the 2D case eq
2 when φn = φn+1.
To start each simulation run, all of the bases are placed at the

corresponding positions of an ideal B-type DNA, except for one
base pair that is pulled apart in the long side direction by 1 Å.
The orientation of each base un̂ (θn,φn) is initiated with θn being
a random number between 0 to 0.001 and φn being a random
number between 0 to 2π, except for the one base pair that is
pulled apart where the orientations of the two are kept fixed at
θ = 0 and φ = 0 throughout the simulation run. As described in
previous studies,23 each base taken as a thin plate has six
degrees of freedom. Three of them are translational (rise, shift,
slide), and the other three are rotational (tilt, twist, roll).
Because of the symmetry of the system in our problem, to study
the deformation relaxation of our interest we assume that only
one base in a base pair is free to move and that the other will
move symmetrically. In each trial move of our simulation, we
fixed the twist degree of freedom and made random
displacements in the other five degrees of freedom for each
base pair. The moves are accepted or rejected according to the
Metropolis scheme.26 Because we are interested only in the
deformation relaxation of DNA as a result of its mechanical
properties, we have chosen to downplay the role of thermal
excitations and conduct the simulation with the very low
temperature T′ = 10−4T, where T denotes room temperature =
293 K.

IV. RESULTS
In this section, we compare our analytic predictions with both
experiment and our Monte Carlo simulations.
Our analytical predictions of the base-orientation change are

compared with the results obtained in the simulations in Figure
6. For the parameter θ, the amplitude of the change in
orientation, our analytical prediction (eq 5) agrees very well
with the results obtained in our Monte Carlo simulations. For
the base orientation parameter φ, results from the simulations
show that the changes at each base step are fairly small (on the
order of 0.1 radian ∼ 5°) as compared with the intrinsic twist
which is π/5 = 36° at each base step. This slow variance in φ
supports the approximation used in our analytical analysis in
Section 3, where φ is treated as a constant. This can be
understood as a result that the change in φ raises a large
amount of energy but does not explicitly help the relaxation of
the deformation.
Most proteins primarily interact with the DNA major

grooves. Therefore, distortion of the major groove would
have the largest influence on protein binding affinity. Our
theoretical results are compared with recent experimental
results of ref 11, which demonstrated the correlation and
anticorrelation between bindings of two proteins on two
specific sites of DNA with a separation of L. Figure 7 shows our
results from simulations for the positions of the phosphate

groups. The major groove width of the DNA can be obtained
either from these locations or analytically from eq 6. In Figure 8
our theoretical results concerning the major groove width are
shown in comparison with the experimentally observed second
protein binding free-energy ΔG(L) as a function of separation
L in the form of ΔΔG(L) = ΔG(L) − ΔG(∞). The
comparison shows a quite good agreement between the
experiment and theory for L > 5 bps; the quantitative
discrepancy at small separation regime for L < 5 bps is still
poorly understood and requires more detailed studies.

V. CONCLUSION AND DISCUSSION
Our coarse-grained mechanical model proves to be generally
useful for studying DNA deformation on an intermediate
length scale and leads to theoretical predictions that are in good
agreement with recent experimental results11 and Monte Carlo
simulations. The new decay length scale lD, first demonstrated
in the recent single-molecule experiment in ref 11, is proposed
here as a result of the balance between two competing terms in
DNA base-stacking energy. Because this competition is a
generic feature of the DNA system, it is of considerable interest
to see whether the same general exponential decaying behavior

Figure 6. Comparison between results from analytical analysis and
simulations. (A) Comparison for the orientation parameter θ between
analytical theory (eq 5) as given by solid line and Monte Carlo
simulation as given by solid squares. The solid line is obtained by
setting the parameters in eq 5 to the values l1 = 1 bps and lD = 9.5 bps.
(B) Results from the simulations show small variations at each base
step for the orientation parameter φ.
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is at work for deformations other than interhelical distance
changes, such as bending and supercoiling deformation.
The results demonstrated within have been obtained from

DNA either at zero temperature (analytical analysis) or at very
low temperature (Monte Carlo simulations). Here we argue
that these results also apply at room temperature and so are
relevant for the experiments of ref 11. At room temperature, the
DNA molecule undergoes thermal excitations resulting from its
interactions with the surrounding solvent (typically water)
molecules. The time scale over which these interactions occur is
denoted as T1, typically comparatively small (1 ps ∼ 1 ns).
Over this time scale, the thermal excitations can be considered
as an instantaneous thermal “kick”−an external force (or
torque) at each base pair. Typical experimental observations
happen at time scale T0 around 1 ms ∼ 1 sec, at which the
DNA has undergone many thermal “kicks”. Because these
interactions are uncorrelated in nature, the effects observed in
experiments are the statistical averages of many instantaneous
thermal “kicks” over T0. In a simple approach, here we model

each of these uncorrelated thermal “kicks” as an external force
(or torque) at each base pair site, of amplitude f 0 pointing in a
random direction, where the statistical time average of these
“kicks” over a time scale of T0 has a square amplitude
proportional to the thermal energy, ⟨f 0*f 0⟩T0

∼ ckT, where c is
the suitable proportionality factor. To study the thermally
driven deformation of DNA, it involves no loss of generality to
keep the DNA chain at zero temperature except for one base
pair with index n = 0 because the molecule is treated as a linear
system in our mechanical model. The forces of thermal origin
mentioned above are not fundamentally different in terms of
deforming DNA from other external forces treated in our
current study.
Therefore, in the simplest case we can consider only one

mode of the thermal “kick” that acts as an external torque of
amplitude f 0 pointing in a random direction in the xy plane. In
the spirit of our previous analytical analysis in Section 2, at any
instant t the DNA molecule can be described by its 2D
projection with normal direction of the 2D plane (characterized
by φ(t)) determined by the external torque τ(⃗t) and the z axis.
According to our simplified 2D model, such an external torque
induces a change of orientations of bases {u ̂n(θn″(t))}. We have
already shown that the behavior of {θn″(t)} is governed by eq 4,
which yields a result of θn″(t) = θ0″(t)*e−n/lD with amplitude
θ0″(t) ∼ f 0. Because the thermal “kicks” are totally uncorrelated,
φ(t) is random. On the time scale T0, the statistical averages

show that the deformation in base orientation δ
⎯→⎯

un(t) = u ̂n(t) −

z ̂ = sin θn″(t)*cos φ(t)x ̂ + sinθn″(t)*sin φ(t)y ̂ satisfies ⟨δ
⎯→⎯

un(t)⟩T0

= 0 as a result of the randomness. Howeverand this is the key

pointthe correlation ⟨δ
⎯→⎯

un(t)*δ
⎯→⎯

u0(t)⟩T0
/⟨δ

⎯→⎯
u0(t)*δ

⎯→⎯
u0(t)⟩T0

=
e−n/lD remains just the same as the result obtained in Section 2
for our model developed for the zero temperature system. This

important result can be generalized as ⟨δ
⎯→

uj(t)*δ
⎯→

ui(t)⟩T0
/

Figure 7. Displacements of the phosphate group as a result of the
orientation changes of DNA bases. (A) Positions of the phosphate
groups according to our Monte Carlo simulations, where for
phosphate groups at positions px, py, and pz we have cos θ = px/
((px)2 + (py)2)1/2 and sin θ = py/((px)2 + (py)2)1/2. (B) Another
version of the positions of the phosphate groups, where θ follows the
double helix instead of being confined between 0 and 2π. In both
Figures, H is the length of the helical pitch of an ideal B-type DNA,
and the amplitudes of all displacements are multiplied by a factor of 15
for illustration purposes.

Figure 8. Comparison between results from analytical analysis,
simulations, and experimental observations. The experimental relative
binding free energy of the second protein as a function of the
separation between the two protein binding sites on DNA from ref 11
are shown as solid red circles with error bars. Our theoretical results of
the major groove width changes of the DNA are also shown, with the
results from analytical analysis shown by black solid line and results
from simulations shown by solid blue squares. Both the black solid line
and the solid blue squares are scaled to match the experimentally
observed amplitude around L = 10 bps.
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⟨δ
⎯→

ui(t)*δ
⎯→

ui(t)⟩T0
= e−|i−j|/lD for the more realistic case where all

of the DNA base pair sites are thermally excited. As a direct
result of this correlation, the major groove widths at different
locations exhibit a similar correlation as ⟨Wj(t)*Wi(t)⟩T0

/

⟨Wi(t)*Wi(t)⟩T0
= e−|i−j|/lD. The above analysis indicates that the

mechanism unveiled by our model−the correlation between
local deformations of DNA structures at different locations−is
general and is an intrinsic feature of the DNA system.
Conventional models based on the elastic rod treatment of

DNA (e.g., the worm-like chain model) describe the DNA
molecule in terms of its centerline and cross sections. These
models provide reliable descriptions of the DNA molecule on
length scales larger than the persistence length lP ∼ 150 bps,
where the amplitude of the bending angle Θi between two
consecutive segments (labeled with index i and i + 1,
respectively) of DNA of length L0 is accurately predicted as
⟨Θi⟩ = e−L0/lP. However, because they lack local details, these
continuous models fail to provide a good description at on
length scales smaller than that persistence length. This failure is
caused by the breakdown of one key assumption that the cross
sections (as a point in the worm-like chain16 and as a circle in
other models27) are rigid and are “stacked” along the centerline,
which requires that all bending angles are independent as
⟨ΘiΘj⟩ = δi,j. Our results show that local deformations are
correlated on short length scale lD ∼ 10 bps and the failure of
these continuous descriptions on short length scales can be
avoided by incorporating modifications that follow naturally
from the model presented in this paper. The conclusion lD ∼ 10
bps≪ lP from the present model is consistent with these elastic
rod descriptions because the molecular details included in our
model can be renormalized into the fitting parameter lP on
length scales larger than lP. This new description, which
incorporates local details into traditional continuous models, is
expected to be of considerable importance in studying DNA
structures on length scales comparable to the persistence length
and should help us understand many mechanical properties of
DNA such as the enhanced flexibility on short length scales and
DNA repair mechanism inside cells.
Strictly speaking, the analytical results obtained in this study

only apply to an infinitely large system consisting of identical
units. Extension of the study to finite system with sequence-
dependent properties can be made by bundling all the linear
torque balance equations on all bases in an equivalent matrix
representation. In this representation, a so-called resistance
matrix can be given with neighboring interaction coefficients ω1
and ω2 being the matrix elements. The final structure of the
system upon deformation can be expressed in terms of the
eigenvalues and the eigenvectors of this resistance matrix.
When all units are identical, the matrix is a Toeplitz matrix; that
is, elements are constant along diagonals. For a finite DNA
chain of N base pairs, the convergence of the eigenvalues and
eigenvectors of the N by N Toeplitz matrix to the N → ∞
analytical limit has been studied.28 The close agreement
between results from our analytical analysis with an infinitely
large system by eq 5 and our simulation studies for N = 100
shows consistence with the mathematical study in ref 28; the
DNA chain length satisfies N ∼ 100 bps ≫ lD so that N ∼ ∞
serves as a good approximation.
Of course, in reality these DNA units are, in general,

different. The variations of the DNA molecule at the base-pair
level, including mismatches29,30 (broken hydrogen bonds and
poor stacking forces) and sequence-dependent features31,32

(hydrogen bond strength and stacking force vary for different
sequences), actually have important biological implications and
accordingly are of great interest. The rugged free-energy
landscape associated with the sequence-dependent interactions
between DNA and the binding protein has been probed,33 and
its important role in many processes of great biological
importance, for example, the sliding kinetics of the binding
protein along DNA, has been discussed.34 Qualitatively, we
know that GC stacking interactions are more stable than AT
stacking interactions; that is, |U0_GC| > |U0_AT|. This leads to a
smaller overall amplitude of the induced alteration of
orientation for GC-rich DNA segments than for AT-rich
segments, in qualitative agreement with experimental observa-
tions.11 However, a highly desired quantitative study is left for
the future, although we do note here that for small variations
this can be realized by perturbation of the resistance matrix M′
around the Toeplitz matrix M as (M + εX)−1 = M−1 −
εM−1XM−1 + o(ε2). The sequence dependence and other issues
will be subjects of further studies.
In conclusion, we have proposed a mechanical model and

analytic analysis to explain the recent experimentally observed
DNA allostery phenomenon. We attributed the observed DNA
allostery to major groove distortions, which result from the
deformation of DNA base orientations. Because the DNA base
orientation is much more flexible than the backbone or the
interhelical distance, the local deformation of the interhelical
distance transfers to the distortion of the base orientation very
rapidly, which can propagate to a long range on a length scale
of about 10 bps. The major groove length oscillates because of
the intrinsic double-helix structure of DNA. Local deforma-
tions, major groove width, in particular, as shown in a recent
experimental study, induced by the first protein bound in turn
affects the binding of a second protein and vice versa, which is
the underlying mechanism for DNA allostery.

■ APPENDIX

Approximate Solution to Equation 3
To solve the full eq 3, we assume that the system is linear.
When one base pair is pulled apart, changes of orientations for
neighboring base pairs are induced. Along the DNA chain we
see that spatially the interhelical distance change deformation
transforms into an orientation change deformation. Under the
linear system assumption, we assume that the external torque
on the nth base τn ≡ ρ*dn. Equation 3 then becomes

ω θ θ ω θ ω θ θ ρ* − − * − * − + * =+ − d( ) ( ) 0n n n n n n2 1 1 2 1
(A1)

Without the external torques, we have seen that the solution
to equation

ω θ θ ω θ ω θ θ* − − * − * − =+ −( ) ( ) 0n n n n n2 1 1 2 1 (A2)

satisfies θn+1 = θ1*e
−n/lD. As an extension of this result to a

system with linear coupling between the interhelical distance
change and the orientation change, we assume that there exists
a linear combination qn = θn + γdn that obeys

= *+
−q q en

n l
1 1

/ D
(A3)

where γ is constant, showing the coupling between the two
deformations just mentioned.
Equations A1 and A3 can be solved together numerically,

with any specified constant γ. On the basis of the fact that in
our case the decaying length scale lD is about ten times larger
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than the length scale l1 over which the interhelical distance
change transforms into an orientation change, an analytical
solution can be achieved with an additional approximation.
This approximation considers that the decaying length scale lD
is much larger than the length scale l1 so that the decaying
regime and the transformation regime can be regarded as
decoupled. That is, in the transformation regime, the decaying
terms can be regarded as negligible so that we have:

ω θ θ ω θ θ ρ

θ γ γ

* − − * − + * =

+ =
+ −

⎪

⎪⎧⎨
⎩

d

d d

( ) ( ) 0n n n n n

n n

2 1 2 1

0 (A4)

Equation A4 can be solved analytically with dn = d0e
−n/l1 and θn

= γd0(1 − e−n/l1), where l1 = −(ln ϵ)−1 and ϵ satisfies:

γω ρ γω γω− + *ϵ + *ϵ =( 2 ) 02 2 2
2

(A5)

Outside the transformation regime we can assume that the
external torque is negligible so that θn+N = θN*e

−n/lD, where N >
l1. So, overall an analytical approximation of the solution to eq 3
can be written as:

θ γ= − − −d (1 e )en
n l n l

0
/ /1 D (A6)
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