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ABSTRACT: We consider a generic stochastic model of ion
transport through a single channel with arbitrary internal
structure and kinetic rates of transitions between internal states.
This model is also applicable to describe kinetics of a class of
enzymes in which turnover events correspond to conversion of
substrate into product by a single enzyme molecule. We show
that measurement of statistics of single molecule transition time
through the channel contains only restricted information about
internal structure of the channel. In particular, the most
accessible flux fluctuation characteristics, such as the Poisson
indicator (P) and the Fano factor (F) as function of solute
concentration, depend only on three parameters in addition to
the parameters of the Michaelis−Menten curve that character-
izes average current through the channel. Nevertheless,
measurement of Poisson indicator or Fano factor for such renewal processes can discriminate reactions with multiple
intermediate steps as well as provide valuable information about the internal kinetic rates.

I. INTRODUCTION
Quantitative biology is aimed at developing mathematical/
theoretical tools for quantitative predictions of biochemical
system dynamics. This field has always been influenced by the
problem of a large diversity of biochemical processes. Even if
one develops a very precise description of some kinetic
biochemical processes in one organism, it is usually unlikely to
find exactly the same biochemical process in another organism.
Hence, the unifying laws that encounter in wide range of
biochemical systems are of particular importance for this field.
One widely known example is called the Michaelis−Menten
(MM) law.1 According to it, the average rate of product
creation ⟨J⟩ and the substrate concentration [S], in enzymatic
reaction, are related by

⟨ ⟩ =
+

J
k

K
[S]

[S] MM (1)

where KMM and k are constant parameters. The MM law was
initially derived for a simple reaction

+ → +H Iooo
k

E S ES P E
k k

1E
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in which the substrate S is converted into product P via an
intermediate complex ES that the substrate creates with enzyme
molecule E. Interestingly, the MM law was found in a much
wider class of enzymatic reactions, with possibly many internal
substeps. Recently, this observation was explained by showing

that a large class of passive (i.e., driven only by difference of
substrate and product concentrations) enzymatic reactions,
with multiple states of enzyme−substrate complex, follows the
Michaelis−Menten law.4,5

Equation 1 is also encountered in biochemistry beyond the
context of enzyme kinetics. For example, traditionally, the key
measurable quantity in ion channel transport has been the
steady state flux in a single channel through a membrane that
separates two compartments with different solute concen-
trations.2,3 MM law was found to describe the transport of
solute molecules through a class of ion channels, in which ⟨J⟩
represents the ion flux through the channel and [S] is the solute
concentration on one side of the channel, assuming that [S] = 0
on the other side. Recent theoretical studies shed light on the
origin of observed wide applicability of the MM-formula (eq 1)
in ion channels. Bezrukov et al.3 showed that a general model of
transport through a chain of N neighboring sites with 2(N − 1)
rate constants, as well as its continuous 1D diffusion limit,
produce the same dependence of average flux on solute
concentrations as in an effective MM model with appropriately
chosen transition rate constants. To avoid a mixture of ion
channel and enzyme terminology, in this article, we will use the
ion channel interpretation of our models throughout the text
and return to enzyme applications only in the discussion.
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The simplicity of eq 1 implies that information provided by
measurements of average flux is intrinsically limited. Only two
constants can be obtained experimentally by measuring MM
curve for a renewal process. Additional terms will contribute to
the substrate-dependence of turnover rate if a multiple-channel
reaction is driven away from equilibrium.4,5 The advance of
single molecule techniques allowed researchers to alleviate this
restriction by studying not only average currents but also the
statistics of single molecule transitions in the channel-facilitated
transport through biological membranes.2,3,6−8 For example,
single-channel ion current measurements have been used to
study the translocation dynamics of single-stranded RNA and
DNA through α-hemolysin channel in lipid bilayer membrane.9

During the translocation, the single stranded polymer partially
blocks the channel. This leads to transient blockades in α-
hemolysin single channel current and the current is restored to
its original value when the DNA exits from the other side of the
membrane. By detecting time moments of such events of DNA
exit, one can study not only mean DNA transition times but
also characterize fluctuations of those time intervals. Such high-
resolution transition events recording from single ion channels
were shown to provide information that is hidden in ensemble-
averaged experiments. The most accessible characteristics of
fluctuations in molecular transport are related to second
moment of turnover time statistics and current distribution.
Those include the Poisson indicator (P), defined by

= ⟨ ⟩ − ⟨ ⟩
⟨ ⟩

P
t t

t
22 2

2
(2)

which is also known as the Mandel parameter in the context of
photon counting statistics,10−12 and the Fano factor (F),
defined by

=
⟨ ⟩ − ⟨ ⟩

⟨ ⟩
F

J J
J

2 2

(3)

where t is the time between successive molecular transitions
through the channel and averaging is over a large number of
such observed transitions; J is the total number of molecules
transferred through the ion channel during a specified
measurement time interval. In the context of photon statistics,
the Fano parameter and the Poisson indicator are related to the
Mandel’s parameter which describes the bunching and
antibunching of emitted photons.
If ion channels were just “windows” without internal

structure for instantaneous molecular transitions through a
membrane, the statistics of turnover times would be
exponential and statistics of currents would be Poissonian.
This corresponds respectively to P = 0 and F = 1. Functional
dependences of P([S]) and F([S]) on the solute concentration,
[S], on one side of a membrane provide valuable information
about structure of an ion channel. In our present paper we will
consider the model of ion channel kinetics with the possibility
of multiple closed loops in kinetic network, as shown in Figure
1. We will show that, similarly to the universality of average flux
characteristics, the complexity of P and F for transport through
ion channels reduces to the universal functions that depend on,
maximum, three additional constant parameters. We will also
show that one can derive a connection between the Fano factor
and Poisson indicator for such renewal kinetic processes.
Although the universality of P and F will be the main focus of
our work, we will perform calculations on the level of the full

statistics of turnover events, so that our method can be used to
explore similar properties of higher order correlators, if needed.
This paper is organized as follows. In section II, we introduce

our general kinetic model for transport through an ion channel
and derive expressions for the first passage time distribution
and related observables in fluctuation statistics such as the
second moment of the distribution and the Poisson indicator.
We also concentrate on simple kinetic models with only two
internal states and use the self-consistent pathway formalism
proposed by Cao and Silbey15 to derive expressions for the
waiting time distribution in terms of the elementary kinetic
rates and show how these models influence parameters in the
general expression for the Poisson indicator. In section III, we
calculate the Fano factor by exploring a connection between the
turnover probability distribution and the cumulant generating
function, which is directly related to the Fano factor. We derive
expressions for the parameters that influence Fano factor in
terms of the kinetic rates for two state models. We summarize
our results in section IV.

II. FIRST PASSAGE TIME DISTRIBUTION
In our model of ion channel, shown in Figure 1, we consider
transport through a singly occupied channel with arbitrary
number of internal states. The channel is assumed to be capable
of having a maximum of one molecule inside; that is, even if the
molecule is smaller than the length of the ion channel, we
assume that it creates a potential that blocks other molecules
from entering the channel. The left side compartment contains
solute particles at concentrations [S], whereas the right
compartment has negligible solute concentration. E represents
the single empty channel state, and P1, P2, ..., PN are possible
solute occupied states at the entrance to the channel. We
assume that, after the solute molecule leaves the channel, the
internal degrees of freedom of the channel relax quickly, so that
the empty state E of the channel can be represented in our
model by a single state. We also assume that the solute
concentration on the left of the channel is set to a constant
value. Hence, evolution repeats, in the statistical sense, each
time the channel becomes empty. If we understand the
dynamics between only two successive moments at which the
channel becomes empty, we can reconstruct all other statistical
characteristics of the process. This type of reaction scheme is
referred to as a renewal process.16

Waiting Time Distribution Functions. We assume that
experimentally only some specific events, called monitored
transitions, are observable. For example, in ion channels,
monitored transitions can be events when a transported

Figure 1. Ion channel model. E is the empty state with N internal
states for the entry to the ion channel.
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molecule leaves the ion channel. We will assume that the
evolutions of the system are statistically identical after each
monitored event. The central object of the renewal theory is
the first passage time distribution ϕ(t) between two successive
monitored events. More precisely, given the moment of one
monitored transition, ϕ(t) dt is the probability of observing the
next monitored transition between time t and t + dt after this
time moment. In this article, we will assume that monitored
transitions correspond to events when solute molecules are
leaving the ion channel to the right compartment. Such events
were shown to be detectable in ion channel experiments.2,3

It is generally assumed that the kinetic rate for entering the
“empty” ion channel is proportional to the solute concentration
[S]. Hence let kEj[S] be the rate for making a transition from
empty state E into the state with a solute molecule inside the
ion channel at site j, with constant parameter kEj independent of
[S]. In correspondence to this process, we introduce the
probability per unit time, QEj(t) of the event that at time t, after
the channel becomes empty, the new solute molecule enters the
channel for the first time at site j. Explicitly, QEj(t) is
exponentially distributed

∑= −
=

Q t k t k S( ) [S] exp( [ ])Ej Ej
j

N

Ej
1 (4)

This type of probability is known as the waiting time
distribution function, which accounts not only for fundamental
rate processes or their combinations but also nonexponential
decay processes. The waiting time distribution formulation
allows us to condense a large class of complex reactions into a
generic scheme which is the irreducible representation of
measurements.15,17 In the current setting, the accessible
measurements are substrate binding and enzymtic turnover,
which define the basic elements of the waiting time analysis
presented below.
Let then QR

j (t) be the probability per unit time of the event
that the molecule that just entered the site j will leave the
channel at time t to the right, i.e., by making a monitored
transition. We assume that all elementary reactions, except the
monitored ones, are, in principle, reversible, so there is also a
finite probability per unit time, QL

j (t), that the solute molecule,
being initially at site j will leave the channel to the left at time t
without making the monitored transition. In both cases, after
leaving to the left or to the right, the channel becomes open
again and the process renews. The probability ϕ(t) then
satisfies a formal convolution law

∫

∫

∑ϕ

ϕ

= −

+ −

=
t t Q t Q t t

t Q t t t

( ) d ( )[ ( )

d ( ) ( )]

j

N t

Ej
j

t

t
j

1 0
1 1 R 1

2 L 2 2
1 (5)

This equation can be transformed into algebraic equation,
which is satisfied by the Laplace transform of ϕ(t), i.e., by ϕ(s)
= ∫ 0

∞e−stϕ(t) dt. The result is

∑ϕ ϕ= +
=

s Q s Q s s Q s( ) ( )[ ( ) ( ) ( )]
j

N

Ej
j j

1
L R

(6)

Here and in what follows, we distinguish probability
distributions and their Laplace transforms by writing in their
arguments, respectively, t or s.
Equation 6 can be formally solved as

ϕ =
∑

− ∑
=

=

s
Q s Q s

Q s Q s
( )

( ) ( )

1 ( ) ( )
j
N

Ej
j

j
N

Ej
j

1 R

1 L (7)

This compact expression generalizes the distribution function
derived for chain reactions and exemplifies the self-consistent
pathway method formulated for the first passage time
distribution of generic enzymatic networks.15,17 The introduc-
tion of QR and QL simplifies such analysis and can generate
hierarchical distribution functions for chain reactions.

Substrate Dependence of Poisson Indicator. We note
that eq 7 is still a formal solution because only the functional
form of QEj(s), at this stage, is known

=
+ ∑ =

Q s
k

s k
( )

[S]

[S]Ej
Ej

j
N

Ej1 (8)

while QL
j (s) and QR

j (s) remain unknown yet. However, to
achieve our goals, their explicit form is not needed. Importantly,
we know that neither QL

j (s) nor QR
j (s) depends on the external

solute concentration [S]. Substituting QEj(s) from eq 8 into eq
7 and taking the derivative of eq 7, ⟨t⟩ = (−1)lims→0 ∂ϕ(s)/∂s,
we obtain the average first passage time

⟨ ⟩ = +t
A

B
[S] (9)

where

=

= − +

A k a

B b c a

1/

( )/
E1

(10)

where a = ∑jQR
j (0), 1 − a = ∑jQL

j (0), b and c are constants
that are the first derivatives of respectively QR

j (s) and QL
j (s) at s

= 0.
Thus, we obtained a linear relation between the mean first

passage time ⟨t⟩ and the inverse of solute concentration [S]−1.
This is equivalent to the relation in eq 1 obtained for ⟨J⟩ = 1/
⟨t⟩. For example, parameters of the MM curve, KMM and k, can
be expressed via A and B as KMM =A/B and k = 1/B. As we
mentioned, this universality, i.e., independence of functional
form of ⟨J⟩([S]) on the detail of the internal kinetic model of
the channel, was previously discussed in a series of previous
work.3,15 Next, by analogy with average turnover rate we
consider higher moments of the turnover time distribution.
Substituting eqs 7 and 8 into ⟨tn⟩ = ∫ 0

∞ dt tnϕ(t) = (−1)nlims→0
∂
nϕ(s)/∂sn, we find that the Poisson indicator P defined in eq 2
reads

η
δ

=
−

+
P

q[S]( [S] )
( [S])2

(11)

where q, η, and δ are all constants that are different
combinations of the different rate constants kEj and the first
and second derivatives of QL

j (s) and QR
j (s) at s = 0, which do

not depend on solute concentration [S]. Explicitly, we obtained

η δ

= = − +

= − − + + +

= + = − +

A k a B b c a

q b bc a d f b c

b k b c k b c

1/ , ( )/ ,

2 2 ( )/( ) ,

2 / ( ) , 1/ ( )

E

E E

1
2 2

1
2

1

d and f are the second derivatives of respectively QR
j (s) and

QL
j (s) at s = 0.
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Equation 11, as well as the similar expression for the Fano
factor that we will derive in the following section, are the
central results of our work. Equation 11 shows that the Poisson
indicator P has a universal functional dependence on the solute
concentration. It is parametrized only by three constant
parameters irrespective of the number of internal states and
kinetic rates inside the ion channel.
The parameter P is, generally, a nonmonotonous function of

[S], and at high solute concentrations, lim[s]→∞P = q; that is,
generally at high concentration the statistics of turnover time
distribution is non-Poisson. Note that eq 11 is derived under
the assumption that substrate binding as described by eq 8 is a
rate step. A general functional form of [S]-dependence can be
obtained by incorporating the non-Poissonian distribution of
the substrate binding.
C. Kinetics with Two Internal States. Recently Cao and

Silbey15,17 proposed a self-consistent approach, which is based
on the theory of renewal processes, for studies of turnover time
statistics in single molecule kinetics. This theory is equally well
suited for applications to ion channels. It provides a
straightforward way to express waiting time distributions Q(t)
via the elementary kinetic rates of a kinetic model. Although
generally explicit expressions would be complex, such
expressions can be easily written for simplest models with
only one and two internal states.
As an example, consider the model with only two internal

states, shown in Figure 2a. E represents the empty state, and ES

and EP are the two interconvertible internal states, which

correspond, e.g., to two internal states of a molecule inside an

ion channel. By applying the theory,15,17 the self-consistent

equation for the first passage time distribution in the Laplace

space is

ϕ =
− −

s
Q s Q s Q s

Q s Q s Q s Q s
( )

( ) ( ) ( )

1 ( ) ( ) ( ) ( )
E1 12 23

E1 1E 12 21 (12)

where Q23(s) describes the monitored transition, QE1(s) and
Q12(s) describe the transitions from the state E to ES and the
state ES to EP, respectively. Q1E(s) and Q21(s) are the backward
transition rates from the intermediate state ES to the empty
state E and the transition from the state EP to ES, respectively.
In analogy to eq 7, Q23(s) and Q12(s) represent QR

j (s) and the
backward transitions Q32(s) and Q21(s) represent QL

j (s).
Equation 12 for this two state kinetics is thus a special case
for eq 7.
Following eq 8, the waiting time distributions in terms of the

kinetic rate constants are given by

= +

= + +

= + +

= + +

= + +

+

+ +

− −

−

Q s k s k

Q k s k k

Q s k s k k

Q s k s k k

Q s k s k k

( ) [S]/( [S])

/( )

( ) /( )

( ) /( )

( ) /( )

E1 E1 E1

1E 1E 1E

12 1E

21 2

23 2 2 (13)

Taking the derivative of eq 12 and using eq 13, we found that
parameters q, η, and δ in eq 12 in terms of kinetic rates of
Figure 2a can be expressed as

η

δ

= −
+ +

=
+ + +
+ +

=
+ +

+ +

+

+ −

+ + −

+ −

+ −

+ −

q
k k

k k k

k k k k k k
k k k k

k k k k k
k k k k

2
( )

2 ( )
( )

( )
( )

2

2
2

2 1E 2

E1 2
2

2 1E 2

E1 2 (14)

Figure 2. Two-state ion channel models: (a) E is the empty state, and
ES and EP are the two internal states. The forward and backward rate
constants for transition between E and ES are, respectively, kE1 and
k1E; k+ and k‑ are rate constants for intrachannel transitions between
ES and EP, and k2 is the escape rate from the channel. (b) ES1 and ES2
are the internal states. The escape through the channel takes place
from ES1.

Figure 3. Poisson Indicator P as a function of the solute concentration
[S] for the two-state ion channel model in Figure 2a. Numerical
parameter values are kE1 = 1, k1E = 1, k+ = 0.1, k− = 0.01, k2 = 1, and q
= −0.16 (blue); kE1 = 1, k1E = 1, k+ = 0.1, k− = 0.01, k2 = 2, and q =
−0.089 (green). For ion channel model in Figure 2b: kE1 = 1, k1E = 1,
k+ = 1, k− = 0.7, k2 = 0.5, and q = 0.35 (black), and ion channel model
with one internal state (MM model): kE1 = 1, k1E = 1, k2 = 1, and q = 0
(red).
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The negative value of the parameter q means that fluctuations
of turnover times for this two state model are always sub-
Poisson; that is, they are suppressed in comparison to the ones
in the Poisson process. In contrast, for the reaction process
shown in Figure 2b, in which the second internal state is an idle
state, using the self-consistent approach as before, we find that
q = 2k+k2/(k+ + k−)

2. This positive value corresponds to super-
Poissonian statistics.
We note that kinetic models with more than two internal

states may still be distinguishable from two-state models if
variances of fluxes are measured. For example, for the reaction
scheme given in Figure 2a, the minimum of the Poisson
indicator is achieved at

η
δ η δ

= −
+

P
q4 ( )min

2

(15)

Minimizing this expression further over the choice of kinetic
rates, we find the minimum possible value of the Poisson
indicator is −2/3, and it is achieved for reaction in Figure 2a
when all elementary reactions are irreversible and have the
same kinetic rates

→ → →E ES EP P
k k k

Hence the value of Pmin lower than −2/3, if observed, would
indicate that the reaction mechanism involves more than two
intermediate states.

III. CURRENT DISTRIBUTION FUNCTION AND FANO
FACTOR

A different type of single molecule measurement is the
probability distribution for the number of events observed
within a time bin.18,19 In this measurement approach, the
number of molecules transferred through the channel is
measured during time intervals t and the probability Pn(t) of
the number n of transitions is obtained after many repetitions
of the measurement. A convenient way to study current
distribution theoretically is by introducing the probability
generating function (pgf)20−22

∑χ = =χ ω χ

=

∞

Z t P t( , ) ( )e e
n

n
i n

0

( )

(16)

where χ is called the counting parameter and ω(χ) is the
cumulant generating function. Its derivatives with respect to χ
give the cumulants of the distribution Pn, such as the mean ⟨n⟩
and the variance σ2

ω χ
χ

σ ω χ
χ

⟨ ⟩ = − ∂
∂

= ⟨ ⟩ − ⟨ ⟩ = − ∂
∂

χ

χ

=

=

n i

n n i

( )
,

( )
( )

0

2 2 2 2
2

2
0 (17)

The Fano factor is defined to be the ratio of the variance to the
mean, i.e.

=
−

−

ω χ
χ χ

ω χ
χ χ

∂
∂ =

∂
∂ =

F
i

i

( )2 ( )

0

( )

0

2

2

(18)

Recently, the Fano factor in most general enzymatic models
with two internal states, which also correspond to our models

of ion channels with two internal nonempty states, was studied
by Mugler et al.13 It was shown that measuring both the average
current and the Fano factor as a function of solute
concentration is sufficient to distinguish among all possible
two-state enzymatic kinetics models and, moreover, to
determine values of all kinetic rates quantitatively.
The natural next question is whether measurements of the

Fano factor can be used to extract information about more
complex enzymatic mechanisms. To resolve this question, we
will first demonstrate the connection between the turnover
probability functions and the cumulant generating function,
from which the Fano factor can be readily obtained for renewal
processes.
Let ϕ(t) be the probability that a turnover event takes place

in time t and ψ(t) is the probability that no monitored
transitions happen during time t after the last monitored event.
Then the event averaged probability distribution function Pn(t),
after the Laplace transform over time, is given by

ϕ ψ=P s s s( ) ( ) ( )n
n

(19)

Using eq 19, the generating function in the Laplace space
becomes

∑χ ϕ ψ ψ
ϕ

= =
−

χ
χ

=

∞

Z s s s
s

s
( , ) ( ) ( )e

( )
1 e ( )n

n i n
i

0 (20)

which is the discrete Fourier Transform of Pn(s) over n-index
and its Laplace transform over time. Returning to real time

∫χ ψ
ϕ

=
− χ− ∞

∞
Z t

s
s

( , ) e
( )

1 e ( )i

i
st

i (21)

At large measurement time, we look for the dominating
exponential part in eq 21. This happens at s = s* where s* is the
pole in the denominator in eq 21 which is provided by the
solution of the equation

ϕ− * =χ s1 e ( ) 0i (22)

As a function of counting parameter, the solution of eq 22 also
coincides with the cumulant generating function, defined in eq
16 beause, at large measurement times t, according to eqs 21

and 22, the generating function behaves as Z(χ,t) ≈ es*(χ)t. This
form corresponds to linearly growing current cumulants and,
hence, a constant value of the Fano factor. For illustration, in
Appendix A, we perform calculation of all functions for a simple
MM model explicitly using this approach.
The relation between the turnover time probability

distribution ϕ(t) and the cumulant generating function15

suggests that one can express the Fano factor in terms of
derivatives of ϕ(t) and obtain a similar universality to the
Poisson indicator. Indeed, from eq 22 we have

ϕ = χ−s( ) e i (23)

The inverse of this function can be written as

ϕ ω χ= =χ− −s (e ) ( )i1
(24)

Using the properties of inverse functions and its derivatives as
shown in Appendix B, the Fano factor F is given by

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp3096659 | J. Phys. Chem. B 2013, 117, 503−509507



=
−ϕ ϕ

ϕ

∂
∂ =

∂
∂ =

∂
∂ =

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

F

s
s s

s
s s

s
s s

( )

0

( )

0

2

( )

0

2

2

2

(25)

Applying eq 6 to eq 25 we obtain

α β γ
μ

= ′ + ′ + ′
+

−F
[S] [S]

( [S])
1

2

2
(26)

Constant parameters in eq 26 are not independent.
Additional constraint on them follows from the fact, which
was established in the previous section, that the flux must be
Poisson distributed (F → 1) when [S] → 0. This leads to

α
μ

= −
−

+
F

K
1

[S]([S] )
( [S])

B B
2

(27)

where

α

μ

=
+ − +

+

= −
+ − +

= −
+

b b c a d f
b c

K
b k

b b c a d f

k b c

2 ( ) ( )
( )

2 /
2 ( ) ( )

1
( )

B 2

B
1E

1E (28)

Parameters a, b, c, d, and f in eq 28 were introduced in the
previous section. Considering eq 27, we conclude that, similarly
to the Poisson indicator, the Fano factor is parametrized only
by three independent constants. Equation 27 shows that the
Fano factor F has the same functional dependence on the solute
concentration irrespective of the number of internal states
inside the ion channel. For the two state model in Figure 2a,
parameters αB, KB, and μ can be explicitly written in terms of
elementary kinetic rates

α

μ

=
+ +

=
+ + +

=
+ +

+ +

+

+ −

+ −

+ −

+ −

k k
k k k

K
k k k k

k

k k k k k
k k k k

2
( )

( )
( )

B
2

2
2

B
1E 2

E1

2 1E 2

E1 2 (29)

Figure 4 shows the dependence of F on solute concentration
[S] for the reaction scheme shown in Figure 2a,b and for the
ion channel model with only one internal state (MM reaction).
As in the case with Poisson indicator, competing reaction
schemes can be distinguished based on the value of the Fano
factor. For example, the values of F lower than 1/3 is an
indication of a reaction scheme involving more than two
intermediate steps.

IV. CONCLUSION
In this work, we showed that the Poisson indicator and the
Fano factor have simple generic functional dependences on
solute concentration irrespective of the number of internal
states in the ion channel kinetic model. This observation can be
used in practice by analogy with applications of the MM-
formula. For example, many biochemical processes favor

enzymes with specific values of constants KMM and k.23,24 In
addition, by looking at k/KMM values, one can compare
enzyme’s preferences for different substrates. We anticipate that
measurements of parameters of P([S]) and F([S]) curves can
have similar applications. Noise has been shown to lead to
important consequences in biological systems. While some
biological processes need to suppress noise, others may need
noise as an important part of the reaction mechanism.25−29 It
should be interesting to explore parameters that characterize
the Poisson indicator and the Fano factor curves in a wide class
of ion channels and enzymatic reactions. One can expect that
evolutionary selection has led to separation of enzymes and ion
channels in classes with parameters that either suppress or
enhance noise for specific biological reasons. The universality of
flux fluctuations imposes restrictions on the information about
the structure of a studied ion channel that can be obtained by
measuring variance of transport characteristics. On the other
hand, P([S]) and F([S]) curves allow us to distinguish reaction
schemes and extract some combinations of kinetic rates from
experimental data.
In this work we limited our discussion to renewal processes

in which the empty state of the channel is represented by a
single state. Extension of our formalism to other kinetic
schemes, such as nonrenewal processes with multiple
interconvertible empty states, can be a subject of the future
research.

■ APPENDIX A. EXAMPLE: MM KINETICS

Let us consider a MM enzyme catalytic reaction

+ → +H Iooo
k

E S ES P E
k k

1E

E1 2

For this simple reaction, following the self consistent approach,
the waiting time distributions can be written as

Figure 4. Fano factor F against solute concentration [S]. Parameters
for Figure 2a are kE1 = 1, k1E = 1, k+ = 0.1, k− = 0.01, and k2 = 1 (blue).
For Figure 2b: kE1 = 1, k1E = 1, k+ = 1, k− = 0.7, and k2 = 0.5 (green)
and MM reaction (red): kE1 = 1, k1E = 1, k2 = 1.
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Substituting eq A1 in eq 6 we obtain

ϕ =
+ + +

s
k k

sk k s k s
( )
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( )( [S] )
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1E 2 E1 (A2)

and the Poisson indicator is given by

= −
++( )
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2 [S]
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2
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Substituting eq A2 in eq 22, we find

* = − + +

+ + + + −χ

s k k k

k k k k k

1
2

( ( [S] )

( [S] ) 4 [S] (e 1) )i

E1 1E 2

E1 1E 2
2

E1 2
(A4)

This result coincides with the cgf obtained previously by
solving the master equation for the generating function.21

■ APPENDIX B
Let y = ϕ(s) = e−iχ, then s = ϕ‑1(y) = ω(χ) The first and second
derivatives of the inverse function are given by
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Using eq B1 in the expressions for mean ⟨n⟩ and variance σ2 in
eq 17, we find
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The ratio of this variance and mean gives the Fano factor
defined in eq 25. For the MM scheme, using eq A2 and eq 25,
the Fano factor is given by

α
= −

+
F

K
1

[S]
([S] )

A

A
2

(B4)

where αA = 2k2/kE1 and KA = (k2 + k1E)/kE1. This is identical to
F obtained previously by solving the master equation for the
generating function.13,21
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