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Testing for Renewal and Detailed Balance Violations in Single-Molecule Blinking Processes
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This paper examines methods to test one- and two-dimensional histograms for several features including the
renewal properties, detailed balance violations, and experimental condition dependences. The tests are simple
to implement and allow rigorous statistical determination of the existence of these kinetic features. The tests
are used to determine the lower bound on the number of measurements necessary to differentiate underlying
kinetic models.

I. Introduction give insight into circulation in the underlying topology, including
the topology of the circulation loop. Concentration dependence

Single-molecule experiments offer a window into the micro- . ~. . . -
indicates the role of cofactors in a single-molecule function,

scopic world of chemical systems that allows the observation . L .
of individual chemicakvents! These techniques have been used such as metal ions in ribozyme folding andqtﬁhﬂe energy transfer
to explore systems from the oxidatioreduction of a single between t_he s_u_bstrate _and the macromol - @'_ o
cofactor in an enzyme to the folding of ribozynfeShree of _ Th_e major difficulty with the two-event waiting time dlstrlbu-_
the most popular single-molecule experiments, fluorescence !N IS the need to create a histogram for the events (resulting
resonance energy transfer (FRET), simple fluorescence blinking, iN @ histogranty). In the infinite data and infinitesimal bin size
and fluorescence quenching often show the molecules hopping'!m't' the tr§d|t|on_al analysis discussed in the smgle-mo_lt_ecule
between discrete values for either the FRET efficiency or the literature will suffice. However, these methods are sensitive to
fluorescence yield#We define the collection of configurations ~ N0iS€ and cannot be easily implemented for finite sets of data.
that have a degenerate single-molecule value as a manifold. Thel "€ implementation difficulties have several sources. One source
hopping processes give rise to the event statistics that examindS the binning methods, which are linear in many proposed
the sojourn time within a certain manifold before making a 2Pplications but should be logarithmic for examining exponen-
transition to another manifof Many models for event tally distributed data (Appendixy. In this paper, data will be -
statistics contain hidden substates that are degenerate witPresented in logarithmic histograms, but the discussion will
respect to the probe (FRET, fluorescence, etc.) but have differentPT€Sent linear probability distributions. Another issue is the
sojourn time distribution$ Determining both the topology and scatter that is pre;ent in the hlstogram. The scatt.er ina hlst.ogram
the parameters of a model with hidden substates becomesshould be approximately Poisson-distributed with the variance
cumbersomé&2 As an example, there are over 20 000 topologies "' the number of events in a bin being approximately equal to
for connecting eight substates in a linear chain. Although much the number of events in the bin. As a result, the scatter will not
effort has been dedicated to efficient search algorithms and P& uniformly distributed throughout the histogram, which can
reducing redundancies, gaining physical insight by examining Cause misinterpretation in features that are mea}sured from the
features that appear in coarse grained measures can restricfiiferences between histograms. The nearly Poisson nature of
possible models and even identify properties of the Systemthe data scatter causes an additional problem for low-count bins,

without model optimization. where the deviations are not Gaussian. Avoiding these difficul-
In this paper, we examine statistical tests of properties that ties is the motivation behind introducing more rigorous statistical
appear in the one- and two-dimensional histograms of eventsMethods of assessing the relevance of apparent features. An
but do not require the construction of an underlying model. important result is the establishment of the number of measure-
These tests are derived from the Bayesian analysis and informa/Ments necessary to elucidate the existence of features in the
tion theory, which has been implemented by several groups onhistogram properties and dlstlng_ljlsr_l different models. These
single photon counting experimens12 While earlier ap- numbers should be used as a guideline for the types of models

proaches mainly concerned determination of the transition times!© compare to the data.

between different states and the underlying models to describe ] o
the transitiond314 our work concerns inferring properties of I Poisson Kinetic Models

the system based on the transition times. The tests capture athough generalizations are simple, we concentrate on the
important aspects of the system, m_clud_mg the non_—Markowan/ two-manifold model, where the system exhibits hops between
nonrenewal nature of the system, violations of detailed balance,, intensities. labeled- for bright and — for dark, resulting

and similarity in behaviors of molecules in different experi- , 4 blinking sequence. The durations of theor — intensity
iti 5 1 1 ’ . . .
mental conditions> The renewal behavior determines the | ;e peen referred to as events in the literatareese hopping
existence of parallel paths, while the detailed balance violations ¢\ants are generally modeled by stochastic waiting time
 Part of the special issue “Robert J. Silbey Festschrift’ processes (semi-MarkoW.If the waiting times show correla-
* Author to whom correspondence should be addressed. E-mail: jianshu@ tions between adjacent _transition times, then additional_hidden
mit.edu. states are added. Including only a few states can greatly increase
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Figure 1. Kinetic schemes that violate detailed balance. (a) A scheme
that has a circulation loop passing through both manifolds twice, which

gives time reversibility and diagonal dominance violations. (b) A
concentration-dependent Michaetislenten scheme, where the sub-

strate pumps the conformational coordinates of the system. (c) A kinetic
scheme that has a circulation loop resulting in a peak in the single

waiting time distributions.

Witkoskie and Cao

The tests are performed within a Bayesian framework, by
determining the likelihood that the data are produced by a model
of the histogram that contains certain properties. The Bayesian
methods outlined in this section are standard, but many of the
tested features have not been explored within the Bayesian
framework or at all. The non-Bayesian tests applied to determine
these features are known to be sensitive to fluctuations in the
data and to be reliable.

The features of a histogram are tested by constructing models
of the histograms and comparing these models to the data. The
original histogramsh; or hj, include the single events (single
sojourn time) and pairs of events, such as adjadesind —
sojourn times or twot sojourn times separated by one
sojourn. The objective is to test possible models for the
histograms. The best fitting model will always be the histogram
itself Pj = (1/N)h; with N = %;hj. The main issue is the
establishment of other simpler modd® that are consistent
with the data. For a mod&u, the probability of obtaining the
histogramhy; is P(h;| Pj) = [1;(P;)". Taking the log of this
probability gives

In P(hij“sij) = z hy |n(|5ij) 3)
T

Since each event is a random varialigh In(P;) is the result

of a sum of random variables that converges to a Gaussian
distribution in the largeN limit. As a result, the difference in

the log probability of the histogran®; = (L/N)h;, andP; is a
natural method of comparing the model to the data and assessing
if the model is adequat®.For the histogrant, the difference

in the logarithms is

z hy[In(P;) — In(lsij)] = Z h In(Pij/ISij) (4)
1) [}

the space complexity of possible models, so it is desirable to SinceP; = (1/N)h;, we are left withN times the Kullback
develop methods to obtain insights that do not require model Liebler metric (KL}223

optimization® The kinetics for this model are described by the
rate equation

3 P+{_ _ Kip T4
tlp- Koy

K
K__ ++r][z+] @)

An event is the sojourn time in a particular manifold. For a
given kinetic scheme the probability ofevents starting from
+ is is given by

K (peq+

- @
ZK¥(peo)1

where the sum is over the final state. The distribution of the
log times that is shown in the figures is derived by replading
with €nt and multiplying by &%. To obtain reduced probability

P:E..i(tlr ""tn) = Z’ I_l K:EZF e*(K¥¥+r;;)t,
i

matrices one integrates out the unwanted degrees of freedom

The results are general, but we will restrict our discussion to

Nlpp =N Z(6|P|ﬁ’)ij ®)

=N z P, In(P;/P;)
1 1

The log likelihoods should be compared against the expected
variances

NOlpp” = N’ ; Py In(P;)” — ( Z Py In(Pij))2 +
~ ~ 2
Z P, In(P;)” — ( Z P; '”(Pu)) ] (6)

If the KL metric is small compared to the variance estimate,
thenP is an adequate model for the data. It is simple to account

for correlations in the data by modifying the variance. This
testing method penalizes using the histogRntself by a factor
that scales as/N without regard to the number of parameters,

whereas other methods penalize by factors oN)ngr unity

the four substate models shown in Figure 1. These models have/ith @ parameter-dependent prefactbihe preferred method

been studied in the literature and applied to several single-

molecule experiments, including fluorescence blinking and ion
channel experiments:20

Ill. Testing Models for the Histogram Data
To avoid the combinatorially complex problem of finding

should depend on both the number of data points and the number
of parameters.
If Py ~ Py, then a Taylor expansion gives

1 (P — |5ij)2 1 APij2
P— =N - —— (7)

ij [ 2 l:)ij

the best model for the data, we construct histograms of events
from the data and then test generic features of the histogramssince the linear term averages to zero. This result follows from
instead of the underlying model that produced these features.the previous discussion about the approximately Poisson nature
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of the variations in the data. The variance in the number of
events in each bin is equal to the number of events in a bin

(032 = NPy), and this procedure reduces to least-squares analysis

in the large data limit! The expression demonstrates that the
relative instead of absolute values of deviation®pfrom P

are the important quantities. Large absolute deviations appear

in regions with larger numbers of events, and reweighting the
residual deviations is necessary.
IV. Testing Renewal Behavior

As the simplest example of testing models, consider trying
to determine if the histograim, corresponds to a simple renewal

or alternating renewal process. Renewal or alternating renewal
processes assume that the sojourn times of events are indepen-

dent, which implies that the process does not exhibit multiple
paths connecting thé and— manifolds?>26To test the renewal
property, the datael; = (1/N)hj, must be compared with the
best fitting model for independent events

ooz

The resulting KL metric for comparing andP is lpp =2 Py
In(P;/(PiP})), which is sometimes called the mutual information
between the variablieand;j.?” The mutual information is always
positive sinceP;j is a better fit. To determine if the difference
in fits is significant, we compar®llpp with Nol%ps. If zero
falls within the 95% confidence interval (2 standard deviations),
then the events are considered independent, and we &jopt
= Pipj.

We explore application of this test to the model in Figure 1la
as a function op andK for k; = k, = K71k = K™k, = 1. In
this case the two-event function forasojourn followed by a
— sojourn is

8)

1 - _ _
P. () =5e"[pe™+ (1 —pKe ]+

; K e K4[pK e K2 + (1 — p)e g (9)

The best fitting renewal process f&,— hasp = /. A
comparison of theP_ (in log time form) to the renewal
prediction in Figure 2a fop = ¥, andK = 4 shows that the
true distribution is stretched along the diagonal compared to
the renewal process.

In real experiments, the data is binned for the comparison,
but the KL metric can be defined in the continuum limit, which
maximizes the KL metric for comparing the true distributi®n
with the modelP.2! Binning the data corresponds to coarse
graining the distributions, which reduces the KL metric. The
extreme example is the spacing being divided into a single bin,
where all data points fall into the bin and the log likelihood of
P and P is zero. For any binning, the likelihood calculation
determines the probability that the model histogrBnis an
adequate representation of the data histogamin the
continuum limit, the KL metric comes from an integration over
a two-dimensional contour

Jdint dint, 6lpe(inty, Inty) =

f dint, dInt, P(Int;, Inty) In(P(In t;, Int,)
P(nt, Int,)

that is shown in Figure 2b. We calllpjp(In t1, In tp) the KL
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Figure 2. Testing the renewal hypothesis for the scheme in Figure 1la
with p =3, and Z; = kp = K™%k = K™%, = 1 for K = 4. (a) The
two-event distributionP.—(In ty, In t) (dashed line) is compared with
the best fitting renewal proce&%In ti, In tz) = P+(In t))P-(In t,) (solid

line). Note the log scales. (b) The KL differen@dpp = Py In(P+-/
P+P-) for comparing these two models. (c) The expected number of
measurements required to distinguish the data from the renewal model
at the 95% confidence level. As the model becomes closer to being a
renewal procesp = %, or K = 1, more measurements are required to
distinguish the two models.

difference function. To the first order iAP the KL difference
function resembles the traditional difference functiéR(In t;,
In to) = P(In t, In tp) — P(In t;)P(In ty), but this term does not
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contribute to the test d?.7.25 The expected minimum number (a) *
of measurements necessary to distinguish the renewal process
from the nonrenewal process at a 95% confidence interval is
plotted in Figure 2c.

The ability to detect a renewal violation depends on the
magnitude ofp — 1/, and logK). The degree of the renewal
violation in the underlying scheme is captured by the magnitude
of p — 1/,, while the magnitude of log{) has the ability to
distinguish substates in the underlying manifold, which is
necessary to detect the violation. The waiting time is a signature
of the substate that was entered. If the waiting times are
identical, logK) = 0, then the signatures cannot distinguish the
states, so the nonrenewal nature definecby 1/, cannot be
detected, while for cases whdteg(K)| is large, the two states
are easily identifiable and the nonrenewal nature is detectable.
For systems that strongly violate the renewal property O,

1, the number of measurements is reasonable (a couple thousand
data points). Following our intuition, as the degree of the 004
renewal violation decreasgs— 1/,, the number of measure-
ments necessary to detect the violation increases and diverges 002
for p ~ ,. Similar behavior is observed for the number of o

measurements necessary to distinguish diffeikevalues, since Y
the system is a renewal process for= 1. ©

The p parameter dominates the mixing of the process.g-or 0.02
~ 1/, the process mixes quickly, and even a full sequence
analysis cannot distinguish the renewal and nonrenewal models. 0.04
If the mixing is slow, but the kinetic rates are simil&r~ 1,
then a full sequence analysis can distinguish the data from a 0.06
renewal model by detecting the weak but long-lived correlations
in the waiting times, although the proposed two-dimensional
test may be weak. One may be able to use two-dimensional logqpN
analysis to overcome these difficulties by examining the (c) 25f ] *
probability distributions of sums of events, suchP{s + t, t3 2t
+ t4) or P(t; + t3, t2 + t4) (or the log equivalent). The first test 15k
would be sensitive to positive correlations, while the second
test would be sensitive to negative correlations. 7

It is important to emphasize the difference between the mutual g
information and the correlation analysis. Symmetry may make k!
the first few correlations zero even if the measured quantities 03
are correlated at higher moments, whereas the mutual informa- Tt
tion is only zero if the two quantities are independent. The 15t
properties that one measures with correlations also need to be 2 }
characterized by a numerical value, but mutual information only as b
requires binning of the data, which can be performed on data ' 2 1 0 1
with qualitative labels or multidimensional data. An example logyo[Sh
is a traditional photon counting experiment, where the arrival Figure 3. Ability to determine concentration-dependent behaviors in
time and fluorescence lifetimes of the photons are recorded. InP+(t2) in the model depicted in Figure 1b fée = Kes: = 1, Kes = 2,
these experiments, the number of photons that arrive in a small7es: = ¥s = 0, andyes = ys* = Ys. () P-(In 1) for [S] = 1 (dot-
time window and the average fluorescence lifetime in each bin 42shed line) and [Sf 10 (dashed line) are compared with wit=

. . )(PL([S] = 1) + P4(S] = 10) (solid line). These probability
may be recorded. To perforr_’n corre_latlon gnaly5|s for the number yictinutions can be used to calculaties, shown in part b foP.([S]
and fluorescence lifetimes in two time windows separated by a = 1) (solid line) andP.([S] = 10) (dashed line). (c) The expected
fixed time t requires calculation of all possible correlations number of measurements needed to discriminate behaviors between
between the number of photons in different bins and the average[S]: and [S} at the 95% confidence level.
fluorescence lifetime. For the mutual information, a two-
dimensional histogram of the number of photons and average ) X | - )
lifetime can be constructed, and then the mutual information °f @ €nzyme’s or ribozyme’s reactivity by attaching a probe
for all of these inputs results in a single number. If two variables t© the single molecule of interest by chemical modification. In
are Gaussian-distributed, then the correlation function and thiS scenario, it becomes important to establish that the probe’s
mutual information are related since the correlation function MOtion is coupled to the reaction center of the single molecule
defines the probability distribution. by examining a substrat.e.cqncentrat.lon dependénce.

We analyze the sensitivity in detecting changes for the model
in Figure 1b, which is the reduced model that corresponds to
Michaelis—Menten kinetics with an extremely fast product

The simple test can be extended to the determination of therelease step, a diffusion-limited substrate binding step, and a
existence of concentration dependence in experiniéisny fluctuating kinetic rate for the enzymesubstrate to enzyme

2

single-molecule experiments attempt to ascertain the mechanism

V. Comparing Experimental Conditions
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Figure 4. Determination of time reversibility in the model depicted in Figure lakior k; = 1, ks = ks = K = 2.7, andp = ¥,. (a) P+—(In 1,
In t;) (dashed line) an®—_.(In t;, In t;) (dot—dashed line) are compared against the time reversible medel(Y/,)(P.- + P-.) (solid line). (b)
A contour of 31 = Py _(In t, In t)In(P+—(In t1, In t2)/P(In ty, In 1)) (c) A contour of61™) = P_,(In tz, In ty)IN(P—+(In tz, In t)/P(In t, In t2)). (d)
The expected number of measurements needed to discrinfinatand P from P at the 95% confidence level as a functionpéndK.

product reaction. For simplicity we chooke = Kes: = 1, Kes difference measurél®pp = PO(In H)In(PY(In t)/P+(In 1)) is
=2, yes* = ys = 0, andyes = ys- = /5. The — waiting time shown in Figure 3b, with [S¥ 1 (i = 1 (solid line)) and [SEE
is a simple exponential process that depends linearly on the10 ( = 2 (dashed line)). The expected number of measurements

substrate concentration, [S], i.@,(t, [S]) = [S] e . The + needed to discriminate from the two true probability distribu-
waiting time has a more complex substrate dependence tions at the 95% confidence interval is presented in Figure 3c.
The ability to distinguish the two waiting time distributions
P.(t[S) = depends on the difference in the concentrations. This waiting
1 time distribution is a weighted average of two exponentials with

—(11/5% —t
(121e +(11+30[S)he) (11) concentration-independent decay constants but concentration-

dependent weights. These changes in the weights saturate at
The first step in comparing two histograrhS) and hi(z) for high and low concentrations, which results in the plateau in the
different sets of experimental conditions is to construct the ability to detect the concentration dependence at high and low
model for the two histograms being produced by the same concentrations. This comparison of two distributions can be used
underlying processP, = 1/(N®W + N(Z))(hi(l) + hi(Z))_ This to test different single molecules in the same experimental

model should be compared against the data to determine if aconditions or segments of a single trajectory to determine if
substrate dependence in the various measurements exists. Th&'€ €xperiment is ergodic. As will be discussed elsewhere, this
test is very strong for the linearly dependent rates of the ~ idea can be extended to examining collections of single
waiting time. Even for concentration differences of 5%, the Molecules to classify their behaviofs.

linear dependence in the waiting times can be detected with . .

less than 500 measurements. Of greater interest is the ability toVI' Time Reversibility
detect the more subtle dependence in thewaiting time The existence of detailed balance is an important property to
distribution. Figure 3a shows that even for a factor of 10 establish for various protein systems since detailed balance
difference in the concentration, [S} 1, 10, the waiting time violations imply that the conformational kinetics being probed
distributions are similar and the composite molle{t) = (¥/>) are also pumped by an external source of energy, such as the
(P+(t,[S] = 1) + P4(t,[S] = 10) can be a very good fit. The substrate in an enzymatic turnover process or the ionic potential

66+ 30[S]
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across a membrane that is often explored in ion channel (a) 3
experimentd>17 The easiest test of the probed coordinate’s

motion violating detailed balance is a substrate concentration 2
dependence, as discussed above. These concentration depend
ences are not always easy to detéand do not always give 1t
insight into the topology of the system that leads to the detailed o~
balance violation.

As discussed previoushy,there are several manifestations
of detailed balance violations that can be seen in the two- 1t
dimensional event probability contours. These manifestations
include a violation of time reversibilityP+—(t1, t2) = P—4(to, 2
t1), a violation of the triangle inequality of same event
measurement®(t1, t2)2 < P4(t1, t))P++(tp, t2), and a peak 3
in the single waiting time distributiot. Most previous analyses
concentrated on the time reversibilityHere we will use one- 4 : ; . : . .
and two-dimensional analyses to explore all three of these 4 3 2 T ! 2 3
possible manifestations of detailed balance violation without 1
resorting to examining the underlying model. %10

If detailed balance holds for a system, then the system is time (b) 3 5
reversible, and the statistics of the forward and backward
processes are identiéal 2t

P, (t, t) =P_,(t, t) (12) T T .
od
A typical realization of a time reversibility violation occurs when 9 ]
there is a circulation loop in the underlying topology of the :
kinetic scheme that enters both manifolds at least twice. The T ]
simplest realization of this has only four substates,+2, —1, 2
and—,, with the conformational dynamics preferring to proceed 71 ]

Int

in a circular sequencet; — —; — +, — — — +1 — ... This
situation is depicted in Figure 1la.

The time reversibility is easily tested within the framework
applied to test for concentration dependence since time revers-
ibility reduces to determining if two probability distributions Int
are identical. Comparing+- andP—_ in the model in Figure

.
[
Ll
s
(=]
3
[

1a, withk; = k, = K~1ks = K~k = 1 as a function op and (c) - |0910N=5
K results in Figure 4. As shown in Figure 4a, for= 3, andK 7 ’ ) ' & '
= 2, P._(t1, tp) is elongated along thie = t, line compared to 0.9F :
P_i(tz, t1) (remember logarithmic binning). The alternative 08 s
hypothesis thaP_(t;, to) = P—i(tz, t1) = P(ty, tp) with P =
(M2)(P+—(ty, t2) + P_4(tp, ty)) is similar to both distributions. 0.7k 1 45
The KL diﬁerencesélffl% = P,_In(P+_/P) and 1) = P_- 0.6}
In(P-/P), are plotted in Figures 4b and 4c, respectively. Since CL(}.S- .
the P4_ distribution is elongated along the diagonal compared
to P_., 81" is positive along the diagonal and negative on the o4r
off diagonal. The other KL differencé] ("), shows the opposite 03k ; w8
behavior with a negative diagonal and a positive off diagonal.

The necessary number of measurements to distindriish 02 3
andP_; from P at the 95% confidence interval is plotted in 0.1 \ /
Figure 4d. Similar to the renewal indicator, the ability to cs é

>

0.5 0.5 1

discriminate depends on the magnitudep of ¥/, and logK). 0
The magnitude op — Y5 is a measure of the detailed balance log; oK
violation, while the magnitude of lo() is a measure of our  Figure 5. Ability to discriminate a diagonal dominance violation in
ability to distinguish the two states. If two states are distinguish- the model depicted in Figure 1a fy = k; = ks = 1, ks = K = 2.7,
able (log(K)| is large), then it is easier to detect the detailed andP = *a. (&) Pi(In t, In t) (solid line) is compared against
balance violation. If is very different froml/,, (p — 0, 1) but VPt Int)P. (Int, Int,) (dashed line). (DAP-(In t,, In t;)

K is near unity, then the time reversible and irreversible models = P++(In t, In t) — /P, (Int,, Int,)P, ,(Int,, Int,), which shows

may still be discriminated by either complete sequence analysisO positive off-diagonal peaks indicating a detailed balance violation.

or comparing sums of events in another two-dimensional (c) The expected number of measurements needed to determine the
. ) . . existence of a diagonal dominance violation.

analysis as discussed in section 4.

transport, then we expect a degeneracy in the eigenspectrum of
the waiting time distributiod® This degeneracy can make the

If the waiting time in one of the manifolds has a rate-limiting sequence time reversible even if it violates detailed balance. In
step that is the same for all possible paths, such as substratehese cases, the distribution of two similar events such as two

VII. Diagonal Features
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+ events separated by-aevent must be used to test for detailed Following previous analyses, we compare this model to the data,
balance violations. As an example, settiag= k4 for the model P; = h;j/N to determine the probability of a diagonal dominance

in Figure 1a makes the- waiting time a simple exponential, violation. The number of measurements necessary to discrimi-
P_(t) = k e ¥, and the system time reversible, but there is a nate a diagonal dominance violation at the 95% confidence
detailed balance violation, and two adjaceénévents can show interval using the four quadrant test on the model in Figure 1a

features of this violation. is plotted in Figure 5c as a function pfandK. The features

One feature of a detailed balance obeying; are similar to those in the previous tests, with the discriminating
distribution is diagonal dominance, whef,;(t;, t2)? < power of the test depending on the magnitude of Y/, and
¢p++(t1,tl)p++(t2,t9_15 The violation of this diagonal domi-  109(K) since these measure the detailed balance violation and
nance for the model in Figure 1a wikh = ko = k; = 1, ks = distinguishability, respectively.

K = 2.7, andp = 3/, is shown in Figures 5a and 5b. Figure 5a
shows that the isocontours QfP++(t1,t1)P++(t2,t2) are nar-

rower than those of the true distribution, so the distribution A one-dimensional feature that indicates detailed balance
becomes greater than the theoretical detailed balance limit,violations is the existence of a peak in the single waiting time

VIII. Single Waiting Time Test

resulting in the positive difference betweéh ,(t;, t;) and distribution!® This detailed balance violation has a different
¢p++(tlytl)p++(t2,t2)_ In other words origin than the previously discussed time reversibility violation
and diagonal dominance violations that are usually associated
AP.. =P. . (t,. 1) — /P, (t. tP. (L, ) > O with the C|rpulat|on Ioop_passmg_ though theand— ma_n|f(_)lds_
b =Pl t) — VP P (G ) (13) at least twice. A peak in the single waiting time distribution
results from a flow within a single manifold so that the system
indicates a detailed balance violation. has a tendency to enter the or — manifolds through one
Diagonal dominance holds for integration oveor In t, so substate and exit through another. This indicates a microscopic
time reversibility violation between states in the same manifold
utA2Z o e tAZ gyy2 even though the mesoscopic time reversibility may hold. If
dt dat" P, ('t > . : NP A
U:rA/Z jtjrm =+ )l detailed balance holds, then the single waiting time distribution
UtA2 o (WA - can be expressed as a sum of exponenBéls= | dk P(K)k
LSl O foo, AU P ()] x P ponenBés= f dk P(K)

| / e X whereP(K) is a proper probability densit@(k) > 0, / dk
t+A/2 ti+A/2 _ ; ; ; ;

dt' dt’ P, (t', t")] (14 P(k) = 1. Arigorous method of testing for a peak is to determine
[ﬂl‘A’z ﬂl‘A’z (0] (14 P(k) from maximum entropy fits or another method and compare

so indi detailed bal olati d the di Ithis probability distribution to the data.
also indicates a detailed balance violation, and the diagonal = 5¢ 4 simple example, we examine the waiting time

dominance test is also valid for a histogrép= a; Pil/ZpjL/21o distribution, P(t), in the model depicted in Figure 1c with
Unlike previous tests, histograms may improve the KL measure _ ko = ks = K~1k; = 1. This waiting time distribution with
of the detailed balance violation by allowing comparison of a _ 5 7 andp = Y10is compared against the best-fitting detailed
narrow diagonal feature with broad off-diagonal features, which balance obeying distributio®, = | dk P(K)k e, in Figure 6a.
can also violate detailed balance and has appeared in SoMéryg getailed balance distribution is wider than the detailed

models .t.hat violate. detailed ballan’@eSimiIar. to the time balance violating scheme. Figure 6b shows the KL difference,
reversibility test, a diagonal dominance violation occurs when Slpp. Similar to the previous tests, the ability to detect this

I(here_ is ahcirculart]ion loop inbthr::‘ undgfrl;ll(ijng to;l)ology O_f the detailed balance violation increases with increasing magnitude
Inetic scheme that enters both manifolds at least twice, as of p — /5, but the ability to distinguish the peak varies inversely

depicted in Figure 1a.. . . with the magnitude of lod(). Takingp = 1, the waiting time
To demonstrate a diagonal dominance test, we examine thedistribution is given by

model in Figure la. The two large off-diagonal peaks in the
AP,y distribution in Figure 5a indicate that splitting the
distribution into four quadrants along the diagonal= t,, P.(nt)=
should be sufficient to test for diagonal dominance. The position
of the split depends opandK. For a histogram with only four
quadrants, diagonal dominance implies Bgag, Py12 < P11Py,.
Assuming that we are testing detailed balance, time reversibility
is also required, and the optimal diagonally dominant time re-
versible distribution is given b1, = Pa1 = (1/2N)(hi2 + hp1)
andP; = (LIN)h;;, for (Y4)(hiz + h1)? < hyshoo. If this inequality

is not satisfied, then we must modify the probability to

kl
K, — K,

K,
K, — K

k, e — ke ™  (16)

which has a zero dt= 0. If k; is much smaller thak, (K >

1), then the waiting time of the system is nearly monoexpo-
nential, P+(t) ~ k; e, with only a brief deviation at short
times, so it is difficult to detect the detailed balance violation.
Similar results hold foK < 1, and it is only wherk, ~ k; that

the deviation from simple exponential behavior can be detected.

IX. Conclusion

1 2

_ (hll + E(hu + h21)) As demonstrated above, one- and two-dimensional histograms

1 N2 can elucidate many properties of a system without solving the

1 5 combinatorial complex problems of determining the exact

(hzz +Z(h,+ h, 1)) gnderlying model. These methods al_loyv d_e_tecFi0n of co_rrelations

P,,= 2 in events through the renewal test, similarities in behaviors under

N2 different experimental conditions, and detailed balance viola-

1 1 tions. The renewal test determines if the transitions between

. 3 (hn + E(hlz + hZJ))(hzz + E(hlz + h21)) the two manifolds correspond to multiple paths, and the
Pyy =P, = (15) experimental condition dependence indicates that the probe is

2 . : )
N coupled to the reaction coordinate. The detailed balance
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(a) °* " ¥ y ¥ y dimensional data. The number of measurements necessary to

o distinguish these models at the 95% confidence interval cannot
be reduced by introducing another measure of these data. The
only major assumption that may need to be corrected is the
independence of events, which may not be true if the histogram
is constructed from parsing a long single trajectory, but this
will only modify the variance estimate.

The analysis can be extended to higher-dimensional binned
data, but creating histograms will not be practical. Instead, one
needs to fit the data to flexible functional forms that continue
to obey the restrictions on the properties, such as time
reversibility. These reduced information tests will never be as
powerful as full sequence analysis, but even using flexible
functional forms is orders of magnitude less computationally
intensive than a full sequence analysis and does not require one
to propose underlying topologies. These reduced information
methods can also be expanded to classify different molecular
trajectories, to test ergodicity, and to determine properties of
the transition-state ensemble. The computational simplicity,
along with the rigorous bounds in the ability to discriminate
models, makes the information theoretical approach to reduced
data representations an advantageous first step in performing
single-molecule analysis.
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Int Appendix
log;oN To simplify the presentation our focus has beenPg, ...,

(c) T = \\._____7//-— o tn), but the results are independent of binning methods and can
09 \ — be easily applied t@(In ty, ..., Inty). In fact, logarithmic binning
ot — s gives a nice interpretation of one- and two-dimensional histo-
o grams of events. If the kinetics of the system corresponds to
' simple first-order kinetics with a complete basis set of eigen-

a %% “ vectors, such as for systems where detailed balance holds, then
osp the n event probability distribution (histogram) is
a.4F 3
odl P (tyt) = [ ek ke Py, k) (17)
oz 8 Logarithmic binning allows plotting of data with multiple time
o} %—\\\ scales and allows us to write the waiting time distribution as
— = —
M 05 o 05 1 : P, ,(nt, .. Int)=
logoK
Figure 6. Ability to determine if the waiting-time distribution is not fl_ld Inz f(nt —Inz)P(n 7, ..., Inz;) (18)

consistent with a detailed balance scheme. (a) The sigheaiting — _ : satrib -
time distribution,P4(In t) in the model depicted in Figure 1c fe&r = wheref(x) = expx — & is a Gumbel distribution and

ke=ks= 1,k = K = 2.7, andp = 1/10 (solid line) is compared to K - From this expression, it becomes apparent at. (In
the best fit of a detailed balance obeying scheR(®), = / dk P(K)k ty, ..., Inty) is a convolution ofPx . (In 71, ..., In 7,) with
e P(k) > 0 (dashed). (bJlp for the distributions in part a. (c) The ~ Gumbel distributions. Since the Gumbel distribution is a
expected number of measurements needed to discern the detaileghrobability distribution, it is a simple smear factor. As a result,
balance violation as a function sfandp. Unlike other tests, the ability  jn the limit of large data, one can perform density functional
Eioed::\%?gr‘s Tel existence of a peak in the waiting time distribution a4y (DFT) calculations of the log distribution and filter out
P o the Gumbel smear factor to obtain the Fourier transform of the
violations can result in time reversibility violations or a lack of spectrum of kinetic rates. Inverse DFT will yield a spectrum of
diagonal dominance that indicates a circulation loop that goes peaks that correspond to the logarithmic time scales of the
through both manifolds as least twice and peaks in the single system and can be interpreted similar to two-dimensional
waiting time distribution, which indicates a multiple-step spectroscopy. The peaks in the two-dimensional spectrum
circulation through a single manifold. Knowledge of these correspond to coupling of different time scales of motions. These
properties can give insight into the underlying topology of couplings can be positive or negative depending on the
Markovian models without determining the specific model connectivity of the system.
parameters.
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