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I. INTRODUCTION

For nearly a century, the classic Michaelis�Menten (MM)
mechanism has been the foundation for studying the steady-state
kinetic behavior of enzymatic reactions.1�3 In the basic MM
scheme illustrated in Figure 1a, a substrate, S, binds reversibly
with a free enzyme to form a substrate�enzyme complex, ES,
which reacts irreversibly to yield product. One can show the
hyperbolic relationship between the steady-state turnover velo-
city (i.e., the rate of product formation), v, and substrate
concentration, [S]:

v ¼ k2½S�
½S� þ KM

ð1Þ

where KM = (k�1þ k2)/k1
0 is the Michaelis constant and k2 is the

catalytic rate constant. Equation 1 is the celebrated MM equa-
tion, one of the most cited results in basic sciences. Enzymatic
reactions in biochemistry are often far more complicated than the
basic MM mechanism in Figure 1a; yet a surprising number of
such reactions are found to follow the functional form of theMM
equation,2,3

v ¼ ½S�
a0½S� þ b0

ð2Þ

where a0 and b0 are fitting parameters that may not be interpreted
as k2 and KM as in eq 1. Why do some enzymatic reactions follow
the hyperbolic substrate dependence while many others deviate

from the simple functional form? What can we say about an
enzymatic reaction if the MM equation fails to describe its
turnover rate? Here we address these important questions by
relating the hyperbolic form of enzymatic turnover rates to the
detailed balance (DB) condition of the underlying kinetics, thus
establishing a connection to a fundamental property of none-
quilibrium thermodynamics.

This study is also motivated by recent single-molecule studies
of enzymatic reactions.4�8 These studies reveal that proteins
fluctuate over a wide range of time scales, but turnover reactions
of fluctuating enzymes are often found to obey the MM relation,
which was originally derived for enzymes with a unique con-
formation. This finding has stimulated several theoretical studies
to examine various scenarios for which the validity of the MM
relation can be established.4,9,10 Yet, a question remains about
how these seemingly different scenarios can be unified on the
basis of a generic feature of reaction thermodynamics. Below, we
will show that the hyperbolic form is valid as long as there is no
circulating current between bindings of different conformations
of the fluctuating enzyme, which is a consequence of the detailed
balance (DB) condition.
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ABSTRACT:Many enzymatic reactions in biochemistry are far
more complex than the celebrated Michaelis�Menten scheme,
but the observed turnover rate often obeys the hyperbolic
dependence on the substrate concentration, a relation estab-
lished almost a century ago for the simple Michaelis�Menten
mechanism. To resolve the longstanding puzzle, we apply the
flux balance method to predict the functional form of the
substrate dependence in the mean turnover time of complex
enzymatic reactions and identify detailed balance (i.e., the lack
of unbalanced conformtional current) as a sufficient condition
for the Michaelis�Menten equation to describe the substrate
concentration dependence of the turnover rate in an enzymatic
network. This prediction can be verified in single-molecule
event-averaged measurements using the recently proposed
signatures of detailed balance violations. The finding helps
analyze recent single-molecule studies of enzymatic networks
and can be applied to other external variables, such as force-
dependence and voltage-dependence.
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II. FLUX BALANCE METHOD

The flux balance method allows us to solve for the turnover
rate using population fluxes instead of rate constants and
establish a direct connection to population current and detailed
balance. The standard procedure to solve for the turnover
velocity almost always involves matrix inversion, which becomes
tedious as the number of states increases and is not necessary if
we are only concerned with the functional form of the substrate
dependence. As discussed later, there are also other approaches
for deriving rate constants, such as pathway analysis and Derri-
da’s method. These two approaches can provide both the average
rate and higher order moments but do not explicitly yield
substrate dependence, which is the goal of our calculation.

Let us follow the trajectory of a single enzyme in the turnover
reaction. Sampling from the initial probability distribution Pn(0),
the enzyme propagates through the network and finally reaches
the exit states. For a first-order kinetic network, the master
equation of the population evolution reads11

_Pn ¼ ∑
m
knmPm � ∑

m
kmnPn ð3Þ

where Pn is the conditional probability at state n,m is all the states
linked to state n, and kmn is the rate constant from statem to state
n. As shown in Figure 1c,d, integration of the evolution equation
from t = 0 to t = ¥ leads to the flux balance condition for state n,

� Pnð0Þ ¼ ∑
m
Fnm ð4Þ

where the terminal distribution vanishes, Pn(t=¥) = 0, due to the
irreversible depletion step during one turnover reaction. Here,
Fnm is the integrated flux from state m to state n,

Fnm ¼ knmτm � kmnτn ¼
Z ¥

0
knmPm � kmnPndt ð5Þ

and τn is the mean residence time at state n,

τn ¼
Z ¥

0
PnðtÞ dt ð6Þ

which is the average time that the enzyme spends on the nth state
during the turnover process. The sum of the residence times
gives the mean turnover time Ætæ = Σnτn. The concept of mean

residence time has previously appeared in literature,11�14 for
example, in the paper by Bar-Haim and Klafter.13 Here, we use
the concepts of mean residence time and integrated flux to
formulate the flux balance method, which directly relates the
mean first passage times (MFPTs) with the integrated flux.

The solution to eq 4 is supplemented by the normalization
condition,

∑
N
FN ¼ 1 ð7Þ

which is imposed by the fact that population depletes at the exit
statesN. Here, FN = kNτN is the integrated reactive flux associated
with the reaction step exiting from the network, i.e., probability of
population depletion from the Nth exit state, and kN is the
reactive rate constant from the exit state to form the product.
Under the steady-state condition, the enzyme is recycled con-
stantly so that the population will reach a steady state, and the
integrated reactive flux is set equal to the initial population
distribution,

FN ¼ Pð0Þ ð8Þ
which was used as the initial condition for calculating the
distribution function of single molecule events.15�17 Applying
the balance condition and boundary condition to the network,
we can obtain the integrated flux for each kinetic step, Fnm; then
the residence time, τn; and finally the first passage time, Ætæ =
Σnτn. We demonstrate the flux balance method with a simple
example of chain reactions and then present an analysis of the
Michaelis�Menten equation for fluctuating enzymes with im-
plications for detailed balance.

III. EXAMPLE I: CHAIN REACTIONS AND MICHAE-
LIS�MENTEN EXPRESSION

Our first example is a linear chain reaction in Figure 1b, which
has been solved many times in the literature11�14 and is a
benchmark to illustrate the conceptual simplicity of the flux
balance method. As will be shown later, the turnover rate of an
enzymatic network with microscopic balance is the sum of the
contributions from individual chain reactions that compose the
network; therefore, the solution for the chain reaction is useful
and instructive for further analysis.

Figure 1. Kinetic models of enzymatic reactions: (a) the generic Michaelis�Menten kinetic scheme, with k1
0 the binding rate, k2 the catalytic rate, and

k�1 the dissociation rate. (b) Linear chain reaction where n0 is the initial state and two decay rate constants, kn0 and k�(n0�1), are substrate-dependent. (c)
Conservation of integrated flux: ΣmFnm = 0 if there is no initial population. (d) Definition of integrated flux Fnm.
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To simplify the notation, we denote kn = knþ1,n, k�n = kn,nþ1,
and Fn = Fnþ1,n = knτn � k�nτnþ1. Then, the flux balance
condition in eq 4 reduces to

Fn � Fn � 1 ¼ δnn0 ð9Þ
where n0 is the entrance state at which the initial population is
prepared. For a network with a single exit state, the integrated
flux at the exit state is normalized, giving FN = 1 for the linear
chain with N the number of states on the chain. From the flux
balance condition, we have for Fn = FN = 1 for n g n0, giving

τn ¼ k�n

kn
τn þ 1 þ 1

kn
ð10Þ

and for n < n0, Fn = 0, giving

τn ¼ k�n

kn
τn þ 1 ð11Þ

Iterating eqs 10 and 11, we obtain τn and the mean first passage
time Ætæ = Σnτn, which recovers the results obtained earlier.

11�14

Though the current derivation is simpler, the analysis in ref 14 is
more general as it is not limited to rate processes but applicable to
any waiting time processes. Note that τ represents the mean
residence time in this paper but is used to represent the average
lifetime (i.e., the inverse rate constant in rate processes) in ref 14.
For the purpose of our analysis, substrate concentration depen-
dence can be obtained from the flux balance equations without
writing out the explicit and often lengthy velocity expression:
• The MM mechanism is simply a chain reaction with N = 2,
n0 = 1, and k1 = k1

0[S]. Application of eq 10 results in the
celebrated Michaelis�Menten (MM) rate equation for
enzymatic turnover reactions,

ÆtæM ¼ 1
k2

þ k�1 þ k2
k1k2

¼ 1
k2

þ KM

½S�k2 ð12Þ

which is related to eq 1 via v = 1/ÆtæM.

• For multiple intermediate conformational states along the
linear chain in Figure 1b, the mean turnover time takes the
MM functional form as

Ætæ ¼ Æt2æþ k�1τ2 þ 1
½S�k01

¼ 1
k2

þ KM

½S�k2 ð13Þ

with k2 = 1/Æt2æ and KM = (k�1τ2 þ 1)/(k1
0Æt2æ). Since

subsequent steps after binding are decoupled from substrate
binding events, both Æt2æ, the first passage time starting from
the second state along the chain, and τ2, the mean residence
time at state 2, are independent of the substrate concentra-
tion [S].

• If the substrate binds at an intermediate conformational
state n = n0 along the chain and the [S]-dependent rate
constants are kn0 = kn0

0[S] and k�(n0�1) = k�(n0�1)
0 [S], the

mean turnover time becomes

Ætæ ¼ Ætn0 þ 1æþ k�n0τn0 þ 1 þ 1
½S�k0n0

þ ∑
n0 � 1

n¼ 1
τn ð14Þ

where the contribution from the states to the left of the
binding site, τn for n < n0, is [S]-independent. Since both the
first and last terms are independent of [S], theMM equation
in the form of eq 12 remains valid.

In general, the mean turnover time Ætæ derived from eqs 10 and
11 maintains the MM form of eq 12 regardless of the number of
binding sites and their locations along the chain. This conclusion
is not surprising as our recent analysis of generic kinetic
schemes14 has demonstrated that enzymatic reactions along a
chain can be reduced to the simple generic form in Figure 1a
when waiting time distribution functions are used instead of rate
constants. Further, the analysis below will rationalize the validity
of the MM expression on the basis of the detailed balance
condition, thus relating the topology of reaction networks to
the functional form of the turnover rate.

Figure 2. Kinetic models of enzymatic reactions with conformational fluctuations: (a) a generic scheme of an fluctuating enzyme with two
conformational channels; (b) the flux�current plot of the generic scheme in (a); (c) an equivalent representation of the generic scheme in (a); (d) an
enzymatic reaction network on the left-hand-side, which under the DB condition reduces to a network of effective uncoupled chain reactions on the
right-hand-side.
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IV. EXAMPLE II: FOUR-STATE MODEL AND DETAILED
BALANCE

Now we analyze a simple model of fluctuating enzymes with
two conformational channels, a model extensively investigated in
the context of single-molecule enzymology. Although the turn-
over velocity for this model has been derived before,4,12,18,19 the
final expression is often too complicated to determine the general
dependence on the substrate concentration. As depicted in
Figure 2a, the turnover reaction proceeds from two conforma-
tional states with two different sets of rate constants, {k1, k�1, k2}
and {k10 , k�1

0 , k20 }, respectively, and the two conformational
channels interconvert with rate constants γ1 and γ10 between
the two free-enzyme states and γ2 and γ20 between the two
substrate-enzyme states. The kinetic scheme depicted in
Figure 2a includes a closed loop that allows for a nonequilibrium
circulating population current J. Thus, we immediately identify
the two integrated fluxes associated with conformational fluctua-
tions as J and �J, which yield the balance conditions for
the enzyme�substrate complex F1 = F2 þ J and F10 = F20 � J.
Here we assume the stationary condition where the fluctuating
enzyme after releasing the product will combine with another
substrate molecule and start another turnover cycle. We note
that the stationary conditions F2 = P1(0) and F20 = P10 (0)
have been introduced earlier as the initial condition for event-
averaged single-molecule measurements of enzymatic turnover
reactions.15

Given the integrated fluxes, it is straightforward to obtain the
following expressions for residence times: τ2 = F2/k2, τ20 = F20 /k20 ,
τ1 = F2KM/k2[S]þ J/k1, and τ10 = F20KM

0 /k20 [S]� J/k10 . Summing
over the mean residence times, we arrive at the formal expression
for the mean turnover time

Ætæ ¼ F2ÆtæM þ F02Æt0æM þ J
1
k1

� 1
k01

� �
ð15Þ

where ÆtæM is the MM expression for the mean turnover time.
The current J is determined from explicit expressions for the
integrated flux of conformational fluctuations, i.e., γ2τ2� γ20 τ20 =
J and γ1τ1 � γ10 τ10 = �J, giving

J ¼ γ2
k2
F2 � γ

0
2

k
0
2

F
0
2 ¼ 1

D
r2r

0
1K

0
M � r

0
2r1KM

k2k
0
2½S�

ð16Þ

with the determinant

D ¼ γ2
k2

þ γ
0
2

k
0
2

 !
1þ γ1

k1
þ γ

0
1

k
0
1

 !
þ γ1

k2

KM

½S� þ
γ

0
1

k
0
2

K
0
M

½S�

 !

ð17Þ
The ratio of the two conformational channels is determined from

γ2
k2

1þ γ1
k1

þ γ
0
1

k
0
1

 !
þ k1
k2

KM

½S�

" #
F2 ¼ γ

0
2

k
0
2

1þ γ1
k1

þ γ
0
1

k
0
1

 !"

þ k
0
1

k
0
2

K
0
M

½S�

#
F

0
2 ð18Þ

which, in combination with normalization F2þ F20 = 1, yields the
values of F2 and F20 . These equations provide the explicit formula
for the overall turnover rate as well as the integrated fluxes
associated with all the steps in the kinetic scheme. Yet, to
establish the validity of the MM expression, we need to examine

the substrate dependence, which involves the mean turnover
time and current equations in eqs 15 and 16, respectively, but
does not require the explicit solution in terms of the rate
constants. The explicit solution for the model system has been
reported before using the polynomial dependence on the sub-
strate concentration,18,19 the pathway solution,12,14 the direct
matrix inversion,4 and Derrida’s method.20,21 Our derivation is
simple and relates directly to the unbalanced current J in the
cyclic kinetics.

An implication of the turnover rate expression is an intuitive
interpretation of the validity of the hyperbolic form in the
presence of conformational fluctuations, a key issue in single-
molecule enzymology. To address the issue, we examine eq 15 in
the limit of zero current, J = 0, when the last term in eq 15
vanishes. The probabilities F2 and F20 are determined by γ2F2/k2
= γ20 F20 /k20 , where γ2 and γ20 are the interconversion rate
constants at the enzyme�substrate complex. Then, F2 and F20
are independent of [S], and the turnover rate is an inhomoge-
neous sum of the MM rate associated with each conformation
channel, i.e, Ætæ = F2ÆtæM þ F20 Æt0æM. Consequently, a sufficient
condition for the validity of MM equation is detailed balance,
defined explicitly as

γ1
γ2
KM ¼ γ

0
1

γ
0
2
K

0
M ð19Þ

which is obtained by setting J = 0 in eq 16. In fact, the enzymatic
turnover reaction can be described as a reversible reaction shown
in Figure 2c such that eq 19 is equivalent to the detailed balance
(DB) condition

k1γ2ðk
0
�1 þ k

0
2Þγ

0
1 ¼ k

0
1γ

0
2ðk�1 þ k2Þγ1 ð20Þ

where the left side is the product of clockwise rate constants, and
the right side is the product of counterclockwise rate constants.
The simple four-state model in Figure 2c and the corresponding
detailed balance condition has been discussed in theoretical
analysis of on�off blinking traces.22

The DB condition in eq 19 or eq 18 suggests several possible
scenarios: (i) γ1 = γ10 = 0; (ii) γ2 =γ20 = 0; (iii) γ1/γ10 = γ2/γ20 and
Km = KM

0 . The first two scenarios correspond to kinetic schemes
without any closed loops, i.e., linear kinetics, whereas the third
scenario corresponds to a kinetic scheme where the population
distribution remains constant between conformational channels
at all chemical states involved in the reaction. The latter case has
been studied extensively in the analysis of event-averaged
measurements of single-molecule turnover experiments. When
the microscopic DB condition (strong condition) is not satisfied,
we can identify approximate conditions (weak conditions)
when the hyperbolic form remains a reasonable description.
Close examination of eqs 15�18 suggests the following
scenarios: (iv) γ2/k2 f 0 and γ1/k1 f 0; (v) γ1/k1 f ¥
and γ10 /k10 f ¥; (vi) γ2/k2 f ¥, γ20 /k200 f ¥, and k1 =
k10. Both scenarios (iv) and(v) correspond to theweak condition
of D � 1/[S] so that J is independent of [S]. The last scenario
(vi) corresponds to the case of vanishing last term in eq 15 and
[S]-independence in eq 18. These special scenarios have been
previously proposed by the Xie group and by Gopich and
Szabo,4,9,10 and are now interpreted on the basis of flux con-
servation in eq 4 and the detailed balance condition in eq 15.
Our solution suggests a general condition for the validity of the
MM expression, which not only unifies the kinetic schemes
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considered previously but also applies to arbitrarily complex
enzymatic networks.

V. GENERALITY

We now generalize the conclusion derived for the four-state
model in Figure 2a to an enzymatic network consisting of many
conformations of linear chain reactions, as illustrated in
Figure 2d: The MM relation in the form of eq 1 remains valid
as long as there is no unbalanced current in the kinetic steps
associated with substrate binding. As a result, the DB condition is
obeyed in every conformational kinetic loop so the enzymatic
turnover reaction (i.e., the chain reaction) is decoupled from
conformational fluctuations, and themean turnover rate is simply
the weighted sum of the contributions of chain reactions
associated with conformational states (i.e., the right-hand-side
of Figure 2d). Explicitly, under the DB condition, the mean
turnover time in the enzymatic network can be written in a
general form as

Ætæ ¼ ∑
μ
FμÆtæμ ¼ 1

k2
þ K

_
M

½S�k2
ð21Þ

where index μ denotes the conformational channel. In eq 21, Ætæμ
is the mean turnover time associated with each channel as given
in eq 13, and Fμ is the corresponding exit probability (i.e., the
integrate reactive flux), which is independent of the substrate
concentration in the absence of current. Therefore, in eq 21, we
introduce the effective catalytic rate

k2 ¼ 1=∑
μ
FμÆt2æμ ð22Þ

and the effective Michaelis constant

K
_
M ¼ ∑

μ
FμKμ,MÆt2æμ=∑

μ
FμÆt2æμ ð23Þ

Similar relations have been previously suggested for specific
models of enzymatic turnovers4,9 and earlier for on�off reac-
tions,22 which can now be obtained generally from eq 21.

An interesting application of eq 21 is enzyme specificity, where
the single enzyme in Figure 2e binds with different substrates
[Sμ] in different conformational channels. By setting a zero
interconversion rate for the substrate�enzyme complex state,
we have the flux balance relation FμÆtμæ = FνÆtμæ and thus the
general result for enzyme specificity

Pμð0Þ
Pνð0Þ ¼ Fμ

Fν
¼ ½Sμ�kμ, 2=Kμ,M

½Sν�kν, 2=Kν,M
ð24Þ

which applies to a steady-state enzymatic reaction with an
arbitrary number of substrates, each with an arbitrary number
of enzyme conformations.

When the DB condition is violated, the MM functional form
will break down, and the turnover rate will depend on the current.
Though explicit rate expressions are difficult to obtain, we
observe a functional form for the mean turnover time as

Ætæ ¼ a0 þ b0
½S� þ

b1
c1 þ ½S� þ

b2
c2 þ ½S� þ 3 3 3 ð25Þ

where a, b, c are undetermined coefficients. For systems with zero
current, only the two leading terms with a0 and b0 in eq 25
survive, and we recover the standard MM equation in eq 21. For
the four-state model in Figure 2d, we can confirm the non-MM

correction term with b1 and c1 using the solution in eqs 15�18
and relate this correction term to the presence of the none-
quilibrium current J in the cyclic loop. For a general network,
since unbalanced currents in different kinetic loops are indepen-
dent, we can add a non-MM correction term for each none-
quilibrium current to the mean turnover time, thus justifying
eq 25. In fact, we can rigorously prove the one-to-one corre-
spondence between the unbalanced currents and the indepen-
dent hyperbolic terms in eq 25 and use this result to demonstrate
a broad range of cooperative behaviors in nonequilibrium
enzymes.23 Further, we note that our analysis of the substrate
concentration dependence can be extended to other external
variables, including voltage in ion channels, workload inmolecule
motors, and force applied to proteins.24

VI. CONCLUDING REMARK

As a final remark, we point out that the nonequilibrium current
investigated in this work cannot be measured in ensemble
experiments. Because conformational fluctuations are not di-
rectly probed experimentally, the macroscopic balance is always
maintained between the free enzyme and substrate�enzyme
complex.15 However, in a recent study,25 we proposed three
signatures of DB violations in single-molecule event-averaged
measurements: (i) peaks in the waiting time distribution; (ii)
asymmetry in two-event histograms; (iii) disappearance in the
diagonal dominance of joint-event histograms. As a result, if the
single-molecule histogram displays one of these signatures, the
enzymatic reaction violates detailed balance, and we may expect
deviations from the MM equation. On the other hand, if the
enzymatic reaction is in equilibrium, the MM equation will hold
and no signatures of DB violations can be observed. Therefore,
the relationship between detailed balance and the validity of MM
equation for the ensemble turnover rate can be verified by means
of single-molecule event-averaged measurements.
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