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A nonadiabatic steepest descent path method is developed as a qualitative tool to analyze and characterize
three different kinetic regimes of electron transfer. In this approach, Miller’s semiclassical instanton solution
and Pechukas’ self-consistent treatment of nonadiabatic coupling are applied to the path integral representation
of the two-state diffusion equation. The resulting steepest descent solution defines the diffusive solvent trajectory
that has the highest probability to induce electron transfer. Numerical examples demonstrate curve crossing
in the nonadiabatic regime, barrier crossing in the adiabatic regime, and delocalized effects in the coherent
regime, thus providing a revealing picture for the crossover from the nonadiabatic to adiabatic regime and
the transition from incoherent to coherent electron transfer.

I. Introduction

The steepest descent path has been widely used as a
qualitative tool for interpreting the kinetics and dynamics of
chemical reactions.1-8 It is generally considered as a charac-
teristic reaction path, which connects reactant and product
through an intervening transition state with the lowest energy.
For electron transfer, however, the primary concern has been
the rate of change in the electronic state. While the solvent-
induced polarization energyE has been considered as the
collective reaction bath coordinate in the Marcus theory,9-11 it
is often treated as fluctuating white noise, which occasionally
brings electronic states to degeneracy and hence induces an
electronic transition. Instead of treating solvent polarization as
a secondary variable, the goal of this paper is to understand
various kinetic behaviors in electron transfer by identifying and
characterizing the nonadiabatic steepest descent path of solvent
polarization, thus providing a new perspective of electron-
transfer reactions.

Though intuitively simple, the idea of steepest descent path
is deeply rooted in several modern theoretical concepts.
Traditionally, the steepest descent path is found by first locating
a transition state, then pushing the system slightly in the forward
and the backward directions of the negative normal mode, and
tracing the path in the direction of the force.7 In other words,
the steepest descent path is solved fromγĖ ) F, subject to a
pair of initial conditions: Ėb ) 0(, where γ is the friction
coefficient andEb is the transition state illustrated in Figure 1.
Then, intuitively, this path represents the most probable pathway
that the reaction can proceed. In practice, the transition state,
being the saddle point on a multidimensional surface, is much
more difficult to locate than the reactant or the product.
Therefore, a more attractive approach is to select the steepest
descent path from all of the paths connecting the reactant and
product.2,6,8 It has been suggested that the steepest descent path
thus defined is the most probable Brownian trajectory with fixed-
end-point boundary conditions. Indeed, by virtue of the path
integral formulation of Brownian motions, the steepest descent
path can be rigorously defined as the stationary path which
minimizes the Onsager-Machlup action under the constraint

of stationary boundary conditions at two end points.12-14 In the
context of functional analysis, the steepest descent path is simply
another example of Miller’s instanton concept,15-17 and the
steepest descent evaluation of the instanton rate recovers the
overdamped limit of the Kramers rate.14 This intriguing con-
nection between the instanton solution and the steepest descent
path proves to be crucial for the generalization to electron-
transfer reactions in this paper.

The coupling between different electronic state surfaces
drastically increases the range and complexity of the kinetic
spectrum of electron transfer. Within the simple Marcus model,
at least three different kinetic regimes and two crossovers
between these regimes can be identified and calculated. The
first important feature of electron transfer is the crossover from
the nonadiabatic regime in Figure 3a (V , kBT) to the adiabatic
regime in Figure 3b (V > kBT), because the increase of the
electronic coupling constantV. At high temperature, the
Landau-Zener expression allows us to interpolate rate constants
between these two limits.18,19 At low temperature, the rate is
enhanced by quantum tunneling effects and a nonadiabatic
instanton theory has been developed to account for the crossover
in the quantum regime.20 Next, when the coupling constant (V)
approaches half the reorganization energy (λ/2) as in Figure
3c, there is a transition in the electronic state from the localized
to the delocalized regime.21 Similar transitions have been
predicted for two-level systems coupled to low-temperature
phonon modes.22-24 It has recently been suggested that the
delocalized electronic state is responsible for population oscil-
lations observed in mixed-valence systems.25,26 Further, a
dynamic dimension can be added to the original Marcus model
by treating solvent polarization as a Brownian coordinate.27 The
result is a set of two-state diffusion equations, which was first
used by Zusman to treat solvent effects on electron transfer in
the nonadiabatic limit and which will be used as the electron-
transfer model in this paper.

Recently, we developed a general approach to describe
condensed-phase dynamics: the spectral analysis method, which
is based on eigenstructures of dissipative systems instead of
dynamic trajectories.28 When applied to the two-state diffusion
equation, the analysis allows us to characterize multiple time
scales in electron-transfer processes, including vibrational
relaxation, electronic coherence, activated curve crossing, or
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barrier crossing. Within this unified approach, observed rate
behavior, biexponential and multiexponential decay, and popu-
lation oscillations are different components of the same kinetic
spectrum; thus, several existing theoretical models, developed
for limited cases of electron transfer, can be analyzed, tested,
and extended. In particular, the rate constant extracted from the
analysis bridges smoothly between the adiabatic and nonadia-
batic limits, and the kinetic spectrum in the large coupling
regime reveals the nature of the localization-delocalization
transition as the consequence of two competing mechanisms.

The nonadiabatic steepest descent path study in this paper is
a complementary approach to the spectral analysis described
above. The underlying theory for the new approach is based on
the same principle as that in the nonadiabatic instanton solution
by Cao and Voth.20,29 Miller 16 first suggested that low-
temperature quantum rate constants can be determined by the
so-called bounce classical trajectory on the inverted potential
energy surface, i.e., the instanton. In terms of semiclassical
analysis,15 the instanton trajectory satisfies the Euler-Lagrange
equation on the periodic imaginary time axis, and the quantum
fluctuations along the instanton trajectory take the form of a
Gaussian functional which can be calculated through the
evaluation of the Van Vleck determinant. To extend the original
instanton analysis suitable for barrier tunneling to electron
transfer, nonadiabatic transitions between donor and acceptor
states must be incorporated into the instanton trajectory. For
this purpose, the Pechukas theory of nonadiabatic collisions30,31

provides a general prescription for treating electronic transitions
and nuclear motions in a self-consistent fashion. A combination
of Miller’s instanton solution and Pechukas’ self-consistent
treatment yields the nonadiabatic instanton solution, which
allows us to calculate thermal rate constants for electron transfer
and to bridge smoothly between the adiabatic and nonadiabatic
limits. In this paper, we again combine the two semiclassical
techniques to determine the steepest descent path for electron
transfer modeled as nonadiabatic diffusion processes.

The rest of the paper is organized as follows: In section II.A,
we begin with a review of the Onsager-Machlup functional
analysis of the steepest descent path and its analogy with the
instanton solution. Next, a path integral expression of the two-
state diffusion equation is derived in section II.B, followed by
the formulation of the nonadiabatic steepest descent path in
section II.C. Then, numerical solutions are presented in section
III for a single adiabatic surface and for the three kinetic regimes
of electron transfer. We conclude the paper with a summary of
the findings of the paper and remarks about possible future
directions.

II. Theory

A. Onsager-Machlup Action, Steepest Descent Path, and
Instanton. Many physical systems can be modeled by a
Brownian particle in an external potentialU, described by the
Smoluchowski equation, i.e., the diffusion equation,

whereE is the stochastic variable for the Brownian motion,
F(t) is the distribution probability, andD is the diffusion
constant. The one-dimensional Fokker-Planck operator thus
defined can be transformed to a Hermitian operator32,33

which is the Shrodinger operator with an effective potential

whereF ) -U′ andU′′ are the first- and second-order spatial
derivatives of the potential, respectively. The relevant property
is the probability for the particle atE at timet given the initial
position at E0, P(t) ) P(E,t;E0,0), which, in the limit of
infinitesimally small time interval∆, can be explicitly evaluated
as

Then, the probability at longer times can be constructed from
the above short-time propagator, resulting in a path integral
expression34,35

where the measure is defined by

with time discretization∆ ) t/N, and the discretized action is
defined by

with boundary conditions atE0 and EN ) E. In other words,
the probability is a summation of all of the possible pathsE(τ)
connecting the two end points, each carrying a weightW[E(τ)]
) exp{-S[E(τ)]}.

Alternatively, the path integral expression in eq 5 can be
derived via the Onsager-Machlup construction.12 It is well-
known that the Fokker-Planck equation in eq 1 is equivalent
to the stochastic equation

where the friction coefficientγ is related to the diffusion
constant throughγDâ ) 1, andê is the scaled white noise
satisfying 〈ê(t)〉 ) 0 and 〈ê(t) ê(t′)〉 ) 2Dδ(t-t′). Then, the
weight distribution of the noise historyê(τ) is

which, when combined with eq 8, transforms into the weight
for the pathE(τ)

∂F(t)
∂t

) LDF(t) ) D
∂

∂E( ∂

∂E
+ â ∂U

∂E)F(t) (1)

Hs ) -eâU(E)/2 LDe-âU(E)/2 ) -D
∂

2

∂E2
+ Us(E) (2)

Us(E) ) D
4

[âF(E)]2 - D
2

âU′′(E) (3)

lim
∆f0

〈E|e∆L|E0〉 ) e-âU(E)/2〈E|e-∆Hs|E0〉e
âU(E0)/2

) 1

x4πD∆
exp{- â

2
[U(E) - U(E0)] -

1
4D∆

(E - E0)
2 - ∆Us} (4)

P(t) ) 〈E|eLt|E0〉 ) ∫D[E(τ)]e-S[E(τ)] (5)

∫D[E(τ)] ) lim
Nf∞

1

(4πD∆)N/2
∏
i)1

N-1∫dEi (6)

S[Ei] ) â
U(Et) - U(E0)

2
+

∑
i)1

N {(Ei - Ei-1)
2

4D∆
+

∆D

4
[âF(Ei)]

2 -
∆D

2
âU′′(Ei)} (7)

γĖ ) F + γê(t) (8)

W[ê(τ)] ∝ exp[- 1
4D∫dτ ê(τ)2] (9)

W[E(τ)] ∝ J[E(τ)]e-SOM[E(τ)] (10)
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Here, the Jacobian of the transformation isJ[E(τ)] ) exp[∫dτ
DâU′′(E)/2], and the Onsager-Machlup functional action is

which is equivalent to eq 7 in the continuous limit.
The path integral formalism lends itself naturally to the

generalization to colored noise. In particular, when the stochastic
variable is Gaussian, the weight probability can be written as

whereC(t-t′) ) 〈E(t) E(t′)〉 is the correlation function. Simpler
expressions with a single time integration in the action can be
obtained for exponential decay noise. Because the Fokker-
Planck equation cannot be generalized to colored noise, the
functional formula provides a unique framework for studying
stochastic motions under correlated noise.13,14,36,37

An important application of the Onsager-Machlup functional
is to rigorously formulate the concept of the steepest descent
path, which has been understood as a characteristic reactive path
connecting the reactant and product through a transition state.
Following the work by Mckane and others,14,36,37 the Euler-
Lagrange equation for the Onsager-Machlup action functional,
δSOM/δE(τ) ) 0, defines the most probable path between two
fixed end points, giving

with E(0) ) E0 andE(t) ) Et. This equation of motion can be
understood as the classical mechanics of a particle moving in
an inverted effective potentialUeff(E) ) -â2F(E)2/2. For a
typical double-well potential shown in Figure 1, we can identify
three stationary points, corresponding to the reactant (Ea), the
transition state (Eb), and the product (Ec), respectively. To
proceed, we rewrite eq 13 as

so that the path with stationary end pointsE(0) ) Ea andE(t)
) Ec has zero energy and satisfies

This type of solution is known as the instanton, which was first
discovered by Miller and has been widely used in quantum rate
calculations. In Figure 1, the instanton trajectory consists of an
uphill path connecting the reactant to the transition state and a
downhill path connecting the transition state to the product. The
uphill path is solved from the positive square root of eq 15,γĖ
) U′(E) and, on substitution into eq 11, gives

which recovers the Arrhenius activation formula. The downhill
path is solved from the negative square root of eq 15,γĖ )
-U′(E) and, on substitution into eq 11, yields zero action. Thus,
the uphill path corresponds to a thermal-activated process,
whereas the downhill path corresponds to a free-descent process.
The steepest descent evaluation of eq 5 requires integration over

the Gaussian fluctuations around the instanton trajectory.
Following general instanton analysis, we can formally write

where the path durationt arises from the integration of the
translational-invariant mode, which is a signature of the instan-
ton solution, and the prefactor Det′ ∂2S is a properly normalized
Van Vleck determinant, excluding the zero eigenvalue.17,20Then,
the reaction rate can be extracted from eq 17 to give

which can be shown to yield the diffusion-limited rate.14,36,37

Therefore, the steepest descent path is the instanton trajectory
in the Onsager-Machlup formulation, which defines the most
probable reaction path in the long-time limit and hence yields
the rate constant associated with, the path. To avoid confusion,
we use the term “steepest descent path” in the current context
of classical Brownian trajectories and reserve the term “instan-
ton” for quantum rate calculations, though conceptually they
are the same kind of semiclassical approximation.

As a general note, the Onsager-Machlup stochastic functional
formalism shares many common features with the Feynman
quantum path integral formalism:

1. Because the classical trajectory is the stationary solution
to quantum path integrals, the steepest descent path is the
stationary solution that carries the largest weight among all of
the Brownian trajectories between two fixed end points.

2. The rate calculation based on the steepest descent reaction
path is the asymptotic expansion with respect to the small
parameterD, whereas the instanton solution in quantum
tunneling rate calculations is the asymptotic expansion with
respect to the small parameterp.

3. For white noise, the Onsager-Machlup functional is
equivalent to the Fokker-Planck equation, and the Feynman
path integral is equivalent to the Bloch-Redfield equation. For
colored noise, there is no general way to derive differential
equations; however, we can easily include multiple-time cor-
relation within the functional formalism as in eq 12 or influence
functionals.

B. Path Integral Formulation of the Two-State Diffusion
Model. The solvent effect on electron transfer is often modeled
as an electronic two-level system coupled to a thermal nuclear
bath, with the Hamiltonian given as

Here, the two-level part of the Hamiltonian is explicitly written
as

whereV is the coupling constant andU1(E) andU2(E) are the
two adiabatic energy surfaces. The stochastic variableE is the
solvent-induced polarization energy between electronic states,
which represents the collective effect of the bath-system
coupling.10 Because the electron-transfer process involves the
collective motion of a large number of solvent degrees of

SOM[E(τ)] ) 1
4D∫dτ [Ė - âDF(E)]2 (11)

W[E(t)] ∝ exp[- 1
2∫dt1∫dt2 E(t1) C-1(t1 - t2) E(t2)] (12)

Ë ) D2â2F(E) F′(E) (13)

d
dt

(Ė2 - â2D2F2) ) 0 (14)

Ė2 ) D2â2F2 (15)

Sab ) ∫-∞

∞
ĖâU′(E) ) â[U(b) - U(a)] (16)

P ∝ t

xDet′ ∂
2S

exp(-Sab) (17)

k ∝
exp(-Sab)

xDet′ ∂
2S

(18)

H ) HTLS + HBath (19)

HTLS(E) ) U1(E)|1〉〈1| + U2(E)|2〉〈2| + V(|1〉〈2| + |2〉〈1|)
(20)
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freedom, the functional form for the free energy surface is
Gaussian, thus giving

whereλ is the solvent reorganization energy andε is the free
energy bias.

Because many chemically and biologically important electron-
transfer processes take place in the overdamped solvent environ-
ment, it is reasonable to treat the bath degree of freedomE as
a diffusive coordinate.27 Then, the Hamiltonian in eq 19 leads
to a two-state diffusion equation

where LD is the Fokker-Planck operator for the solvent
polarization energy andLV ) [HTLS]/ip is the Liouville operator
for the two-level system. Explicitly, eq 1 can be expressed in
terms of the density matrix elements

where the Planck constantp is set to unity for simplicity,ω12

) U1(E) - U2(E) ) E - ε, Fµ is the diagonal matrix element
for electronic population, andFµν, is the off-diagonal matrix
element for electronic coherence. Here,Lµ is defined on the
free energy surface of theµth electronic state

andL12 andL21 are defined on the averaged free energy surface

whereUh is the average of the two free energy surfaces

The diffusion constant is defined asD ) Ω〈E2〉, where〈E2〉 )
2λkBT is the mean-square fluctuation of the solvent polarization
energy andτD ) 1/Ω is the characteristic time scale of the
Debye solvent. The correlation function of the solvent polariza-
tion energy is given by〈E(t) E(0)〉 ) 〈E2〉 exp(-Ωt). Note that
because the nuclear dynamics is modeled by the Fokker-Planck
operator, the possibility of vibrational coherence is excluded in
the electron-transfer dynamics. This set of semiclassical two-
state equations has been previously derived in different contexts
by several authors.27,38-41

To facilitate functional analysis, we separate the real and
imaginary parts of the coherent density matrix, i.e.,µ ) RF12

andν ) FF12, and define a vectorG ) [F1, F2, µ, ν]. Then, the
two-state diffusion operator can be cast into the matrix form

whereLD is the diagonal diffusion matrix withL3 ) L4 ) L12

andLV is the off-diagonal two-level electronic coupling matrix.
To construct the functional expression for the two-state diffusion
equation, we first write the propagator in the discretized form

with ∆ ) t/N, GD(∆) ) exp(LD∆) and GV(∆) ) exp(LV∆).
Following the derivation in the proceeding subsection, the matrix
element of the diffusion propagator is given by

with Sµ the discretized action

The matrix of the electronic coupling propagator can also be
evaluated explicitly by rewritingLV as

with B andC denoting vectorsB ) [-2V, 2V, ω] andC ) [V,
-V, -ω], respectively, and T denoting the transpose of a vector.
Then, the corresponding propagator is given in the closed form

whereg2 ) CTB andE dependence is implied through variables
V and W. Putting all of the pieces together, we arrive at the
path integral solution to the two-state diffusion equation

whereD[E(t)] is the measure defined in eq 6. BecauseGD and
GV do not commute, this path integral expression cannot be
further simplified.

C. Nonadiabatic Reaction Path. As stated earlier, the
steepest descent path is the most probable reactive path with
the smallest Onsager-Machlup action under the stationary
boundary conditions. An electron-transfer process involves both
the change in electronic states and the change in nuclear
coordinates. To incorporate this fact, we define the reactant state
as |a〉 ) [δ(E+λ), 0, 0, 0] and the product state as|c〉 ) [0,

U1(E) )
(E + λ)2

4λ
(21a)

U2(E) )
(E - λ)2

4λ
(21b)

∂

∂t
F(t) ) L F(t) ) (LD + LV)F(t) (22)

F̆1 ) L1F1 + iV(F12 - F21) (23a)

F̆2 ) L2F2 - iV(F12 - F21) (23b)

F̆12 ) L12F12 - iω12F12 + iV(F1 - F2) (23c)

F̆21 ) L21F21 + iω12F21 - iV(F1 - F2) (23d)

Lµ ) D
∂

∂E ( ∂

∂E
+ â

∂Uµ(E)

∂E ) (24)

L12 ) L21 )
L11 + L22

2
) D

∂

∂E ( ∂

∂E
+ â

∂Uh (E)
∂E ) (25)

Uh (E) )
U1(E) + U2(E)

2
) E2 + λ2

4λ
+ ε

2
(26)

L ) LD + LV ) (L1 0 0 0
0 L2 0 0
0 0 L3 0
0 0 0 L4

)+ (0 0 0 -2V
0 0 0 2V
0 0 0 ω
V -V -ω 0

)
(27)

G(t) ) eLt ) lim
Nf∞

[GV(∆)GD(∆)]N (28)

〈Ei|GD,µ(∆)|Ei-1〉 ) x 1
4πD∆

exp[-Sµ(Ei,Ei-1)] (29)

Sµ(Ei,Ei-1) ) â
Uµ(Ei) - Uµ(Ei-1)

2
+

(Ei - Ei-1)
2

4D∆
+

∆D
4

[âFµ(Ei)]
2 - ∆âD

2
U′′µ(Ei) (30)

LV ) (0 B

CT 0 ) (31)

GV(∆,E) ) e∆LV ) I +
sinh(g∆) - 1

g (0 B

CT 0 )+

cosh(g∆) - 1

g2 (BCT 0

0 CTB ) (32)

G(t) ) ∫D[E(τ)]GV(EN)e-S(EN,EN-1)‚‚‚

GV(E2)e
-S(E2,E1)GV(E1)e

-S(E1,E0) (33)
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δ(E-λ), 0, 0], which are stationary on the corresponding
electronic surface. Then, the electronic transition probability can
be expressed as

whereG(t) is given in eq 33. This definition is analogous to
the electronic overlap matrix introduced in the Pechukas theory
for mixed classical-quantum dynamics.31 Along the same line,
we define an effective action as

so that e-Seff represents the weight associated with a nonadiabatic
path. Then, following the argument in section II.A, the nona-
diabatic steepest descent path can be solved from the Euler-
Lagrange equation, leading to

whereFµ ) Fµ(Ei), ω′ ) ∂ω(Ei)/∂E, andPµν ) δµ4δν3 - δµ3δν4

is a projection operator. Here,〈A〉i denotes an average over the
density matrix

where the propagatorG is explicitly given in eq 33 or,
equivalently,

wherea(ti) is the forward distribution starting from the reactant,
ă(ti) ) La(ti), andc(ti) is the backward distribution starting from
the product,c̆(ti) ) c(ti) L. Finally, taking the limit of∆ f 0,
we have the equation of motion in the continuous form

which defines the nonadiabatic steepest descent path, namely,
the Brownian trajectory that is most likely to induce electron
transfer. Equation 39 is the central result of the paper.

Based on the above formulation, a computational algorithm
to solve the nonadiabatic steepest descent path can be designed
as follows:

1. An initial guess ofE(t) is used as an input. The density
matricesc(t) and a(t) are propagated according to this initial
guess.

2. For the given density matrix, the Euler-Lagrange equation
in eq 36 for the steepest descent path is iterated to a converged
pathE(t).

3. The path integral expression in eq 33 is propagated forward
and backward again according to the new steepest descent path
to yield a new pair ofc(t) anda(t).

4. Steps 3 and 4 are repeated until convergence is reached.

III. Results and Discussions

A. Steepest Descent Paths on a Single Adiabatic Surface.
To begin, we examine the steepest descent path on a single
surface, given as

which is the adiabatic potential obtained by diagonalizing the
two-state Hamiltonian in eq 20 withU1 andU2 given respec-
tively by eqs 21a and 21b. As stated earlier, the Euler-Lagrange
equation in eq 13 leads to the classical dynamics of a particle
in an inverted potentialUeff ) -â2F2(E). This inverted potential
is plotted in Figure 1b along with the lower adiabatic potential
U-(E) in Figure 1a, forâV ) 1, âλ ) 8, andâε ) 0. All of the
parameters and variables in this paper are scaled withâ; e.g.,
the unit of energy or frequency is 1/â and the unit of time isâ.
As illustrated in Figure 1, the three stationary points are the

reactant,Ea ) -xλ2-4V2; the transition state,Eb ) 0; and the

product, Ec ) xλ2-4V2. Thus, the uphill path (Ea f Eb)
describes the activated rate process, and the downhill path (Eb

f Ec) describes the free descent path.
Ideally, by analogy with the instanton trajectory, the steepest

descent path at the three stationary points has zero momentum,
and hence the path duration is infinitely long. In practice,
however, numerical solutions are limited by a finite path
duration with a finite number of grid points. In Figure 2, the
steepest descent path is plotted for the potential in Figure 1
with increasing path durations (a)N ) 100, (b)N ) 200, and
(c) N ) 700. The trajectories are discretized with time increment
∆ ) 0.1â and are integrated according to eq 13 with fixed
boundary conditions atE0 ) Ea and EN ) Ec. As the path
duration increases, the momentum at the end points decreases
and the trajectory converges to the steepest descent solution.
The corresponding Onsager-Machlup action is evaluated ac-
cording to eq 11 and is shown to converge to the exact value

PET ) 〈c|G(t)|a〉 (34)

PET ) ∫D[E(τ)]e-Seff[E(τ)] (35)

δSeff

δxi

)
1

2D∆
(2Ei - Ei+1 - Ei-1) +

∆Dâ2

4
∑

µ

[(〈FµF′µ〉i +

〈FµF′µ〉i-1] +
â

2
∑

µ

[〈Fµ〉i - 〈Fµ〉i-1] + ∆ω′〈P 〉 ) 0 (36)

〈A〉i )
〈c|G(t,ti) AG(ti,0)|a〉
〈c|G(t,ti) G(ti,0)|a〉

(37)

〈A〉i )
〈c(ti)|A|a(ti)〉
〈c(ti)|a(ti)〉

(38)

Ë ) â2D2∑
µ

〈FµF′µ〉 + Dâ∑
µ

〈[Fµ, LV]〉 + 2Dω′〈P 〉 (39)

Figure 1. Typical double-well potential (a) with the corresponding
effective potential (b). The potentialU-(E) is the lower adiabatic
potential defined in eq 40, withâλ ) 8.0,âε ) 0, andâV ) 1.0, and
the effective potential is defined asUeff ) -â2F2 ) -â2(U′)2. For all
of the figures in the letter, time and energy variables are scaled by the
thermal energyâ and p is taken as unity. The value of actionS is
calculated from eq 11.

U((E) ) E2 + λ2

4λ4
+ ε

2
( xV2 + (E - ε

2 )2
(40)
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of SOM ) 1.125. At convergence, the steepest descent path
consists of an uphill segment, a downhill segment, and three
stationary segments. For a symmetric barrier, the steepest
descent path has a reflection symmetry with respect toE ) 0
and t/2. Further, the time spent on the uphill and downhill
segments is almost a constant independent of the path duration.
Therefore, for an ideal steepest descent path of infinite duration,
the uphill and downhill segments become transient, and the
stationary segments split the path with constant ratios.

B. Steepest Descent Paths for the Two-State Diffusion
Equation. Because of nonadiabatic electronic coupling, the two-
state diffusion equation exhibits much richer physics than the
single surface diffusion equation. In Figure 3, the diabatic
potential surfacesU1 andU2 are plotted for (a)âV ) 0.1, (b)
âV ) 1.0, and (c)âV ) 4.0, along with the upper and lower
adiabatic potentials from eq 40. As discussed in the Introduction,
these three sets of potential surfaces represent (a) nonadiabatic,
(b) adiabatic, and (c) coherent electron transfer. Here, we present
detailed numerical examples of nonadiabatic steepest descent
paths for the three cases and thus illustrate the characteristic
features in the three regimes.

As shown in section II.C, the nonadiabatic steepest descent
path is determined from eq 36 with the initial state taken as|a〉
) [δ(E+λ), 0, 0, 0] and the final state as|c〉 ) [0, δ(E-λ),
0,0]. The path is discretized on a grid of∆/â ) 0.1 with N )
700 grid points and is iterated according to the procedure
described in section II.C. Except for the electronic coupling
constant, the parameters used in the calculations are always
taken asâλ ) 8.0, âΩ ) 1.0, andâε ) 0.0. For convenience,
a straight path connecting the two end points is used as the

initial guess. In the cases we studied, convergence can be
achieved after 104-105 iterations.

1. Nonadiabatic Electron Transfer.In Figure 3a (âV ) 0.1),
the pair of diabatic curves are very close to the pair of adiabatic
curves, except for the cusp at the curve crossing point. Thus,
in the nonadiabatic limit, the electron-transfer process is confined
to a small region near the curve crossing point and the resulting
rate constant can be evaluated within the Marcus model and its
extensions.

In Figure 4, the nonadiabatic steepest descent path is plotted
for (a) âV ) 0.1 and (b)âV ) 0.5. Similar to Figure 3, the
nonadiabatic paths consist of an uphill segment, a downhill
segment, two stationary segments at the reactant and product,
and a segment at the transition state. However, the segment at
the transition state is not stationary but oscillatory, and the
number of oscillations increases with the electronic coupling
constant. This observation reflects the significant difference
between barrier crossing and curve crossing. In fact, for Figure
4a, we can follow the curve crossing as first moving to the right
on the diabatic surfaceU1 and then crossing fromU1 to U2

through a nonadiabatic transition. Similarly for Figure 4b, we
can trace the history of curve crossing and identify multiple
crossings. Therefore, electron transfer in Figure 4a is well-
described by first-order perturbation theory, whereas electron
transfer in Figure 4b requires higher-order corrections in terms
of the electronic coupling constant. Further, the separation of
activated diffusion (the uphill segment) and curve crossing (the
transition state segment) confirms that the effective electron-
transfer rate is a combined result of these two processes, as
shown in the rate expressions derived earlier.27,38-42

To relate the calculated nonadiabatic steepest descent paths
to the corresponding electron-transfer rate constants, we plot
in Figure 5 the electronic transition probabilityPET in eq 34
calculated along the nonadiabatic steepest descent path as a
function of the electronic coupling constantV. The Marcus rate
theory predicts that the electron-transfer rate constant is
proportional to the coupling constant squared,kET ∝ V2, in the
nonadiabatic regime. This quadratic dependence is represented
by the dotted curve in Figure 5, with the prefactor determined
from the case ofV ) 0.01. The agreement between the two
curves suggests that the steepest descent path is the dominant

Figure 2. Plot of the steepest descent path for the potential in Figure
1 calculated with increasing path durations: (a)N ) 100, (b) N )
200, and (c)N ) 700. The trajectories are discretized with time
increment∆ ) 0.1â and are integrated according to eq 13 with fixed
boundary conditions atE0 ) Ea andEN ) Ec.

Figure 3. Adiabatic potential surfaces (solid curves) versus diabatic
potential surfaces (dotted curves). The diabatic potentials areU1(E) )
(E + λ)2/(4λ) andU2(E) ) (E - λ)2/(4λ) with âλ ) 8, and the adiabatic
potentials are given by eq 40. The three diagrams represent three kinetic
regimes: (a)âV ) 0.1 (nonadiabatic); (b)âV ) 1.0 (adiabatic); (c)
âV ) 4.0 (delocalized state).
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path for electron transfer and provides a possible means to
calculate the rate constant based on the instanton approach. As
the electronic coupling constant further increases, the calculated
transition probability becomes smaller than the quadratic
prediction, thus supporting the possibility of the adiabatic effect
and the solvent diffusion effect at a relatively large coupling
constant.28

2. CrossoVer from the Nonadiabatic to the Adiabatic Regime.
In Figure 3b (âV ) 1.0), the two adiabatic curves are well-
separated at the curve-crossing point, and the electron-transfer

process becomes a thermal-activated barrier crossing on the
lower adiabatic surfaceU-(E). Judging from the potential
surfaces, the crossover from nonadiabatic to adiabatic electron
transfer takes place atâV ≈ 1. The exact nature of the crossover
depends on the dynamic response time scale of the solvent.

In Figure 6, the nonadiabatic steepest descent path is plotted
for (a)âV ) 1.0 and (b)âV ) 2.0. Not surprisingly, the resulting
path in Figure 6a is nearly identical with the corresponding
adiabatic path in Figure 2c, thus supporting the notion of
adiabatic electron transfer at large coupling constants. As the
electronic coupling constant increases toâV ) 2.0 in Figure
6b, the stationary segment in the transition-state regime becomes
longer because of the lowered barrier height.

These adiabatic paths in Figure 6 are significantly different
from the nonadiabatic curve-crossing paths in Figure 4. How-
ever, with a different scale in Figure 7, the oscillatory behavior
observed in the weak-coupling regime reappears with a much
smaller amplitude. Further, the oscillation frequency is almost
a constant proportional to the coupling constantV. This
observation confirms the adiabatic picture proposed in an earlier
paper,25 where electronic coherence can be understood as Rabi
oscillations modulated by solvent fluctuations. As seen from
Figures 6 and 7, when the electronic coupling constant increases
from the nonadiabatic to adiabatic regime, the frequency of
nonadiabatic oscillations increases while the amplitude de-
creases, so that on the coarse-grained level the nonadiabatic
steepest descent path appears to be the same as the correspond-
ing adiabatic steepest descent path.

3. Transition from Incoherent to Coherent Electron Transfer.
In Figure 3, as the electronic coupling constant increases from
âV ) 1.0 toâV ) 4.0, the barrier on the lower adiabatic surface
disappears; electron transfer with delocalized electronic states

Figure 4. Plot of the nonadiabatic steepest descent path for (a)âV )
0.1 and (b)âV ) 0.5. The trajectories are discretized with time
increment∆ ) 0.1â on a grid ofN ) 700 and are solved iteratively
from eqs 36 and 37 with fixed boundary conditions. Except for the
electronic coupling constant, the parameters used in all of the figures
are taken asâλ ) 8.0, âΩ ) 1.0, andâε ) 0.0.

Figure 5. Plot of the electronic transition probabilityPET defined in
eq 34 as a function of the coupling constant. The dotted curve is the
quadratic golden-rule prediction (except for a constant).

Figure 6. Plot of a nonadiabatic steepest descent path calculated with
the same set of parameters as in Figure 4 except for (a)âV ) 1.0 and
(b) âV ) 2.0.
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becomes coherent. Though the expression in eq 40 predicts the
localization-delocalization transition at half the reorganization
energy, the nature of coherent electron transfer depends critically
on the time scales of the system.

To understand this transition, the nonadiabatic steepest
descent path is plotted in Figure 8 for (a)âV ) 4 and (b)âV )
6. In comparison with the adiabatic paths in Figure 6, the
stationary segment at the transition state extends over the whole
time axis. Consequently, the path rises sharply to the transition
state from the two end points, and the stationary segments at
the reactant and the product vanish, thus indicating that the
simple rate behavior no longer exists. Strictly speaking, the
steepest descent path is not an instanton solution and cannot be
associated with a rate process. In fact, similar to Figures 6 and
7, the extended path at the transition state is not stationary but
highly oscillatory around the transition state. Next, to demon-
strate the transition from localized to delocalized electron
transfer, the ratio of the transition state segment to the total
path duration (t ) 70â) is calculated as a function of the
electronic coupling constant. As shown in Figure 9, this ratio
increases with the electronic coupling constant until reaching a
plateau of about 80%, and the transition takes place aroundV
) 3.5. Furthermore, this plateau value is also a function of the
path duration. In Figure 10, steepest descent paths forâV )
1.0 are compared at several different path durations: (a)t )
10â, (b) t ) 50â, and (c)t ) 500â. Clearly, as the path duration
increases, the ratio of the stationary segment increases until it
reaches almost 99% for the case oft ) 500â, indicating that
for an ideal steepest descent path of infinite path duration the
kinetic transition can be much sharper than that shown in Figure
9. Additionally, the effective action is almost a constant
independent ofN because the contribution from the extended
path at the transition state sums to zero. In short, the steepest

descent path for coherent electron transfer is a stationary
coherent path which rises instantaneously from the initial and
final states to the transition state.

IV. Conclusions

In summary, the nonadiabatic steepest descent path method
is a useful tool to analyze and characterize electron-transfer
kinetics:

1. An ideal steepest descent path on a single surface consists
of three stationary segments, which are connected by two
transient segments. The transient uphill segment connects the
reactant to the transition state and represents the thermal-
activated barrier crossing process, whereas the transient downhill

Figure 7. Magnified plot of Figure 6. The transition-state region of
the steepest descent path is enlarged by a factor of 106 in part a and by
a factor of 108 in part b.

Figure 8. Plot of a nonadiabatic steepest descent path calculated with
the same set of parameters as in Figure 4 except for (a)âV ) 4.0 and
(b) âV ) 6.0.

Figure 9. Plot of the ratio between the time spent at the transition
state and the total path duration (t ) 70â) as a function of the electronic
coupling constantâV.
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segment connects the transition state to the product and
represents the free descent process.

2. In the nonadiabatic regime, the electronic transition
probability PET calculated along the nonadiabatic steepest
descent path depends quadratically on the electronic coupling
constant, thus suggesting the possibility of calculating rate
constants on the basis of the instanton approach.

3. For electron transfer with a small electronic coupling
constant, the steepest descent path exhibits oscillatory crossing
in the transition-state region, thus confirming that the effective
electron-transfer rate is a combined result of nonadiabatic curve
crossing and solvent diffusion.

4. For adiabatic electron transfer with a large electronic
coupling constant, the steepest descent path is composed of Rabi
oscillations with vanishing small amplitude, and the resulting
envelope recovers the steepest descent path defined on the
corresponding adiabatic surface.

5. For coherent electron transfer with an electronic coupling
constant comparable to the reorganization energy, the transition-
state segment extends over the whole path while stationary
segments at the product and reactant disappear, thus indicating
nonactivated behavior due to delocalized electronic states.

Though intuitive and revealing, the steepest descent path
analysis at the present stage is qualitative and pictorial. Similar
to the case of classical reactions, the nonadiabatic steepest
descent path analysis is employed to characterize the reaction
pathway and mechanism. Though this paper does not provide
a detailed prescription to obtain the electron-transfer rate from
the nonadiabatic steepest descent path, it is conceivable that a

general frequency-dependent rate coefficient can be derived from
the nonadiabatic instanton solution, as has been demonstrated
by Wolynes and co-workers for reactions in slowly relaxing
environments4,5 and by McKane, Chandler, McCammon, Jon-
sson, and others in various contexts. Our future efforts will be
directed toward developing the instanton rate solution from the
nonadiabatic steepest descent path, which will allow us to
calculate electron-transfer rate constants from the nonadiabatic
limit to the adiabatic limit with full account of solvent relaxation
effects including the possibility of nonexponential correlation.
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