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Stationary and nonstationary multilevel models are formulated to analyze ultrafast multiphoton processes
with emphasis on electronic and nuclear coherence of a near-resonant intermediate state. By identifying and
characterizing three intrapulse dynamical mechanisms (sequential-resonance, chirp-following, and time-delay),
a clear physical picture is developed for understanding the subtle chirp dependence in intrapulse pump-
probe processes. The theoretical analysis in the paper provides not only a possible interpretation for a recent
three-photon experiment but also a general theoretical framework for studying ultrafast multiphoton processes
in atoms and molecules.

I. Introduction

Femtosecond chemistry offers experimentalists the opportu-
nity to study elementary chemical processes on the molecular
level and to directly monitor the dynamical evolution from reac-
tants to products.1,2 Femtosecond excitation creates classical-
like molecular wave packets, which are the basis of understand-
ing the dynamics of chemical reactions: how they take place
and how to govern them.3-6 Laser pulses can be focused into
extremely narrow spatial and temporal distributions, and thus
multiphoton excitation is common and is an important subject
for study. In this paper, we present theoretical models and
semiclassical analyses of dynamical effects of excited molecular
wave packets in multiphoton processes, with special emphasis
on those related to chirp, the variation of frequency with time.
Several theoretical and experimental studies have revealed

that frequency-modulated laser pulses can introduce remarkable
dynamic effects in molecular systems. Even in the weak re-
sponse limit, the sign of the chirp proves crucial in wave packet
focusing and defocusing, even though the total population being
excited is a function only of the power spectrum.7 In a pump-
dump or pump-probe experiment, the chirp of the second pulse
can be optimized to follow the motion of the wave packet
induced by the pump pulse, hence improving the quantum yield
substantially.8,9 This chirp following effect becomes an intrinsic
feature of multiphoton and strong-field optical processes. It
has been demonstrated both numerically and experimentally that
negatively chirped pulses induce large-amplitude vibrational
motion on the ground electronic state through an effective intra-
pulse pump-dump mechanism.10,11 In light of this mechanism,
we have shown that nearly complete electronic population
transfer in molecular systems can be achieved with positively-
chirped broadband intense laser pulses.12 Surprisingly, such
molecularπ pulses are extremely robust and stable under ther-
mal and dissipative conditions. In addition tochirp following
within a single pulse, we will demonstrate in this paper that
multiphoton processes exhibit unique features of electronic and
nuclear coherence such asintrapulse sequential resonanceand
intrapulse time delay. In a recent three-photon experiment,
intriguing results have been observed which can be understood
only within a dynamical picture of laser-induced coherence.13

In short, chirp-dependent effects in multiphoton processes

provide us a means to explore the coherence between laser fields
and molecular systems.
To study dynamical effects in ultrafast multiphoton processes,

a simple model consisting of a three-electronic state molecular
system interacting with a Gaussian electric field is introduced
in section A. The primary feature of femtosecond spectroscopy
is the extremely short time duration of laser pulses such that
the nuclear wave packet can often be assumed frozen during
excitation.14-16 Under this assumption, the three-electronic state
model is reduced to a stationary three-level problem, just as
the two-level model is used for linear absorption. This classical
model is then applied to two-photon absorption in section B,
where we show a chirp-dependent enhancement due to the
sequential-resonance with the intermediate state. As investi-
gated in a previous paper,9 quantum dynamical corrections to
the frozen wave packet approximation are necessary for linear
absorption from a nonstationary initial state, as in the probe
process of pump-probe experiments. In section C, a nonsta-
tionary single-photon theory is formulated to illustrate the
general principle of chirp following. In single-pulse multiphoton
processes, since the same electric field creates an accelerating
wave packet and then excites it further onto the final state, it is
necessary to treat both stages of excitation consistently within
the semiclassical framework. To do this, a two-photon non-
stationary approximation is derived in section D with emphasis
on the induced motion on the intermediate electric surface.
Application of the nonstationary expression to the intrapulse
pump-dump process in section E reveals the effect of intrapulse
chirp following. By virtue of the nonstationary model, a
comprehensive theory of two-photon absorption is derived in
section F, where the chirp-dependence is shown to be the result
of all three intrapulse coherent mechanisms (sequential-
resonance, chirp-following, and time-delay). A final analysis
in section G of a three-photon process reveals essentially the
same physics as the intrapulse pump-probe process, which
provides a possible explanation for the experimental observa-
tions of a three-photon absorption experiment by Yakovlev,
Bardeen, Che, Cao, and Wilson.13

II. Analysis
A. Stationary Three-Level Model. As a generic model,

consider a molecule with three electronic states described by

4284 J. Phys. Chem. A1998,102,4284-4290

S1089-5639(97)03097-1 CCC: $15.00 © 1998 American Chemical Society
Published on Web 02/20/1998



three electronic Hamiltonians,Ĥ0 for the ground state|0〉, Ĥ0

for the intermediate excited state|1〉, andĤ2 for the final state
|2〉. As shown schematically in Figure 1 and summarized in
section F, this three-level molecule then couples via a dipole
interaction to a time-dependent electric field which is treated
classically asε(t) ) E(t) + E*( t). By definition, two-photon
absorption is the excitation process from the ground state|0〉
through the intermediate state|1〉 to the final state|2〉. Because
the fluorescence detection timetf is set to be much larger than
the pulse durationτ, the wave function attf can be expressed
asψ2(tf) ) e-iĤ2tf/pψ2, whereψ2 is given, to second order in
the dipole interaction, as

Here,Ĝ is a two-time Green function defined as

where the transition dipole moments are assumed to be constants
and are omitted without causing any confusion. The electric
field in eq 1 is assumed to take the general form of a chirped
Gaussian pulse, defined as

where four parameters are employed to characterize the light
pulse: an amplitudeE0, a carrier frequencyω0, a temporal width
τ, and a linear chirp ratec, respectively. The chirp describes
the drift of the instantaneous frequency with time and thus
represents phase modulation in the laser field. The Fourier
transform of the field gives

whereγ is the complex frequency width defined asγ2 ) 1/τ2
+ ic with Re(1/γ2) ) 1/Γ2 and Im(1/γ2) ) c′. By definition,
the bandwidth is given asΓ2 ) 1/τ2 + c2τ2 and the linear
frequency chirp rate is given asc′Γ2 ) cτ2. For simplicity, the

analysis in this section is formulated in the time domain
representation. However, under real experimental conditions,
the electric field is often characterized by its frequency chirpc′
based on a fixed power spectrum with a given bandwidthΓ.
The Fourier transformation between eqs 3 and 4 allows us to
establish relations between temporal and frequency domain
parameters. For example, the pulse durationτ is given byτ2
) 1/Γ2 + (c′Γ)2, indicating thatτ increases with the linear
frequency chirp ratec′. By the same token, to conserve the
integrated intensityP ) πE0

2τ, the peak field amplitudeE0
decreases withτ or equivalently withc′. The Gaussian field
and related features discussed here will be useful for obtaining
closed-form analytical results.
With the progress of ultrafast laser techniques, the pulse

duration can be sufficiently short that the nuclear configuration
is approximately frozen during the impulsive excitation. This
observation constitutes the core assumption underlying the
frozen wave packet approximation of linear absorption, namely,
the stationary two-level-system models.14,15,9 By virtue of the
same approximation, we ignore the kinetic energy operators in
the two-time Green function and recast eq 2 as

wherepω1(x) ) V1(x) - V0(x) arepω2(x) ) V2(x) - V1(x) are
the vertical transition energies between the two electronic states
involved, respectively. In evaluating the population on the final
state, the relevant quantity is the average of the Green functions
over the distributionF0(x) on the ground-state surface. The
initial distribution is usually well-localized around the center
of the Franck-Condon regime atx0 so that the average over
F0(x) can be replaced by the value evaluated atx0, giving

where the plus sign denotes the corresponding complex con-
jugate. Here, the value ofG0 at x0 is explicitly given as

where the equivalence indicated by the arrow holds only for
the evaluation of the final population. The simple three-level
expression in eq 7 is the starting point for the two-photon
absorption discussed in section B.
B. Stationary Analysis of Two-Photon Absorption: In-

trapulse Sequential Resonance.The two-photon analysis
presented here serves as a basis for understanding other
nonlinear processes, including those described in later subsec-
tions. By virtue of the frozen wave packet approximation, we
have shown in a previous paper9 that two-photon absorption
can be simplified to a single-photon process with an effective
field and with a prefactor which is only a function of the
spectrum, if the off-resonant detuning is much larger than the
bandwidth. Here, we review the three-level-model of two-
photon absorption and demonstrate the correlation between the
sign of the chirp and the off-resonant detuning of an intermediate
level.
The relevant quantity for study in this paper is the integrated

fluorescence yield or equivalently the population on the final
electronic state. On substituting the three-level expression of
eq 7 into the second-order wave function in eq 1, we im-
mediately obtain the expression for the population on the final
state

Figure 1. A schematic diagram of a two-photon process where a
molecule in the ground state|0〉 is excited by a nearly resonant electric
field to a final electronic state|2〉 via an intermediate state 1〉. x0 is the
center of the Franck-Condon regime, or equivalently the center of
the ground-state distribution, andx1 is the displaced center of the excited
wave packet. The three intrapulse dynamical mechanisms (from top to
bottom, sequential-resonance, time-delay, and chirp following) are
illustrated with corresponding expressions.

ψ(2) ) (i/p)2∫-∞

∞
dt2∫-∞

t2 dt1 Ĝ(t2,t1)ε(t2)ε(t1)ψ0 (1)

Ĝ(t2,t1) ) eiĤ2t2/pe-iĤ1(t2-t1)/pe-iĤ0t1/p (2)

E(t) ) E0 exp[- t2

2τ2
- iω0t - ic

t2

2] (3)

Ẽ(ω) ) Ẽ0 exp[-
(ω - ω0)

2

2γ ] )

Ẽ0 exp[-
(ω - ω0)

2

2Γ
- ic′

(ω - ω0)
2

2 ] (4)

Ĝ(t2,t1) ) exp[iω2(x)t2 + iω1(x)t1] (5)

Tr[Ĝ+(t′2,t′1)Ĝ(t2,t1)F0] ≈ G0
+(t′2,t′1)G0(t2,t1) (6)

Ĝ(t2,t1) f G0(t2,t1) ) exp[iω2(x0)t2 + iω1(x0)] (7)

N2 ) | ∫-∞

∞
dt2∫-∞

t2 dt1e
iω2t2+iω1t1 E(t2) E(t1)|2 (8)
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whereω1 andω2 are the vertical frequencies of the first and
second transitions at the center of the Franck-Condon region.
With the introduction of a Gaussian pulse as in eq 3 and the
change of integral variabless ) t2 - t1 and 2t ) t2 + t1, the
double integrals oft ands in eq 8 can be separated, giving

Here,C(∆) is the result of thes integration, explicitly given by

with ∆ ) ω2 - ω1 being the detuning of the intermediate state.
When the detuning is much larger than the bandwidth (i.e.,∆
. Γ) the absolute value ofC(∆) is a function of the bandwidth
and detuning only. Though derived for Gaussian pulses, the
conclusion is general: If the intermediate electronic state is far-
off-resonant, any two-photon process can be viewed as an single-
photon process with an effective fieldE2(t) and with an effective
transition dipole which includes the prefactor ofC(∆). Con-
sequently, the spectrum of two-photon absorption can be
expressed as

which, in contrast to linear absorption, is a function of the
frequency chirp but independent of its sign. This chirp
dependence in two-photon absorption has been predicted and
observed experimentally.17

On completing the integral in eq 9, we obtainN2 ∝ P2/τΓ
for ∆ . Γ, indicating an inverse dependence on the pulse
duration for a fixed power spectrum. This agrees with the
observation that the yield of two-photon absorption depends on
the peak intensity, which decreases with the pulse duration. From
this consideration, the transform-limited pulse with a minimal
τ is preferable. However, when the intermediate state is on
resonance,∆ ) 0, the integration ofs in |C(∆)|2 contributes a
factor |C(∆)|2 ∝ τ/Γ and we haveN2 ∝ P2/Γ2 which is
independent of the frequency chirp. In general, for ann-photon
process withl resonances including the final state, the final
population is given byN ∝ Pn/Γlτn-l, indicating resonance
enhancement in intensity dependence.
An interesting situation arises when the detuning is compa-

rable to the bandwidth, (i.e.,∆ ≈ Γ). The prefactorC(∆) in eq
10 can be expressed in terms of a complex error function and
is generally a function of the chirp. The absolute value ofC(∆)
is maximized when the imaginary part of the exponent in eq
10 approaches zero, that is, (s∆/2 - cs2/4 ) ≈ 0. Using the
pulse durationτ for the average value of thes integral, (i.e.,s
∝ τ) we obtain an estimation for the optimal linear chirp rate

indicating a correlation between the sign of the chirp and the
off-resonance detuning of the intermediate state. This correla-
tion can be understood by the fact that the quantum yield of
multiphoton processes is enhanced dramatically by resonance
with an intermediate state. Due to the optimal chirp in eq 12,
the drift of the instantaneous frequency of the laser field is such
that in the first half pulse it is resonant with the first transition
and in the second half pulse with the second transition. As
demonstrated in Figure 2, the matching of the phase modulation
in the electric field and the detuning of the electronic levels

results in a dynamical resonance which can build up transient
population in the intermediate state though the carrier frequency
is off-resonant. Unlike other intrapulse mechanisms we will
discuss later, the intrapulse sequential resonance arises from
electronic coherence rather than nuclear coherence and there-
fore can be fully described within the stationary three-level
model.
As an illustrative example, the two-photon yieldN2 evaluated

from eqs 9 and 10 is plotted in Figure 3 as a function of the
linear frequency chirp ratec′. The parameters are taken asΓ
) 5 andP2/Γ ) 1 and the final state is assumed to be on
resonance. As expected, for a resonant intermediate electronic
state (∆ ) 0), the yield is a constant independent ofc′. With
a moderate detuning (∆ ) 5), the peak at a positive chirp rate
confirms the relationship in eq 12 resulting from intrapulse
sequential resonance. For the case of large detuning (∆ ) 25),
the yield is significantly reduced and exhibits an inverse
dependence on the pulse duration.
In most two-photon absorption processes, the detuning is

sufficiently large that the sign effect of the chirp is insignificant.
However, if the intermediate state becomes resonant or nearly
resonant, the vibrational coherence of the molecular wave packet
created by the first photon also become important. Therefore,
the chirp dependence in two-photon absorption is the result of
the two competing mechanisms, which will be the topic of
section F.

N2 ) |C(∆)∫-∞

∞
dt E2(t)eit(ω2+ω1)|2 (9)

C(∆) )∫0∞ dsexp[- s2

4(1τ2 + ic) + i
∆s
2 ] (10)

Q(ω) ) | ∫ Ẽ(ω′) Ẽ(ω - ω′) dω′|2 (11)

c∝ ∆
τ

(12)

Figure 2. An illustration of intrapulse sequential resonance. The left
image represents a positively chirped electric field (c′ > 0) and the
right image represents a positive detuning of the three-electronic-state
system (∆ > 0). When chirp and the detuning are matched, a transient
population can be built up on the intermediate electronic state so that
the efficiency of two-photon excitation is enhanced dramatically.

Figure 3. A plot of the two-photon yieldN2, evaluated from eqs 9
and 10 as a function of the linear frequency chirp ratec′. The parameters
are taken asΓ ) 5 andP2/Γ ) 1, and the final state is assumed to be
resonant. The three curves correspond to a resonant electric field (∆ )
0), a near-resonant electric field (∆ ) 5), and a far-off-resonant electric
field (∆ ) 25), respectively. The result for∆ ) 25 is shown after a
magnification of 10 times.
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C. Linear Theory of Chirp Following. In contrast to
linear-response excitation from a stationary ground electronic
state, the excited state population resulting from linear excitation
of a nonstationary wave packet correlates strongly to the chirp.
Since the nonstationary wave packet has to be prepared by a
pump pulse, the full treatment of pump-probe experiments
should be carried out within the framework of nonlinear
absorption. Nevertheless, if the pulse durations of pump and
probe fields are much shorter than the delay time between the
two pulses, the sequential pump and probe processes can be
treated as two separated linear optical processes. With this
consideration, in a previous paper,9 we have incorporated higher
order quantum correction terms into the classical two-level-
system model and thus generalized the frozen wave packet
approximation to treat nonstationary wave packets. On the basis
of this approach, we have theoretically justified the relation
between the linear chirp rate of the optimal probe pulse and
the velocity of the wave packet being probed, which has been
predicted earlier by numerical simulation.8 This chirp following
effect proves to be an important aspect of nuclear coherence in
the nonlinear optical processes discussed in this paper. For this
reason, we present here a nonstationary linear absorption model
to supplement the analysis in the previous paper.9

For a wave packet whose center moves on a given trajectory
x(t), the population excited by a probe fieldE2(t) can be written
as

wheres) t′2 - t2 and 2t ) t′2 + t2. The operator in the bracket
is symmetric and therefore can be expanded to second order as
eisω2(x) with pω2(x) ) H2 - H1. Assuming that the wave packet
is well-localized so that the average over the probability
distribution can be replaced by the expression evaluated at the
center of the distribution, we have

whereF(t,ω) is known as the Wigner transform of the probe
field. To proceed, we use a general Gaussian form for the probe
field centered at timet0,

whose Wigner transform is given as

Substituting the above expression into eq 14, we find the optimal
condition for the maximum population

which indicates that the instantaneous frequency of the pulse
should follow the vertical transition frequency at the center of
the moving wave packet. As a general expression for chirp
following, eq 17 implies a match of the wave packet motion to

the frequency drift at all times, or equivalently to all orders of
the chirp. For example,8,9 expanding eq 17 att0 to zero and
linear orders, we haveω2(x0) ) ω(t0) and V(x0)dω2(x0)/dx )
c(t0), with x0 ) x(t0) andV(x0) ) dx(t0)/dt. In fact, by optimizing
the chirp at a given timet0, one can estimate the local potential
energy surface and, by repeating the procedure at various delay
times, one can in principle map out the potential energy surface
along the trajectoryx(t).
D. Nonstationary Three-Level Model. As long as the pulse

duration is sufficiently short, the frozen wave packet approxima-
tion is useful for describing linear and nonlinear absorption if
only electronic coherence is concerned. However, to reflect
the nuclear coherence in multiphoton processes, one must take
into account the crucial difference that the wave packet on an
excited state potential surface is in motion whereas the original
wave packet on the ground state potential surface is at rest. This
consideration leads to a nonstationary analysis as follows.
The basic quantum propagator for any linear or nonlinear

optical excitation can be written as

where, as before, the transition dipole operator is assumed as a
constant. Any optical process can be formulated as the action
of this propagator or its product on the initial wave function
integrated over time variables with the corresponding laser
fields. Making use of the well-known operator identity eÂeB̂ )
eÂ+B̂+1/2[Â,B̂], we have

where V ) H′ - H is the potential difference,p̂ is the
momentum operator, andη(x) ) -t∇V(x)/m, with ∇ being the
spatial derivative, is the displacement of the wave packet due
to the acceleration on the excited electronic surface during the
excitation. When applied to the wave functionψ(x), eq 19 leads
to

wherex′ ) x- η(t) includes a semiclassical correction because
of the noncommutation of the kinetic and potential energy
operators. If the second-order quantum correction is ignored,
the wave packet is stationary during excitation and thus the
stationary three-level expression in section A can be recovered.
It is therefore not surprising that the nonstationary expression
in eq 20, when applied to detecting wave packet motion in
pump-probe experiments, leads to exactly the same result as
the generalized Bersohn-Zewail model proposed in a previous
paper.9

It is well-known that the total linear absorption cross section,
or equivalently, the total fluorescence yield of single-photon
excitation, is only a function of the power spectrum of the laser
field and hence independent of its frequency chirp.18 However,
as indicated by eq 20, the chirp has significant effects on the
phase space distribution of the excited state wave function (i.e.,
the position and momentum of the wave packet created on the
excited state surface). From the viewpoint of the eigenstate
distribution, the chirp modulates the phase coherence among
the eigenlevels of the excited wave function, which cannot be
detected from the total LIF yield of single-photon absorption
but can be measured by second and higher order optical
processes.
The operator expression in eq 20 is general and applies to

all linear and nonlinear optical processes. For the special case

N2 )∫ dt′2∫ dt2〈ψ1(t′2)|e-iĤ2(t ′
2-t2)/pψ1(t2)〉 E*( t′2) E(t2)

)∫ dt∫ ds 〈ψ1(t)|eiĤ2s/2e-iĤ1s/peiĤ2s/2|ψ1(t)〉 E*( t +

s/2)E(t - s/2) (13)

N2≈ ∫ dt∫ dse-isω[x(t)] E*( t + s/2)E(t - s/2))

∫ dt F{t,ω2[x(t)]} (14)

E(t) ) E0 exp{-
(t - t0)

2

2τ2
- i∫t0t ω(t′) dt′} (15)

F(t,ω) ) E0
2 exp[-

(t - t0)
2

τ2
- [ω - ω(t)]2τ2] (16)

ω2[x(t)] ) ω(t) (17)

K̂(t) ) eitĤ′/pe-itĤ/p (18)

K̂(t) ) eiV(x)t/2pe-iη̂(x)p̂/peiV(x)t/2p (19)

K̂(t)ψ(x) ) exp{ it2p
[V(x) + V(x′)]} ψ(x′) (20)
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of two-photon optical excitation involving three electronic states,
further approximations lead to a simpler but equally effective
expression. To be specific, we notice that the initial wave packet
is stationary on the ground electronic surface and that the wave
packet motion on the final electronic surface is irrelevant as far
as the final population is concerned. Consequently, the kinetic
energy operators in the initial and final Hamiltonians can be
ignored and only the wave packet motion on the intermediate
electronic surface needs to be considered. By expanding the
quantum operator on the intermediate state to second order in
time, we can reduce the two-time Green function in eq 2 to

wherepω1(x) ) V1(x) - V0(x), pω2(x) ) V2(x) - V1(x), s) t2
- t1 g 0, andη(x) ) f1(x)s2/2m which is the displacement of
the wave packet due to the forcef1(x) ) -∇V1(x) on the excited
state|1〉 during the excitation. In evaluating the population on
the final state|2〉, a similar argument as in eq 7 leads to

with x1 ) x0 + η(x0) being the displaced center of the wave
packet on the excited state surface. On expandingω2(x1) to
linear order, we obtain

with R(x0) ) ∇ω2∇V1/2m. In comparison with the expression
in eq 7, the second term in eq 22 represents a quantum correction
to the classical three-level model, that is, the nonstationary effect.
Equation 2 along with eq 23 forms one of the central results of
this work which is used throughout the rest of the paper.
E. Beyond Linear Absorption: Intrapulse Chirp Follow-

ing. As the intensity of a light field increases, the optical
excitation process starts to deviate from the linear response
regime. The leading order correction to linear absorption is
population back-transfer from the excited to the ground elec-
tronic state [i.e., the intrapulse pump-dump mechanism dis-
cussed by Ruhman and Kosloff,10 which is the simplest case of
a second-order process). We include it here to exemplify the
general principle of chirp following within a single electric field.
The second order expression for the population on the ground

state can be written, under the rotating wave approximation, as

which is similar to eq 8 except that the final state is the same
as the initial ground state,|2〉. Following the same argument
in eqs 22 and 23, the Green function in eq 24 becomes

where identityω2(x) ) -ω1(x) is used ands) t2 - t1. Since
x0 is the equilibrium center of the ground state distribution, we
have∇V0(x0) ) 0 and hence

wherex0 is omitted without causing confusion. Next, making
use of the Gaussian functional form of the laser field in eq 3
and the linear transformation ofs ) t2 - t1 and 2t ) t2 + t1,
we obtain the expression for the back-transfer population

where the integration over thes variable is explicitly given as

with the detuning∆ ) ω1(x0) - ω0. OptimizingN0
(2) requires

the minimization of the square term of the exponent inC(∆)
(i.e., (c + Rs)2 ≈ 0). Since the average value ofs is on the
order of the pulse durationτ (i.e., s ∝ τ) we then obtain an
estimation for the optimal linear chirp rate as

BecauseR given in eq 26 is positive, the optimal chirp is always
negative.
The physical implication of eq 29 corresponds exactly to the

optimal intrapulse pump-dump mechanism, as illustrated in
Figure 4, where back transfer is optimized with the negative
chirp which follows the wave packet’s moving down the
potential slope. As an example, the pump-dump population
in eq 27 is plotted in Figure 5 as a function of the linear
frequency chirp rate for a resonant electric field ofΓ ) 1,∆ )

Ĝ(t2,t1) ) eiω2(x)t2 exp[-iη̂(x)p̂/p + O(s3)]eiω1(x)t1 (21)

Ĝ(t2,t1) f G0(t2,t1) ) exp[iω2(x1)t2 + iω1(x0)] (22)

ω2(x1) ≈ ω2(x0) - R(x0)s
2 (23)

N0
(2) ) | ∫-∞

∞
dt2∫-∞

∞
dt1 Ĝ(t2,t1) E*( t2) E(t1)|2 (24)

Ĝ(t2,t1) f G0(t2,t1) ≈ exp[-iω1(x0)t2 + iRs2t2 + iω1(x0)t1]
(25)

R ) ∇ω1∇V1/2m) (∇V1)2/2mp g 0 (26)

Figure 4. A schematic illustration of intrapulse pump-dump. With a
displacement of the center of the excited wave packet fromx0 to x1,
the resonance frequency decreases accordingly (R < 0). When this
frequency shift is matched, a negatively chirped pulse leads to optimal
back-transfer efficiency.

Figure 5. A plot of the pump-dump population in eq 27 as a function
of the linear frequency chirp ratec′ for a resonant electric field ofΓ )
1,∆ ) 0, andP) 1. The three curves correspond to a stationary wave
packet (R ) 0), a slow acceleration (R ) 0.1), and a fast acceleration
(R ) 1), respectively.

N0
(2) ) P2

Γτ
|C(∆)|2 (27)

C(∆) )∫0∞ dsexp[- s2

4τ2
- τ2s2

4
(c+ Rs)2 - is∆ + i

R
2
s3]
(28)

c∝ - Rτ (29)
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0, andP ) 1. Without nuclear motion, the stationary model
with (R ) 0) results in a yield function ofN0

(2) ∝ 1/τ,
independent of the sign of the chirp. Once wave packet motion
is incorporated, the peak of the curve shifts from zero chirp to
the negative side, indicating that the optimal pulse has a negative
chirp as the result of intrapulse chirp following.
As the intensity further increases, higher order corrections

beyond second order become more important and nonpertur-
bative effects such as Rabi oscillation and adiabatic inversion
become dominant. In fact, the opposite argument to the pump-
dump mechanism leads to a proposal of using positively chirped
pulses for electron population inversion, which proves to be a
key component in a newly developedπ pulse theory for
molecular systems.12 Though derived in the framework of
second-order theory, the relation in eq 29 remains valid in the
strong response regime ifs is estimated using the time when
the Rabi oscillation reaches the first peak.
F. Nonstationary Analysis of Two-Photon Absorption:

Intrapulse Pump-Probe Time Delay and General Solution.
Consider a special situation of two-photon absorption where
the transition frequencies from the ground to the intermediate
excited state and from the excited to final state are nearly the
same and the laser frequency is resonant or close to resonant
with both frequencies. In a sense, this process can be viewed
as a coherent pump-probe process within a single electric field,
in contrast with sequential pump-dump experiments using two
delayed laser pulses. As indicated in section B, a detailed
analysis is needed for a full account of subtle dynamical effects.
We begin by writing the population on the final state as

where the nonstationary expression in eq 22 is used. In eq 30,
ω1(x0) is the vertical frequency of the first transition at the center
of the Franck-Condon region andω2(x1) is the vertical
frequency of the second transition at the center of the linearly
accelerating wave packet created by the first transition. We
assume that the carrier frequency of the field is in resonance
with the first transition (i.e.,ω1(x0) ) ω0) but is off-resonant
with the second transition with the detuning given as∆ )
ω2(x0) - ω0. Again, making use of the linear expansion for
ω2 in eq 23, substituting the Gaussian pulse in eq 30 and
changing integration variables tos ) t2- t1 and 2t ) t2 + t1,
we can rearrange eq 30 in terms ofs and t. However, due to
theη term, the integrations ofsandt are coupled to high orders
and therefore cannot be separated, implying that the effective
field as defined in eq 9 is no longer possible. On completing
the integration oft, we obtain

where thes integral is explicitly expressed as

with γ2 ) 1/τ2 + ic. This general solution in eqs 31 and 32 is
the final result of this paper. Based on this model, maximizing
the intrapulse pump-probe yield requires the optimization of
pulse parameters such that the expression in eq 31 reaches a
global maximum for a given set of conditions. The optimization
of eq 31 is discussed as follows.

1. As stated earlier, for two-photon absorption with a near-
resonant intermediate state, the quantum yield is independent
of the frequency chirp or the pulse duration for a fixed power
spectrum. This predication can be confirmed by integration of
the first term of the exponent in eq 32. The contribution from
the real part of the second term of the exponent in eq 32,-(∆
- Rs2)2/4Γ2, with Γ ) 1/τ2 + c2τ2, can be optimized by setting
∆ - Rs2 ≈ 0. Using s ∝ τ, we obtain the estimate for the
optimal pulse duration,

which is valid if∆/R > 0. Physically, such an optimal duration
exists only if the excited wave packet moves in a direction which
decreases the detuning. In a sense, this effect is the analogue
of time delay in pump-probe experiments and is thus called
the intrapulse time-delaymechanism. For a given power
spectrum with a fixedΓ andP, the pulse durationτ increases
with the linear frequency chirp rate, as described byτ2 ) 1/Γ2

+ c′2Γ2. Therefore, the yield, as a function of the linear
frequency chirp rate, has a single peak for∆/R e 0 and two
peaks with opposite sign for∆/R . 0. The intrapulse time-
delay mechanism has been first observed and explained by
Yakovlev, Bardeen, Che, Cao, and Wilson in a recent three-
photon experiment.13

2. Since the pulse duration is a function ofc′2, the analysis,
based on the real part of the exponent in eq 32, cannot determine
the sign of the optimal chirp when there are two peaks of
opposite sign. The contribution from the imaginary part of the
exponent in eq 32 can by optimized by setting-cs2/4 + (∆ -
Rs2)s/2≈ 0. Again, using the pulse durationτ for the value of
s (i.e., s ∝ τ) we find the expression for the optimal chirp

which also gives the sign ofc′. It is easy to recognize that the
first term in eq 34 is the same as eq 12 in section B, which
results from the correlation between the detuning and the chirp
(intrapulse sequential resonance), and the second term in eq
34 is the same as eq 29 in section E, which describes the
correlation between the wave packet motion and the chirp
(intrapulse chirp following). Therefore, the sign of the optimal
chirp is the consequence of the two competing mechanisms. In
the case of a single peak,∆/R e 0, the contributions from the
two mechanisms have the same sign and hence the sign of the
optimal chirp remains the same. In the case of two peaks,∆/R
> 0, the contributions from the two mechanisms have the
opposite sign so that the optimal chirp for the maximum yield
changes sign as the detuning∆ increases.
The three dynamical effects from eq 32 (i.e., sequential-

resonance, chirp-following, and time-delay) are illustrated
schematically in Figure 1 and the overall chirp dependence in
a pump-probe process is their combined result. To verify the
analysis, we numerically evaluate the two-photon yield in eqs
31 and 32 as a function of the linear frequency chirp ratec′ for
Γ ) 5,R ) 1, andP2/γ ) 1. As shown in Figure 6, the optimal
pulse for a resonant pulse (∆ ) 0) has a negative chirp as the
result of intrapulse chirp following. With a small detuning (∆
) 2), there are two peaks due to intrapulse time delay, with the
optimal pulse being a negative chirp. As the detuning increases
to ∆ ) 4, the intrapulse sequential resonance effect starts to
dominate and the higher peak of the two is located on the
positively chirp axis. The higher optimal peak remains positive

N2 ) | ∫-∞

∞
dt2∫-∞

t2 dt1e
iω2(x1)t2+iω1(x0)t1 E(t2) E(t1)|2 (30)

N2 ) P2

Γτ
|C(∆)|2 (31)

C(∆) )∫0∞ dsexp[-γ2s
2

4
-
(∆ - Rs2)2

4γ2
+ i(∆ - Rs2)s

2]
(32)

τ2 ) ∆
R

(33)

c∝ ∆
τ

- Rτ (34)
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chirped for a large detuning∆ ) 8. (The curve for∆ ) 8 is
shown with a magnification of 10 times.) As will be discussed
in section G, the above theoretical predications agree well with
experimental observations.
G. Three-Photon Absorption. We propose here a four-

electronic-state three-photon model as a possible interpretation
for the recent report of a three-photon experiment.13 In the
specific three-photon process discussed here, the first photon
creates a wave packet on a resonant excited state|1〉 from the
ground state|0〉, then the second and third photons bring the
wave packet to a final state|2〉 via an off-resonant intermediate
state|2′〉. We assume that the two-photon excitation from|1〉
to |2〉 has an off-resonance detuning which is substantially larger
than the pulse bandwidth (i.e.,∆′ . Γ). On the basis of the
results in section B, this two-photon transition can be described
by an effective field

whereC′(∆′) is a constant for a fixed power spectrum and will
be omitted hereafter. Then, the population on the final state
can be written as

which is similar to eq 30 except thatE2(t2) is used instead of
E(t2). SinceE(t2) andE(t1) have different powers in eq 36, the
change of integral variables is defined ass) t2 - t1 and 3t )
2t2 + t1. Following the same argument as in section F, we
complete the integration oft and thus obtain

where thes integral is explicitly expressed as

with γ2 ) 1/τ2 + ic. Except for a few minor differences, such
as the 1/τ2 dependence of the prefactor in eq 37 and the
coefficients in the exponent of eq 38, the two expressions in eq
37 and 38 are exactly the same as eq 31 and 32. Consequently,
all the conclusions drawn in section F are applicable to the three-

photon process formulated here. Since the two-photon excita-
tion from electronic states|1〉 to |2〉 is treated effectively as a
single-photon absorption, the underlying physics of the three-
photon process discussed here is essentially the same as the
coherent intrapulse pump-probe process discussed in section
F. Thus, the observations in the three-photon experiment by
Yakovlev, Bardeen, Che, Cao, and Wilson13 are consistent with
the predictions of chirp dependence in this type of multiphoton
intrapulse pump-probe process.

III. Conclusion

The single-photon stationary and nonstationary two-level
models are generalized to three-level models to treat ultrafast
two-photon processes including intrapulse pump-dump and
intrapulse pump-probe. Within the theoretical framework,
three different intrapulse coherence effects (sequential-reso-
nance, time-delay, and chirp following) are identified and the
subtle chirp dependence in a near-resonant intrapulse pump-
probe process is shown to be the combined consequence of these
three dynamical mechanisms. The resulting theoretical predic-
tions lead to a possible explanation for recent three-photon
experimental results.13 More importantly, the theoretical ap-
proaches developed in this paper provide a general recipe for
studying other ultrafast multiphoton processes. It should also
be noted that the relatively high intensity used in multiphoton
experiments may well extend into the strong-response regime
such that the multiphoton perturbative analysis formulated in
this paper has to be extended accordingly. In fact, interesting
phenomena unexpected in the weak field regime, such as
molecularπ pulses, can be observed in strong-field quantum
mechanical calculations.12 Another possible direction to be
explored is coherence effects in frequency-dispersed ultrafast
nonlinear optical experiments. The rich physics revealed in
multiphoton and strong-response femtosecond processes will be
an exciting subject for future study.

Acknowledgment. We thank Dr. Bardeen and Dr. Yakovlev
for helpful discussions.

References and Notes

(1) Zewail, A. H. InFemtosecond Chemistry; Manz, J., Wo¨ste, L., Eds.;
Springer-Verlag: Weinheim, 1995; p 15.

(2) Mukamel, S.The Principles of Nonlinear Optical Spectroscopy;
Oxford University Press: New York, 1995.

(3) Bersohn, R.; Zewail, A. H.Ber. Bunsen-Ges. Phys. Chem.1988,
92, 373.

(4) Fain, B.; Lin, S. H.; Hamer, N.J. Chem. Phys.1989, 91, 4485.
(5) Pollard, W. T.; Lee, S.-Y.; Mathies, R. A.;J. Chem. Phys.1990,

92, 4012.
(6) Lee, S. Y.; InFemtosecond Chemistry; Manz, J., Wo¨ste, L., Eds.;

Springer-Verlag: Weinheim, 1995; p 273.
(7) Kohler, B.; Yakovlev, V. V.; Che, J.; Krause, J. L.; Messina, M.;

Wilson, K. R.; Schwentner, N.; Whitnell, R. M.; Yan, Y. J.Phys. ReV.
Lett. 1995, 74, 3360.

(8) Sterling, M.; Zadoyan, R.; Apkarian, V. A.J. Chem. Phys.1996,
104, 6497.

(9) Cao, J.; Wilson, K. R.J. Chem. Phys.1997, 106, 5062.
(10) Ruhman, S.; Kosloff, R.J. Opt. Soc. Am. B1990, 7, 1748.
(11) Cerullo, G.; Bardeen, C. J.; Wang, Q.; Shank, C. V.Chem. Phys.

Lett. 1996, 262, 362.
(12) Cao, J.; Bardeen, C. J.; Wilson, K. R.Phys. ReV. Lett. 1997. In

press.
(13) Yakovlev, V. V.; Bardeen, C. J.; Che, J.; Cao, J.; Wilson, K. R.J.

Chem. Phys.1997, submitted for publication.
(14) Cina, J. A.; Smith, T. J.J. Chem. Phys.1993, 98, 9211.
(15) Smith, T. J.; Cina, J. A.J. Chem. Phys.1996, 104, 1272.
(16) Banin, U.; Bartana, A.; Ruhman, S.; Kosloff, R.J. Chem. Phys.

1994, 101, 8571.
(17) Broers, B.; van Linden, H. B.; van den Heuvell, X.; Noordam, L.

D. Opt. Commun.1992, 91, 57.
(18) Brumer, P.; Shapiro, M.Chem. Phys.1989, 139, 221.
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