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This paper examines methods to test one- and two-dimensional histograms for several features including the
renewal properties, detailed balance violations, and experimental condition dependences. The tests are simple
to implement and allow rigorous statistical determination of the existence of these kinetic features. The tests
are used to determine the lower bound on the number of measurements necessary to differentiate underlying
kinetic models.

I. Introduction

Single-molecule experiments offer a window into the micro-
scopic world of chemical systems that allows the observation
of individual chemicaleVents.1 These techniques have been used
to explore systems from the oxidation-reduction of a single
cofactor in an enzyme to the folding of ribozymes.2 Three of
the most popular single-molecule experiments, fluorescence
resonance energy transfer (FRET), simple fluorescence blinking,
and fluorescence quenching often show the molecules hopping
between discrete values for either the FRET efficiency or the
fluorescence yield.3,4 We define the collection of configurations
that have a degenerate single-molecule value as a manifold. The
hopping processes give rise to the event statistics that examine
the sojourn time within a certain manifold before making a
transition to another manifold.5,6 Many models for event
statistics contain hidden substates that are degenerate with
respect to the probe (FRET, fluorescence, etc.) but have different
sojourn time distributions.7 Determining both the topology and
the parameters of a model with hidden substates becomes
cumbersome.8,9 As an example, there are over 20 000 topologies
for connecting eight substates in a linear chain. Although much
effort has been dedicated to efficient search algorithms and
reducing redundancies, gaining physical insight by examining
features that appear in coarse grained measures can restrict
possible models and even identify properties of the system
without model optimization.

In this paper, we examine statistical tests of properties that
appear in the one- and two-dimensional histograms of events
but do not require the construction of an underlying model.
These tests are derived from the Bayesian analysis and informa-
tion theory, which has been implemented by several groups on
single photon counting experiments.10-12 While earlier ap-
proaches mainly concerned determination of the transition times
between different states and the underlying models to describe
the transitions,13,14 our work concerns inferring properties of
the system based on the transition times. The tests capture
important aspects of the system, including the non-Markovian/
nonrenewal nature of the system, violations of detailed balance,
and similarity in behaviors of molecules in different experi-
mental conditions.15 The renewal behavior determines the
existence of parallel paths, while the detailed balance violations

give insight into circulation in the underlying topology, including
the topology of the circulation loop. Concentration dependence
indicates the role of cofactors in a single-molecule function,
such as metal ions in ribozyme folding and the energy transfer
between the substrate and the macromolecule.15,16

The major difficulty with the two-event waiting time distribu-
tion is the need to create a histogram for the events (resulting
in a histogramhij). In the infinite data and infinitesimal bin size
limit, the traditional analysis discussed in the single-molecule
literature will suffice. However, these methods are sensitive to
noise and cannot be easily implemented for finite sets of data.
The implementation difficulties have several sources. One source
is the binning methods, which are linear in many proposed
applications but should be logarithmic for examining exponen-
tially distributed data (Appendix).17 In this paper, data will be
presented in logarithmic histograms, but the discussion will
present linear probability distributions. Another issue is the
scatter that is present in the histogram. The scatter in a histogram
should be approximately Poisson-distributed with the variance
in the number of events in a bin being approximately equal to
the number of events in the bin. As a result, the scatter will not
be uniformly distributed throughout the histogram, which can
cause misinterpretation in features that are measured from the
differences between histograms. The nearly Poisson nature of
the data scatter causes an additional problem for low-count bins,
where the deviations are not Gaussian. Avoiding these difficul-
ties is the motivation behind introducing more rigorous statistical
methods of assessing the relevance of apparent features. An
important result is the establishment of the number of measure-
ments necessary to elucidate the existence of features in the
histogram properties and distinguish different models. These
numbers should be used as a guideline for the types of models
to compare to the data.

II. Poisson Kinetic Models

Although generalizations are simple, we concentrate on the
two-manifold model, where the system exhibits hops between
two intensities, labeled+ for bright and- for dark, resulting
in a blinking sequence. The durations of the+ or - intensity
have been referred to as events in the literature.7 These hopping
events are generally modeled by stochastic waiting time
processes (semi-Markov).18 If the waiting times show correla-
tions between adjacent transition times, then additional hidden
states are added. Including only a few states can greatly increase
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the space complexity of possible models, so it is desirable to
develop methods to obtain insights that do not require model
optimization.8 The kinetics for this model are described by the
rate equation

An event is the sojourn time in a particular manifold. For a
given kinetic scheme the probability ofn events starting from
( is is given by

where the sum is over the final state. The distribution of the
log times that is shown in the figures is derived by replacingti
with elnti and multiplying by elnti. To obtain reduced probability
matrices one integrates out the unwanted degrees of freedom.
The results are general, but we will restrict our discussion to
the four substate models shown in Figure 1. These models have
been studied in the literature and applied to several single-
molecule experiments, including fluorescence blinking and ion
channel experiments.19,20

III. Testing Models for the Histogram Data

To avoid the combinatorially complex problem of finding
the best model for the data, we construct histograms of events
from the data and then test generic features of the histograms
instead of the underlying model that produced these features.

The tests are performed within a Bayesian framework, by
determining the likelihood that the data are produced by a model
of the histogram that contains certain properties. The Bayesian
methods outlined in this section are standard, but many of the
tested features have not been explored within the Bayesian
framework or at all. The non-Bayesian tests applied to determine
these features are known to be sensitive to fluctuations in the
data and to be reliable.

The features of a histogram are tested by constructing models
of the histograms and comparing these models to the data. The
original histograms,hi or hij, include the single events (single
sojourn time) and pairs of events, such as adjacent+ and -
sojourn times or two+ sojourn times separated by one-
sojourn. The objective is to test possible models for the
histograms. The best fitting model will always be the histogram
itself Pij ) (1/N)hij with N ) ∑ijhij. The main issue is the
establishment of other simpler modelsP̃ij that are consistent
with the data. For a modelP̃ij, the probability of obtaining the
histogramhij is P(hij| P̃ij) ) ∏ij(P̃ij)hij. Taking the log of this
probability gives

Since each event is a random variable,∑ijhij ln(P̃ij) is the result
of a sum of random variables that converges to a Gaussian
distribution in the largeN limit. As a result, the difference in
the log probability of the histogram,Pij ) (1/N)hij, andP̃ij is a
natural method of comparing the model to the data and assessing
if the model is adequate.21 For the histogramhij, the difference
in the logarithms is

SincePij ) (1/N)hij, we are left withN times the Kullback-
Liebler metric (KL)22,23

The log likelihoods should be compared against the expected
variances

If the KL metric is small compared to the variance estimate,
thenP̃ is an adequate model for the data. It is simple to account
for correlations in the data by modifying the variance. This
testing method penalizes using the histogramPij itself by a factor
that scales asxN without regard to the number of parameters,
whereas other methods penalize by factors of ln(N) or unity
with a parameter-dependent prefactor.24 The preferred method
should depend on both the number of data points and the number
of parameters.

If Pij ≈ P̃ij, then a Taylor expansion gives

since the linear term averages to zero. This result follows from
the previous discussion about the approximately Poisson nature

Figure 1. Kinetic schemes that violate detailed balance. (a) A scheme
that has a circulation loop passing through both manifolds twice, which
gives time reversibility and diagonal dominance violations. (b) A
concentration-dependent Michaelis-Menten scheme, where the sub-
strate pumps the conformational coordinates of the system. (c) A kinetic
scheme that has a circulation loop resulting in a peak in the single
waiting time distributions.
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of the variations in the data. The variance in the number of
events in each bin is equal to the number of events in a bin
(σij

2 ) NPij), and this procedure reduces to least-squares analysis
in the large data limit.17 The expression demonstrates that the
relative instead of absolute values of deviations ofP̃ij from Pij

are the important quantities. Large absolute deviations appear
in regions with larger numbers of events, and reweighting the
residual deviations is necessary.

IV. Testing Renewal Behavior

As the simplest example of testing models, consider trying
to determine if the histogramhij corresponds to a simple renewal
or alternating renewal process. Renewal or alternating renewal
processes assume that the sojourn times of events are indepen-
dent, which implies that the process does not exhibit multiple
paths connecting the+ and- manifolds.25,26To test the renewal
property, the data,Pij ) (1/N)hij, must be compared with the
best fitting model for independent events

The resulting KL metric for comparingP andP̃ is IP|P̃ ) ∑ij Pij

ln(Pij/(PiPj)), which is sometimes called the mutual information
between the variablei andj.27 The mutual information is always
positive sincePij is a better fit. To determine if the difference
in fits is significant, we compareNIP|P̃ with NδI2

P|P̃. If zero
falls within the 95% confidence interval (2 standard deviations),
then the events are considered independent, and we adoptP̃ij

) PiPj.
We explore application of this test to the model in Figure 1a

as a function ofp andK for k1 ) k2 ) K-1k3 ) K-1k4 ) 1. In
this case the two-event function for a+ sojourn followed by a
- sojourn is

The best fitting renewal process forP+- has p ) 1/2. A
comparison of theP+- (in log time form) to the renewal
prediction in Figure 2a forp ) 3/4 andK ) 4 shows that the
true distribution is stretched along the diagonal compared to
the renewal process.

In real experiments, the data is binned for the comparison,
but the KL metric can be defined in the continuum limit, which
maximizes the KL metric for comparing the true distributionP
with the modelP̃.21 Binning the data corresponds to coarse
graining the distributions, which reduces the KL metric. The
extreme example is the spacing being divided into a single bin,
where all data points fall into the bin and the log likelihood of
P and P̃ is zero. For any binning, the likelihood calculation
determines the probability that the model histogramP̃ is an
adequate representation of the data histogramP. In the
continuum limit, the KL metric comes from an integration over
a two-dimensional contour

that is shown in Figure 2b. We callδIP|P̃(ln t1, ln t2) the KL

difference function. To the first order in∆P the KL difference
function resembles the traditional difference function,δP(ln t1,
ln t2) ) P(ln t1, ln t2) - P(ln t1)P(ln t2), but this term does not

P̃ij ) PiPj )
1

N2[ ∑
j

hij][ ∑
i

hij] (8)
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Figure 2. Testing the renewal hypothesis for the scheme in Figure 1a
with p ) 3/4 and 2k1 ) k2 ) K-1k3 ) K-1k4 ) 1 for K ) 4. (a) The
two-event distribution,P+-(ln t1, ln t2) (dashed line) is compared with
the best fitting renewal processP̃(ln t1, ln t2) ) P+(ln t1)P-(ln t2) (solid
line). Note the log scales. (b) The KL difference,δIP|P̃ ) P+- ln(P+-/
P+P-) for comparing these two models. (c) The expected number of
measurements required to distinguish the data from the renewal model
at the 95% confidence level. As the model becomes closer to being a
renewal processp ) 1/2 or K ) 1, more measurements are required to
distinguish the two models.
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contribute to the test ofP̃.7,25 The expected minimum number
of measurements necessary to distinguish the renewal process
from the nonrenewal process at a 95% confidence interval is
plotted in Figure 2c.

The ability to detect a renewal violation depends on the
magnitude ofp - 1/2 and log(K). The degree of the renewal
violation in the underlying scheme is captured by the magnitude
of p - 1/2, while the magnitude of log(K) has the ability to
distinguish substates in the underlying manifold, which is
necessary to detect the violation. The waiting time is a signature
of the substate that was entered. If the waiting times are
identical, log(K) ) 0, then the signatures cannot distinguish the
states, so the nonrenewal nature defined byp - 1/2 cannot be
detected, while for cases where|log(K)| is large, the two states
are easily identifiable and the nonrenewal nature is detectable.
For systems that strongly violate the renewal propertyp ≈ 0,
1, the number of measurements is reasonable (a couple thousand
data points). Following our intuition, as the degree of the
renewal violation decreasesp f 1/2, the number of measure-
ments necessary to detect the violation increases and diverges
for p ≈ 1/2. Similar behavior is observed for the number of
measurements necessary to distinguish differentK values, since
the system is a renewal process forK ) 1.

Thep parameter dominates the mixing of the process. Forp
≈ 1/2 the process mixes quickly, and even a full sequence
analysis cannot distinguish the renewal and nonrenewal models.
If the mixing is slow, but the kinetic rates are similar,K ≈ 1,
then a full sequence analysis can distinguish the data from a
renewal model by detecting the weak but long-lived correlations
in the waiting times, although the proposed two-dimensional
test may be weak. One may be able to use two-dimensional
analysis to overcome these difficulties by examining the
probability distributions of sums of events, such asP(t1 + t2, t3
+ t4) or P(t1 + t3, t2 + t4) (or the log equivalent). The first test
would be sensitive to positive correlations, while the second
test would be sensitive to negative correlations.

It is important to emphasize the difference between the mutual
information and the correlation analysis. Symmetry may make
the first few correlations zero even if the measured quantities
are correlated at higher moments, whereas the mutual informa-
tion is only zero if the two quantities are independent. The
properties that one measures with correlations also need to be
characterized by a numerical value, but mutual information only
requires binning of the data, which can be performed on data
with qualitative labels or multidimensional data. An example
is a traditional photon counting experiment, where the arrival
time and fluorescence lifetimes of the photons are recorded. In
these experiments, the number of photons that arrive in a small
time window and the average fluorescence lifetime in each bin
may be recorded. To perform correlation analysis for the number
and fluorescence lifetimes in two time windows separated by a
fixed time t requires calculation of all possible correlations
between the number of photons in different bins and the average
fluorescence lifetime. For the mutual information, a two-
dimensional histogram of the number of photons and average
lifetime can be constructed, and then the mutual information
for all of these inputs results in a single number. If two variables
are Gaussian-distributed, then the correlation function and
mutual information are related since the correlation function
defines the probability distribution.

V. Comparing Experimental Conditions

The simple test can be extended to the determination of the
existence of concentration dependence in experiments.15 Many

single-molecule experiments attempt to ascertain the mechanism
of an enzyme’s or ribozyme’s reactivity by attaching a probe
to the single molecule of interest by chemical modification. In
this scenario, it becomes important to establish that the probe’s
motion is coupled to the reaction center of the single molecule
by examining a substrate concentration dependence.15

We analyze the sensitivity in detecting changes for the model
in Figure 1b, which is the reduced model that corresponds to
Michaelis-Menten kinetics with an extremely fast product
release step, a diffusion-limited substrate binding step, and a
fluctuating kinetic rate for the enzyme-substrate to enzyme-

Figure 3. Ability to determine concentration-dependent behaviors in
P+(t1) in the model depicted in Figure 1b forKE ) KES* ) 1, KES ) 2,
γES* ) γS ) 0, andγES ) γS* ) 1/5. (a) P+(ln t) for [S] ) 1 (dot-
dashed line) and [S]) 10 (dashed line) are compared with withP̃ )
(1/2)(P+([S] ) 1) + P+([S] ) 10) (solid line). These probability
distributions can be used to calculateδIP|P̃, shown in part b forP+([S]
) 1) (solid line) andP+([S] ) 10) (dashed line). (c) The expected
number of measurements needed to discriminate behaviors between
[S]1 and [S]2 at the 95% confidence level.
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product reaction. For simplicity we chooseKE ) KES* ) 1, KES

) 2, γES* ) γS ) 0, andγES ) γS* ) 1/5. The- waiting time
is a simple exponential process that depends linearly on the
substrate concentration, [S], i.e.,P-(t, [S]) ) [S] e-[S]t. The+
waiting time has a more complex substrate dependence

The first step in comparing two histogramshi
(1) andhi

(2) for
different sets of experimental conditions is to construct the
model for the two histograms being produced by the same
underlying process,P̃i ) 1/(N(1) + N(2))(hi

(1) + hi
(2)). This

model should be compared against the data to determine if a
substrate dependence in the various measurements exists. The
test is very strong for the linearly dependent rates of the-
waiting time. Even for concentration differences of 5%, the
linear dependence in the waiting times can be detected with
less than 500 measurements. Of greater interest is the ability to
detect the more subtle dependence in the+ waiting time
distribution. Figure 3a shows that even for a factor of 10
difference in the concentration, [S]) 1, 10, the waiting time
distributions are similar and the composite modelP̃+(t) ) (1/2)
(P+(t,[S] ) 1) + P+(t,[S] ) 10) can be a very good fit. The

difference measureδI(i)
P|P̃ ) P+

(i)(ln t)ln(P+
(i)(ln t)/P̃+(ln t)) is

shown in Figure 3b, with [S]) 1 (i ) 1 (solid line)) and [S])
10 (i ) 2 (dashed line)). The expected number of measurements
needed to discriminateP̃ from the two true probability distribu-
tions at the 95% confidence interval is presented in Figure 3c.

The ability to distinguish the two waiting time distributions
depends on the difference in the concentrations. This waiting
time distribution is a weighted average of two exponentials with
concentration-independent decay constants but concentration-
dependent weights. These changes in the weights saturate at
high and low concentrations, which results in the plateau in the
ability to detect the concentration dependence at high and low
concentrations. This comparison of two distributions can be used
to test different single molecules in the same experimental
conditions or segments of a single trajectory to determine if
the experiment is ergodic. As will be discussed elsewhere, this
idea can be extended to examining collections of single
molecules to classify their behaviors.15

VI. Time Reversibility

The existence of detailed balance is an important property to
establish for various protein systems since detailed balance
violations imply that the conformational kinetics being probed
are also pumped by an external source of energy, such as the
substrate in an enzymatic turnover process or the ionic potential

Figure 4. Determination of time reversibility in the model depicted in Figure 1a fork1 ) k2 ) 1, k3 ) k4 ) K ) 2.7, andp ) 3/4. (a) P+-(ln t1,
ln t2) (dashed line) andP-+(ln t2, ln t1) (dot-dashed line) are compared against the time reversible model,P̃ ) (1/2)(P+- + P-+) (solid line). (b)
A contour ofδI(+) ) P+-(ln t1, ln t2)ln(P+-(ln t1, ln t2)/P̃(ln t1, ln t2)) (c) A contour ofδI(-) ) P-+(ln t2, ln t1)ln(P-+(ln t2, ln t1)/P̃(ln t1, ln t2)). (d)
The expected number of measurements needed to discriminateP+- andP-+ from P̃ at the 95% confidence level as a function ofp andK.

P+(t,[S]) )
1

66 + 30[S]
(121 e-(11/5)t + (11 + 30[S]) e-t) (11)
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across a membrane that is often explored in ion channel
experiments.15,17 The easiest test of the probed coordinate’s
motion violating detailed balance is a substrate concentration
dependence, as discussed above. These concentration depend-
ences are not always easy to detect17 and do not always give
insight into the topology of the system that leads to the detailed
balance violation.

As discussed previously,15 there are several manifestations
of detailed balance violations that can be seen in the two-
dimensional event probability contours. These manifestations
include a violation of time reversibilityP+-(t1, t2) ) P-+(t2,
t1), a violation of the triangle inequality of same event
measurements,P++(t1, t2)2 e P++(t1, t1)P++(t2, t2), and a peak
in the single waiting time distribution.15 Most previous analyses
concentrated on the time reversibility.17 Here we will use one-
and two-dimensional analyses to explore all three of these
possible manifestations of detailed balance violation without
resorting to examining the underlying model.

If detailed balance holds for a system, then the system is time
reversible, and the statistics of the forward and backward
processes are identical15

A typical realization of a time reversibility violation occurs when
there is a circulation loop in the underlying topology of the
kinetic scheme that enters both manifolds at least twice. The
simplest realization of this has only four substates,+1, +2, -1,
and-2, with the conformational dynamics preferring to proceed
in a circular sequence,+1 f -1 f +2 f -2 f +1 f ... This
situation is depicted in Figure 1a.

The time reversibility is easily tested within the framework
applied to test for concentration dependence since time revers-
ibility reduces to determining if two probability distributions
are identical. ComparingP+- andP-+ in the model in Figure
1a, withk1 ) k2 ) K-1k3 ) K-1k4 ) 1 as a function ofp and
K results in Figure 4. As shown in Figure 4a, forp ) 3/4 andK
) 2, P+-(t1, t2) is elongated along thet1 ) t2 line compared to
P-+(t2, t1) (remember logarithmic binning). The alternative
hypothesis thatP+-(t1, t2) ) P-+(t2, t1) ) P̃(t1, t2) with P̃ )
(1/2)(P+-(t1, t2) + P-+(t2, t1)) is similar to both distributions.
The KL differences,δIP|P̃

(+) ) P+-ln(P+-/P̃) andδI(-) ) P-+-
ln(P-+/P̃), are plotted in Figures 4b and 4c, respectively. Since
theP+- distribution is elongated along the diagonal compared
to P-+, δI(+) is positive along the diagonal and negative on the
off diagonal. The other KL difference,δI(-), shows the opposite
behavior with a negative diagonal and a positive off diagonal.

The necessary number of measurements to distinguishP+-
and P-+ from P̃ at the 95% confidence interval is plotted in
Figure 4d. Similar to the renewal indicator, the ability to
discriminate depends on the magnitudes ofp - 1/2 and log(K).
The magnitude ofp - 1/2 is a measure of the detailed balance
violation, while the magnitude of log(K) is a measure of our
ability to distinguish the two states. If two states are distinguish-
able (|log(K)| is large), then it is easier to detect the detailed
balance violation. Ifp is very different from1/2, (p f 0, 1) but
K is near unity, then the time reversible and irreversible models
may still be discriminated by either complete sequence analysis
or comparing sums of events in another two-dimensional
analysis as discussed in section 4.

VII. Diagonal Features

If the waiting time in one of the manifolds has a rate-limiting
step that is the same for all possible paths, such as substrate

transport, then we expect a degeneracy in the eigenspectrum of
the waiting time distribution.15 This degeneracy can make the
sequence time reversible even if it violates detailed balance. In
these cases, the distribution of two similar events such as two

P+-(t1, t2) ) P-+(t2, t1) (12)

Figure 5. Ability to discriminate a diagonal dominance violation in
the model depicted in Figure 1a fork1 ) k2 ) k4 ) 1, k3 ) K ) 2.7,
and p ) 3/4. (a) P++(ln t1, ln t2) (solid line) is compared against

xP++(ln t1, ln t1)P++(ln t2, ln t2) (dashed line). (b)∆P++(ln t1, ln t2)
) P++(ln t1, ln t2) - xP++(ln t1, ln t1)P++(ln t2, ln t2), which shows
two positive off-diagonal peaks indicating a detailed balance violation.
(c) The expected number of measurements needed to determine the
existence of a diagonal dominance violation.
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+ events separated by a- event must be used to test for detailed
balance violations. As an example, settingk2 ) k4 for the model
in Figure 1a makes the- waiting time a simple exponential,
P-(t) ) k e-kt, and the system time reversible, but there is a
detailed balance violation, and two adjacent+ events can show
features of this violation.

One feature of a detailed balance obeyingP++
distribution is diagonal dominance, whereP++(t1, t2)2 e

xP++(t1,t1)P++(t2,t2).
15 The violation of this diagonal domi-

nance for the model in Figure 1a withk1 ) k2 ) k4 ) 1, k3 )
K ) 2.7, andp ) 3/4 is shown in Figures 5a and 5b. Figure 5a
shows that the isocontours ofxP++(t1,t1)P++(t2,t2) are nar-
rower than those of the true distribution, so the distribution
becomes greater than the theoretical detailed balance limit,
resulting in the positive difference betweenP++(t1, t2) and

xP++(t1,t1)P++(t2,t2). In other words

indicates a detailed balance violation.
Diagonal dominance holds for integration overt or ln t, so

also indicates a detailed balance violation, and the diagonal
dominance test is also valid for a histogramPij ) aijPi

1/2Pj
1/2.15

Unlike previous tests, histograms may improve the KL measure
of the detailed balance violation by allowing comparison of a
narrow diagonal feature with broad off-diagonal features, which
can also violate detailed balance and has appeared in some
models that violate detailed balance.28 Similar to the time
reversibility test, a diagonal dominance violation occurs when
there is a circulation loop in the underlying topology of the
kinetic scheme that enters both manifolds at least twice, as
depicted in Figure 1a.

To demonstrate a diagonal dominance test, we examine the
model in Figure 1a. The two large off-diagonal peaks in the
∆P++ distribution in Figure 5a indicate that splitting the
distribution into four quadrants along the diagonal,t1 ) t2,
should be sufficient to test for diagonal dominance. The position
of the split depends onp andK. For a histogram with only four
quadrants, diagonal dominance implies thatP̃12

2, P̃21
2 e P̃11P̃22.

Assuming that we are testing detailed balance, time reversibility
is also required, and the optimal diagonally dominant time re-
versible distribution is given byP̃12 ) P̃21 ) (1/2N)(h12 + h21)
andP̃ii ) (1/N)hii, for (1/4)(h12 + h21)2 e h11h22. If this inequality
is not satisfied, then we must modify the probability to

Following previous analyses, we compare this model to the data,
Pij ) hij/N to determine the probability of a diagonal dominance
violation. The number of measurements necessary to discrimi-
nate a diagonal dominance violation at the 95% confidence
interval using the four quadrant test on the model in Figure 1a
is plotted in Figure 5c as a function ofp andK. The features
are similar to those in the previous tests, with the discriminating
power of the test depending on the magnitude ofp - 1/2 and
log(K) since these measure the detailed balance violation and
distinguishability, respectively.

VIII. Single Waiting Time Test

A one-dimensional feature that indicates detailed balance
violations is the existence of a peak in the single waiting time
distribution.15 This detailed balance violation has a different
origin than the previously discussed time reversibility violation
and diagonal dominance violations that are usually associated
with the circulation loop passing though the+ and- manifolds
at least twice. A peak in the single waiting time distribution
results from a flow within a single manifold so that the system
has a tendency to enter the+ or - manifolds through one
substate and exit through another. This indicates a microscopic
time reversibility violation between states in the same manifold
even though the mesoscopic time reversibility may hold. If
detailed balance holds, then the single waiting time distribution
can be expressed as a sum of exponentialsP(t) ) ∫ dk P(k)k
e-kt, whereP(k) is a proper probability density,P(k) g 0, ∫ dk
P(k) ) 1. A rigorous method of testing for a peak is to determine
P(k) from maximum entropy fits or another method and compare
this probability distribution to the data.

As a simple example, we examine the+ waiting time
distribution,P+(t), in the model depicted in Figure 1c withk1

) k2 ) k3 ) K-1k4 ) 1. This waiting time distribution withK
) 2.7 andp ) 1/10 is compared against the best-fitting detailed
balance obeying distribution,P̃ ) ∫ dk P(k)k e-kt, in Figure 6a.
The detailed balance distribution is wider than the detailed
balance violating scheme. Figure 6b shows the KL difference,
δIP|P′. Similar to the previous tests, the ability to detect this
detailed balance violation increases with increasing magnitude
of p - 1/2, but the ability to distinguish the peak varies inversely
with the magnitude of log(K). Takingp ) 1, the waiting time
distribution is given by

which has a zero att ) 0. If k1 is much smaller thank4 (K .
1), then the waiting time of the system is nearly monoexpo-
nential, P+(t) ≈ k1 e-k1t, with only a brief deviation at short
times, so it is difficult to detect the detailed balance violation.
Similar results hold forK , 1, and it is only whenk4 ≈ k1 that
the deviation from simple exponential behavior can be detected.

IX. Conclusion

As demonstrated above, one- and two-dimensional histograms
can elucidate many properties of a system without solving the
combinatorial complex problems of determining the exact
underlying model. These methods allow detection of correlations
in events through the renewal test, similarities in behaviors under
different experimental conditions, and detailed balance viola-
tions. The renewal test determines if the transitions between
the two manifolds correspond to multiple paths, and the
experimental condition dependence indicates that the probe is
coupled to the reaction coordinate. The detailed balance

∆P++ ) P++(t1, t2) - xP++(t1, t1)P++(t2, t2) > 0
(13)

[∫t1-∆/2

t1+∆/2
dt′ ∫t1-∆/2

t1+∆/2
dt′′ P++(t′, t′′)]2 >

[∫t1-∆/2

t1+∆/2
dt′ ∫t1-∆/2

t1+∆/2
dt′′ P++(t′, t′′)] ×

[∫t1-∆/2

t1+∆/2
dt′ ∫t1-∆/2

t1+∆/2
dt′′ P++(t′, t′′)] (14)

P̃11 )
(h11 + 1

2
(h12 + h21))2

N2

P̃22 )
(h22 + 1

2
(h12 + h21))2

N2

P̃21 ) P̃12 )
(h11 + 1

2
(h12 + h21))(h22 + 1

2
(h12 + h21))

N2
(15)

P+(ln t) )
k4

k4 - k1
k1 e-k1t -

k1

k4 - k1
k4 e-k4t (16)
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violations can result in time reversibility violations or a lack of
diagonal dominance that indicates a circulation loop that goes
through both manifolds as least twice and peaks in the single
waiting time distribution, which indicates a multiple-step
circulation through a single manifold. Knowledge of these
properties can give insight into the underlying topology of
Markovian models without determining the specific model
parameters.

The proposed tests not only allow determination of the
existence of these properties but also create rigorous bounds
on the ability to discriminate models with one- and two-

dimensional data. The number of measurements necessary to
distinguish these models at the 95% confidence interval cannot
be reduced by introducing another measure of these data. The
only major assumption that may need to be corrected is the
independence of events, which may not be true if the histogram
is constructed from parsing a long single trajectory, but this
will only modify the variance estimate.

The analysis can be extended to higher-dimensional binned
data, but creating histograms will not be practical. Instead, one
needs to fit the data to flexible functional forms that continue
to obey the restrictions on the properties, such as time
reversibility. These reduced information tests will never be as
powerful as full sequence analysis, but even using flexible
functional forms is orders of magnitude less computationally
intensive than a full sequence analysis and does not require one
to propose underlying topologies. These reduced information
methods can also be expanded to classify different molecular
trajectories, to test ergodicity, and to determine properties of
the transition-state ensemble. The computational simplicity,
along with the rigorous bounds in the ability to discriminate
models, makes the information theoretical approach to reduced
data representations an advantageous first step in performing
single-molecule analysis.
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Appendix

To simplify the presentation our focus has been onP(t1, ...,
tn), but the results are independent of binning methods and can
be easily applied toP(ln t1, ..., ln tn). In fact, logarithmic binning
gives a nice interpretation of one- and two-dimensional histo-
grams of events. If the kinetics of the system corresponds to
simple first-order kinetics with a complete basis set of eigen-
vectors, such as for systems where detailed balance holds, then
the n event probability distribution (histogram) is

Logarithmic binning allows plotting of data with multiple time
scales and allows us to write the waiting time distribution as

where f(x) ) exp(x - ex) is a Gumbel distribution andτi )
ki

-1. From this expression, it becomes apparent thatP(...( (ln
t1, ..., ln tn) is a convolution ofP(...( (ln τ1, ..., ln τn) with
Gumbel distributions. Since the Gumbel distribution is a
probability distribution, it is a simple smear factor. As a result,
in the limit of large data, one can perform density functional
theory (DFT) calculations of the log distribution and filter out
the Gumbel smear factor to obtain the Fourier transform of the
spectrum of kinetic rates. Inverse DFT will yield a spectrum of
peaks that correspond to the logarithmic time scales of the
system and can be interpreted similar to two-dimensional
spectroscopy. The peaks in the two-dimensional spectrum
correspond to coupling of different time scales of motions. These
couplings can be positive or negative depending on the
connectivity of the system.
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