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Multiple time scales are the intrinsic nature of complex systems and can be revealed through single molecule
photon statistical analysis. The standard Poisson indicator defined by the time-averaged initial condition
measures photon bunching and antibunching but cannot be directly related to multiple time scales. A new
indicator defined by the event-averaged initial condition is proposed to detect the deviation from the renewal
behavior and to directly probe the effects of conformational fluctuations. Detailed calculations of modulated
two-level systems are carried out using the transfer matrix method to demonstrate the difference between the
two indicators. The relationship between ensemble-averaged survival probabilities and photon statistics is
also explored in the context of single molecule measurements.

I. Introduction

The advance of single molecule techniques has made it
possible to record sequences of fluorescence photons emitted
from single molecule systems in a condensed phase environ-
ment.1 Extracting useful information from experimentally
recorded photon trajectories poses a major challenge and has
inspired recent theoretical efforts.2-10 Careful analysis of the
statistics of emission sequence reveals the characteristics of the
underlying kinetics. For example, simple exponential decay leads
to homogeneous distribution of photon density and the usual
Poisson indicator measures the deviation from this behavior.13

A recent interest is the correlation between emission or emission
photons, which may arise from fluctuations in probability
distributions or coexistence of parallel emission mechanisms
from different conformational states. The Silbey group7 and
other groups have investigated extensively the absorption line
shapes and statistics of modulated two-level systems. The focus
of this paper is the statistics of fluorescent photons, which can
be treated as a multistep rate process with quantum coherence
described on the level of the Bloch equation. Recently, Gopich
and Szabo11 formulated the various measurements of single
molecule traces in a uniform theoretical framework, and the
Orrit group12 surveyed the main evaluation methods used to
analyze fluorescence photon trajectories. These articles provide
excellent reviews of the current efforts to apply statistical
approaches to single molecule spectroscopy.

A photon emission sequence without correlations is a renewal
process, in which photons are emitted from the same state with
the same rate constant. Naturally, to measure the deviation from
the renewal behavior, one starts to count photons from an
emission event, which defines the initial condition for the
proposed renewal indicator. Earlier, the transfer matrix formal-
ism6,14 was used to compute the probability of on-off blinking
trajectories and to examine the histograms of waiting times.
Photon emission can be viewed a special case of the general
on-off process, where the continuous off-state is interrupted
by instantaneous emission events. In this paper, we apply the
transfer matrix formalism developed for on-off blinking

sequences to calculate photon statistics and illustrate the use of
the renewal indicator as a sensitive probe of conformational
fluctuations.

II. Photon Statistics

A sequence of photon emission events is represented by a
set of emission times,{τ1, τ2, τ3, ‚‚‚}, which gives the number
of emitted photons in the interval [0,t], n(t) ) ∫0

t ∑iδ(τ - τi)
dτ. Averaging over all realizations of the photon sequences
yields 〈n(t)〉 ) ∫0

t dτ ∑iδ(τ - τi)〉 ) ∫0
t f(τ) dτ, where f(t) is

number density and〈‚‚‚〉 denotes the stochastic average.15 The
mean square of the photon count is given by〈n(t)2〉 ) ∫0

t dt1 ∫0
t

dt2 ∑iδ(t1 - ti)∑jδ(t2 - tj)〉 ) ∫0
t f(t1) dt1 + ∫0

t dt1∫0
t dt2f2(t1, t2),

wheref2(t1, t2) is the two-event number density discussed in ref
6. Similarly, we introduce the three-event number density
through〈n(t)3〉 ) ∫0

t dt1 f1(t1) + 3∫0
t dt1 ∫0

t dt2 f2(t1, t2) + ∫0
t dt1

∫0
t dt2 ∫0

t dt3 f3(t1, t2, t3). The above definitions can be recast in
a more compact form as

which relates the multiphoton densities (i.e., multievent number
densities) and photon counting moments. Both densities and
moments contain the same information, one in the differential
form and the other in the integral form. Photon counting
moments are less sensitive to experimental noise and are more
robust in data analysis. In comparison, a typical bulk experiment
measures the profile of fluorescence decay, equivalent to the
probability of the first photon arrival time along the single
molecule sequence. Hence, the ensemble-averaged survival
probability can be expressed in terms of single molecule photon
counts as

which is an expansion of the identityS(t) ) 〈δn,0〉 )
〈(1 - x)n〉x)1.† Part of the special issue “Robert J. Silbey Festschrift”.

Cm(t) ) 〈n(n - 1) ‚‚‚ (n - m + 1)〉 )

[∏
i
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t
dti]fm(t1, ‚‚‚, tm) (1)

S(t) ) 1 - 〈n(t)〉 + 1
2!
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Cm(t) (2)
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The evaluation of single molecule quantities depends on the
initial condition of data collection. A standard procedure is to
start randomly on the time axis along the single molecule trace,
as illustrated in Figure 1a, which is the initial condition used in
time-averaged quantities. If the single molecule kinetics is
stationary, the photon density is a constant,f(t) ) k ) 1/〈τ〉,
where 〈τ〉 is the average waiting time between two adjacent
photons. Since the multievent densities for a Poisson process
are constant, the Poisson indicator is usually used to measure
deviations from Poisson statistics

where〈n(t)〉 ) nj ) kt andδf (t2 - t1) ) f2(t2 - t1) - k2. The
two-photon density is equivalent to the second-order photon
correlation functiong(t) ) f2(t)/k2 so that the Poisson indicator
in eq 3 can be expressed asnjQ(t) ) 2∫0

t (t - τ)k2[g(τ) - 1] dτ.
The long time limit of eq 3,QM ) 2∫0

∞δf(τ) dτ/k, defines
Mandel’sQ parameter.13

As an alternative, we can randomly select an emission event
along the single molecule sequence, as illustrated in Figure 1b.
This initial condition is a unique feature of single molecule
experiments and was introduced in ref 6 for calculating event-
averaged quantities. We denote this condition with subscript
“ev”. Except for the Poisson process, the event-averaged photon
densityfev(t) is not a constant of time. With the notation ofδfev-
(t1, t2) ) f2,ev(t1, t2) - fev(t1)fev(t2 - t1) for t2 > t1, we define the
renewal indicator

The long time limit of Qev is zero unless the memory of
conformational fluctuations persists for an infinitely long time.
The two initial conditions discussed above are related. The time-
averaged photon density associated with the first time variable
is always a constant, so thatfn(t1, t2, ‚‚‚) ) kfn-1,ev(t2 - t1, t3 -
t1, ‚‚‚) and the event-averaged photon density is proportional
to the photon correlation function,fev(t) ) g(t)k.

We first calculate photon statistics of a single-channel
emission process, where the photon is emitted from a single
fluorescence state. Then the emission process is a renewal
process, and the renewal indicator is zero whereas the Poisson
indicator is generally nonzero. A renewal process is completely
specified by the photon distribution function or equivalently
photon correlation function,ψ(t) ) fev(t), the conditional
probability density of emitting another photon at timet after
an emission event at time zero. Formally,ψ(t) is solved from
the time-dependent population of the fluorescence emission state
with the initial condition at the ground state,ψ(t) ) kfFf(t), with
kf the fluorescence rate. The long time limit defines the
stationary flux limτf∞ψ(t) ) Ffkf, whereFf is the equilibrium
population of the fluorescence state. The Poisson indicator is

given explicitly as

which leads to the asymptotic limit of theQ parameter limτf∞
Q(t) ) [〈τ2〉 - 2〈τ〉2]/〈τ〉2. In this article, functions of thes
variable are implicitly Laplace transforms andL denotes
Laplace transformation. The same results can also be obtained
from the smalls expansion,ψ(s) ) k/s + QM/2 + ‚‚‚.7

We now explicitly evaluate the ensemble-averaged survival
probability using single molecule quantities. The fluorescence
intensity decay described by the survival probabilityS(t) in eq
2 is equivalent to the probability of finding the first photon from
a random time on the single molecule sequence. For a renewal
process, the photon density distribution isfm(s1, ‚‚‚, sm) ) (k/s1

∏i)2
m ψ(si), and the photon counting moments in eq 1 become

Cm(s) ) m!kψm(s)/s2. Resummation of the moments in eq 2
yields the survival probability

where the memory functionø(t) is identified asg(t) ) [1 +
ø(t)]. Equation 6 is exactly the Wilemski-Fixman expression
(WF)16 for diffusion-controlled reactions. The average fluores-
cence decay time is∫0

∞S(t) dt ) 1/k + ø(0), where the average
memory timeø(s ) 0) is related to Mandel’sQ parameter
through QM ) 2kø. Thus, the WF theory holds exactly for
renewal processes and relates the ensemble-averaged quantities
to the second-order correlators and Mandel’s parameter.13,16

Recently, Gopich and Szabo showed that, if the decay rate takes
a separable form, emission is a renewal process and the WF
expression is exact. (see section III of ref 11). In general, eq 2
not only leads to the WF expression for renewal processes but
also forms the basis for deriving high-order corrections to the
WF expression for nonrenewal processes.

An important revelation of single molecule experiments is
the effects of conformational fluctuations on photon statistics.
We consider a generic case of the multichannel fluorescence
emission process, with a set of emission states and emission
rate constants. The single channel correlation function can be
generalized to a matrixΨ(t), where elementψ(t)µν is the photon
correlation function of an emission event from channelµ and
another emission event from channelν. The time-averaged initial
condition is determined by equilibrium populations of fluores-
cence states associated with each channel,{Ff}. The event-
averaged initial condition is determined by a set of stationary
fluxes associated with each channel,{kfFf}. As a result, we arrive
at a key result of this article14

and similarly

wherenj ) kt ) 〈Kf〉t andL denotes Laplace transforms. The
conformational average is explicitly defined over the equilibrium
distribution of the fluorescence state〈A〉 ) ∑µνAνµFµ,f whereν
and µ denote conformational channels. We now consider a
simple case of the multiple-channel fluorescence emission
process, where the conformation modulation is homogeneous

Figure 1. Two different initial conditions in photon counting: (a) time-
averaging for the Poisson indicator; (b) event-averaging for the renewal
indicator.

njQ(t) ) 〈n(t)2〉 - 〈n(t)〉 - 〈n(t)〉2 ) 2∫0

t
(t - t′)δf(τ) dτ (3)

njQev(t) ) 〈n(t)2〉ev - 〈n(t)〉ev - 2∫0

t
〈n(t - t1)〉ev〈n̆(t1)〉ev dt1

) 2∫0

t
dt2 ∫0

t2 dt1 δfev(t1, t2) (4)

L [njQ] ) 2k
ψ(s)

s2
- 2k2

s3
(5)

S(s) ) 1
s[1 - k

s(1 + ψ)] )
1 + kø(s)

k + s[1 + kø(s)]
(6)

L [njQ] ) 2

s2
〈Ψ(s)Kf〉 - 2

s3
〈Kf〉

2 (7)

L [njQev] ) 2
s

〈Ψ(s)Ψ(s)Kf〉
〈Kf〉

- 2
s[〈Ψ(s)Kf〉

〈Kf〉 ]2

(8)
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along the reaction; i.e., the interconversion kineticsΓ is
independent of the chemical state. Then the photon correlation
function matrix has the same functional form

but with the rate matrixK and the modulation matrixΓ as the
new variables.

III. Applications

We now use two examples to quantitatively compare photon
counting correlations as measured by the two indicators. The
first example is the multiple channel decay model, where the
single molecule system is pumped back to fluorescence states
instantaneously after decay through multiple channels. We
introduce the generating function8

with the time-dependent rateK(t) ) eΓtKe- Γt. Here 〈A(t)〉
defines a stochastic average of the time-dependent rate histories
and is equivalent to the conformational average if detailed
balance is satisfied. The cumulants are defined by the rate
correlation function asM1 ) ∫〈K〉 dt ) C1, M2 ) ∫ dt1 ∫ dt2-
〈dK(t1)δK(t2)〉 ) C2 - C1

2, M3 ) ∫ dt1 ∫ dt2 ∫ dt3-
〈δK(t1)δK(t2)δK(t3)〉 ) C3 - 3C2C1 + 2C1

3, etc., which can
also be obtained by identifyingfm(t1, ‚‚‚, tm) ) 〈K(t1) ‚‚‚ K(tm)〉.
The event-averaged density becomes

which is inserted in eq 4 to obtain the renewal indicator. For
simplicity, consider a two-channel model with the average rate
ks, rate difference 2kd, and conformational interconversion rate
γ. This simple model is solved explicitly to yield

and

such that the Poisson indicator is always larger and reaches the
plateau value ofQM ) kd

2/(ksγ) on the time scale of 1/γ, whereas
the renewal indicator approaches zero at long time and reaches
a maximal value on the time scale of 1/γ.

The next example is motivated by the series of papers from
the Silbey group,7 which analyzed statistics of photon absorption
under frequency modulation. Instead of absorption, we study
the photon statistics of spontaneous emission from a modulated
two-level system under constant illumination. Without confor-
mational fluctuations, we can solve the optical Bloch equation
and obtain the photon correlation function for the renewal
process

where∆ ) ω0 - ωL is the detuning frequency,Ω ) µE/p is
the Rabi frequency,kf is the fluorescence lifetime, andkp is the
dephasing rate. When the pure dephasing is sufficiently fast,
the optical coherence is integrated out to yield two-state kinetics
with k1 ) k2 ) Ωkp/(2Γp

2 + 2∆2). The time-dependence ofQ(t)
is dominated by antibunching at short times due to sequential
kinetics and exhibits evidence of bunching for strong fieldΩ
> Ωm at long times.

Recent low-temperature experiments of a single chromophore
undergoing spectral diffusion are often described by the Kubo-
Anderson stochastic jump model, which is a modulated two-
level system.7,9 By use of conformational kineticsΓ, the optical
Bloch equation is extended to incorporate stochastic jumps and
can be solved to yield

which is the matrix version of eq 14. For a two-level two-
channel model, we can explicitly evaluate eq 15 and then insert
into eqs 7 and 8. The resulting Poisson and renewal indicators
are shown in Figure 2 for several values of modulation rate
and in Figure 3 for several values of the Rabi frequencies. The
Poisson indicator is dominated by sequential kinetics at short
time and is governed by the competition of optical coherence
and conformational modulation at long time. When the inter-
conversion rate is large, the fast modulation approaches the
homogeneous limit. This is the case forγ ) 1 in Figure 1, where
the renewal indicator is zero and the Poisson indicator is the
same as the single channel reaction. As the conformational
fluctuation time scale increases, the turning point of the Poisson
indicator in Figure 2a remains the same whereas the maximum
of the renewal indicator in Figure 2b occurs exactly at the
modulation time scale 1/γ. In fact, the renewal indicator in
Figure 2b nearly falls on a master curve with the scaling of 1/γ
on the time axis and is therefore a simpler measure of the
conformational time scale. In Figure 3, for a given modulation
rate, the Poisson indicator displays a complicated dependence
on the Rabi frequency, whereas the peak in the renewal indicator
remains constant att ) 1/γ.

ψ(k, s) f Ψ(K, s + Γ), (9)

G(q, t) ) ∑
n

Pn(t)e
iqn ) 〈exp(eiq - 1)∫0

t
K(t′) dt′〉 )

exp[∑
m

(eiq - 1)mMm/m!] (10)

δf2,ev(t1, t2) ) 〈K(t2)K(t1)K(0)〉/〈K〉 -

〈K(t2)K(t1)〉〈K(t1)K(0)〉/〈K〉2 (11)

Q(t) )
kd

2

2tγ2ks

[2γt - 1 + exp(-2γt)] (12)

Qev(t) )
kd

2

2tγ2ks
(1 -

kd
2

ks
2)[1 - (1 + 2γt) exp(-2γt)] (13)

ψ(s) )
kf

2s

Ω2(s + kp)

[(s + kp)
2 + ∆2](s + kf) + Ω2

(14)

Figure 2. Poisson indicator (a) and renewal indicator (b) for a two-
level two-channel model with the Rabi frequencyΩ ) 1.0. The
fluorescence rate and dephasing rate are the same for the two
channels:kf ) 1.0 andkp ) 0.5. The detuning is zero in one channel
and∆ ) 1.0 in the other channel.

Ψ(s) ) Kf
Ω2

2
1

[(s + Γ + Kp) + ∆(s + Γ + Kp)
-1∆](s + Γ + Kf) + Ω2

1
s + Γ

(15)
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IV. Summary

The central results of this paper are the definition of the
renewal indicator in eq 4 and the explicit expressions for both
Poisson indicator and renewal indicator in eqs 7 and 8 for photon
emission processes modulated by conformational fluctuations.
The usual Poisson indicator demonstrates the competition
between the sequential motif and the branching motif for a
single-channel process. In comparison, the proposed renewal
indicator is a more direct measure of conformational fluctua-
tions. The photon densities and counting moments are directly
related to the ensemble-averaged measurements through the WF
expression in eq 6 or the general expression in eq 2. The two
photon indicators and associated photon densities can be
obtained from the same set of single molecule data using
different counting methods and therefore can be readily applied
to single molecule data analysis.
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level two-channel model with interconversion rateγ ) 0.01. The
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