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A nonadiabatic steepest descent path method is developed as a qualitative tool to analyze and characterize
three different kinetic regimes of electron transfer. In this approach, Miller's semiclassical instanton solution
and Pechukas’ self-consistent treatment of nonadiabatic coupling are applied to the path integral representation
of the two-state diffusion equation. The resulting steepest descent solution defines the diffusive solvent trajectory
that has the highest probability to induce electron transfer. Numerical examples demonstrate curve crossing
in the nonadiabatic regime, barrier crossing in the adiabatic regime, and delocalized effects in the coherent
regime, thus providing a revealing picture for the crossover from the nonadiabatic to adiabatic regime and
the transition from incoherent to coherent electron transfer.

. Introduction of stationary boundary conditions at two end poift3# In the
context of functional analysis, the steepest descent path is simply
Another example of Miller's instanton concéptl’ and the
steepest descent evaluation of the instanton rate recovers the
overdamped limit of the Kramers ratThis intriguing con-
nection between the instanton solution and the steepest descent
path proves to be crucial for the generalization to electron-
transfer reactions in this paper.

The coupling between different electronic state surfaces

The steepest descent path has been widely used as
qualitative tool for interpreting the kinetics and dynamics of
chemical reaction:® It is generally considered as a charac-
teristic reaction path, which connects reactant and product
through an intervening transition state with the lowest energy.
For electron transfer, however, the primary concern has been
the rate of change in the electronic state. While the solvent-

induced polarization energ¥ has been considered as the : ! X Ve
drastically increases the range and complexity of the kinetic

collective reaction bath coordinate in the Marcus théoy it o !
is often treated as fluctuating white noise, which occasionally SPECtrum of electron transfer. Within the simple Marcus model,
t least three different kinetic regimes and two crossovers

brings electronic states to degeneracy and hence induces a@ h . be identified and calculated. Th
electronic transition. Instead of treating solvent polarization as etween these regimes can be identified and calculated. The

a secondary variable, the goal of this paper is to understangfirst important feature of electron transfer is the crossover from

various kinetic behaviors in electron transfer by identifying and the nonadiabatic regime in Figure 34+ kgT) to the adiabatic

characterizing the nonadiabatic steepest descent path of solvenf€9ime in Figure 3b\( > keT), because the increase of the

polarization, thus providing a new perspective of electron- €l€ctronic coupling constanv. At high temperature, the
transfer reactions. Landau-Zener expression allows us to interpolate rate constants

1810 )
Though intuitively simple, the idea of steepest descent path between these two limitS:™® At low temperature, the rate is

is deeply rooted in several modern theoretical concepts. gnhanced by quantum tunneling effects and a nonadiabatic

Traditionally, the steepest descent path is found by first locating Instanton theory ha_s been developed to account for the crossover
a transition state, then pushing the system slightly in the forward in the quantum regim& Next, \_/vhe_n the coupling cpnst_ar\t’)(

and the backward directions of the negative normal mode, and approachgs half th? reorganization gnergézx as in F|gure.
tracing the path in the direction of the for€én other words, 3c, there is atrgnsnmn In the e'Ie(.:tronlc Sta.t? from the localized
the steepest descent path is solved frgin= F, subject to a to th_e delocalized regim&. Similar transitions have been
pair of initial conditions: E, = 0%, wherey is the friction predicted for tw_c>211IeveI systems coupled to low-temperature
coefficient andgy is the transition state illustrated in Figure 1. phonon modes*2* It has recently been suggested that the

Then, intuitively, this path represents the most probable pathwaydelocal'zed electronic state is responsible for population oscil-

that the reaction can proceed. In practice, the transition state,l(?t'ons. og_servec_zl In mléed-(\jlﬁleorlfethsysté_ i.'g' lFI\lAthher, a del
being the saddle point on a multidimensional surface, is much ynamic dimension can be added to the original Marcus mode

more difficult to locate than the reactant or the product. by treating solvent polarization as a Brownian coordirtafhe

Therefore, a more attractive approach is to select the steepes{esu“ is a set of two-state diffusion equations, which was flrs_t
descent path from all of the paths connecting the reactant andUS€d by Zusman to treat solvent effects on electron transfer in
product?68|t has been suggested that the steepest descent patltlhe nonadiabatic limit and which will be used as the electron-
thus defined is the most probable Brownian trajectory with fixed- transfer model in this paper. .
end-point boundary conditions. Indeed, by virtue of the path ~ Recently, we developed a general approach to describe
integral formulation of Brownian motions, the steepest descent condensed-phase dynamics: the spectral analysis method, which
path can be rigorously defined as the stationary path which iS based on eigenstructures of dissipative systems instead of

minimizes the OnsageMachlup action under the constraint dynamic trajectoried? When applied to the two-state diffusion
equation, the analysis allows us to characterize multiple time

t This paper is dedicated to Professor Kent Wilson. scales in electron-transfer processes, including vibrational
*E-mail: jianshu@mit.edu. relaxation, electronic coherence, activated curve crossing, or
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barrier crossing. Within this unified approach, observed rate which is the Shrodinger operator with an effective potential

behavior, biexponential and multiexponential decay, and popu-

lation oscillations are different components of the same kinetic _D 2_Dpw

spectrum; thus, several existing theoretical models, developed ULE) = 4[ﬁF(E)] Zﬂu (E) )

for limited cases of electron transfer, can be analyzed, tested,

and extended. In particular, the rate constant extracted from thewhereF = —U’ andU" are the first- and second-order spatial

analysis bridges smoothly between the adiabatic and nonadia-derivatives of the potential, respectively. The relevant property

batic limits, and the kinetic spectrum in the large coupling is the probability for the particle & at timet given the initial

regime reveals the nature of the localizatiatelocalization position atEy, P(t) = P(Et;Eq0), which, in the limit of

transition as the consequence of two competing mechanismsinfinitesimally small time interval\, can be explicitly evaluated
The nonadiabatic steepest descent path study in this paper iss

a complementary approach to the spectral analysis described

above. The underlying theory for the new approach is based on|im [E|e*"|E, = g PUBI2[E g Ay EO@BU(EO)/Z

the same principle as that in the nonadiabatic instanton solutionA—0

by Cao and Voti%2° Miller1® first suggested that low- 1 B
temperature quantum rate constants can be determined by the = JDA exp{— SIU(E) — U(E)] -

so-called bounce classical trajectory on the inverted potential
energy surface, i.e., the instanton. In terms of semiclassical
analysist® the instanton trajectory satisfies the Eultagrange
equation on the periodic imaginary time axis, and the quantum
fluctuations along the instanton trajectory take the form of a
Gaussian functional which can be calculated through the
evaluation of the Van Vleck determinant. To extend the original
instanton analysis suitable for barrier tunneling to electron
transfer, nonadiabatic transitions between donor and acceptor P(t) = [E|e"|E,= f D[E(z)]e” IE"! (5)
states must be incorporated into the instanton trajectory. For

this purpose, the Pechukas theory of nonadiabatic colli€éhs  where the measure is defined by

provides a general prescription for treating electronic transitions

1 e _Ey—

Then, the probability at longer times can be constructed from
the above short-time propagator, resulting in a path integral
expressioff-3°

and nuclear motions in a self-consistent fashion. A combination _ 1 N-1
of Miller's instanton solution and Pechukas’ self-consistent fD[E(T)] = lim —lel_ldei (6)
treatment yields the nonadiabatic instanton solution, which N= (4aDA)V 1=

allows us to calculate thermal rate constants for electron transfer

and to bridge smoothly between the adiabatic and nonadiabaticwith time discretizatiomA = t/N, and the discretized action is
limits. In this paper, we again combine the two semiclassical defined by

techniques to determine the steepest descent path for electron

transfer modeled as nonadiabatic diffusion processes. U(E) — U(Ey)
The rest of the paper is organized as follows: In section I.A, SE] =f———— +
we begin with a review of the Onsage¥lachlup functional 2
analysis of the steepest descent path and its analogy with the N | (E — EH)2 AD AD
instanton solution. Next, a path integral expression of the two- Y + T[ﬁF(Ei)]Z - 7ﬂU”(Ei) (1)

state diffusion equation is derived in section II.B, followed by =
the formulation of the nonadiabatic steepest descent path in -
section II.C. Then, numerical solutions are presented in sectionWith boundary conditions &, and Ey = E. In other words,
Ill for a single adiabatic surface and for the three kinetic regimes the probability is a summation of all of the possible pai(e)
of electron transfer. We conclude the paper with a summary of connecting the two end points, each carrying a weWft(z)]
the findings of the paper and remarks about possible future = exp{ —§E(7)]}.

directions. Alterna'_[ively, the path integral expressiqn in eq 5 can be
derived via the OnsageiMachlup constructiof? It is well-
. Theory known that the FokkerPlanck equation in eq 1 is equivalent

. to the stochastic equation
A. Onsager—Machlup Action, Steepest Descent Path, and

Instanton. Many physical systems can be modeled by a E=F + v&(t 8
Brownian particle in an external potentid| described by the Y vs() ®)
Smoluchowski equation, i.e., the diffusion equation, where the friction coefficienty is related to the diffusion
constant throughyD = 1, and§ is the scaled white noise
9® _ o(t) =D i(i +8 @) o(t) 1) satisfying Z(t)0= 0 and [&(t) &(t')0= 2D(t—t'). Then, the
ot b oE\oE ok weight distribution of the noise histor§(z) is
whereE is the stochastic variable for the Brownian motion, 1 5
p(t) is the distribution probability, and is the diffusion WE(@)] O eXp[— D [dr &) 9)
constant. The one-dimensional Fokk&lanck operator thus
defined can be transformed to a Hermitian opefattr which, when combined with eq 8, transforms into the weight

for the pathE(r)

_ 9
H = —V®?2 | ¢V®2=_p ° 4 y(E 2
s P RS WE(7)] O J[E(r)]e” ME) (10)



Study of Electron Transfer Reaction J. Phys. Chem. A, Vol. 103, No. 49, 19980573

Here, the Jacobian of the transformation[iE(z)] = exp[/dr the Gaussian fluctuations around the instanton trajectory.
DU (E)/2], and the Onsageiachlup functional action is Following general instanton analysis, we can formally write
1 . 2 t
SoulE()] = 45,/ d7 [E — DF(E)] (11) PO ———==exp(-S,) (17)

VDet %S

where the path duration arises from the integration of the
translational-invariant mode, which is a signature of the instan-
ton solution, and the prefactor D&ESis a properly normalized
Van Vleck determinant, excluding the zero eigenvaf#Then,

the reaction rate can be extracted from eq 17 to give

which is equivalent to eq 7 in the continuous limit.

The path integral formalism lends itself naturally to the
generalization to colored noise. In particular, when the stochastic
variable is Gaussian, the weight probability can be written as

WE(t)] O exp[— % [dt, [dt, Ety) CHt, — ) Et)|  (12)

exp-S,)

_ i . kKO0 ———=

whereC(t—t") = [E(t) E(t")Os the correlation function. Simpler /Det 7S
expressions with a single time integration in the action can be

obtained for exponential decay noise. Because the Fekker which can be shown to yield the diffusion-limited rafes37

Planr_:k equation cannot be gent_arahzed to colored noise, theTherefore, the steepest descent path is the instanton trajectory
functional formula provides a unique framework for studying ;. the OnsagerMachlup formulation, which defines the most

stochastic motions under correlated ndise7 . probable reaction path in the long-time limit and hence yields
. An |_mportant application of the Onsageachlup functional the rate constant associated with, the path. To avoid confusion,
is to rigorously formulate the concept of the steepest descentwe use the term “steepest descent path” in the current context
path, Wh.iCh has been understood as a characteristic rge}ctive paﬂaf classical Brownian trajectories and reserve the term “instan-
connecting the reactant and product through a transition state o for quantum rate calculations, though conceptually they
Following the work by Mckane and othei:**the Euler are the same kind of semiclassical approximation.
Lagrange equation f_o r the Onsagéftachlup action functional, As a general note, the Onsag@achlup stochastic functional
(?SOM/(SE(T) - 0 de.f".“es the most probable path between two formalism shares many common features with the Feynman
fixed end points, giving guantum path integral formalism:
.. > 2 1. Because the classical trajectory is the stationary solution
E=DBF(E) F(E) (13) to quantum path integrals, the steepest descent path is the
stationary solution that carries the largest weight among all of
with E(0) = Eo andE(t) = E:. This equation of motion can be  the Brownian trajectories between two fixed end points.
understood as the classical mechanics of a particle moving in - 2 The rate calculation based on the steepest descent reaction

(18)

an inverted effective potentidler(E) = —S?F(E)%/2. For a  path is the asymptotic expansion with respect to the small
typical double-well potential shown in Figure 1, we can identify parameterD, whereas the instanton solution in quantum
three stationary points, corresponding to the reactagt the  tunneling rate calculations is the asymptotic expansion with
proceed, we rewrite eq 13 as 3. For white noise, the Onsage¥achlup functional is
equivalent to the FokkerPlanck equation, and the Feynman
d (B> - BDF?) =0 (14) path integral is equivalent to the BloeRedfield equation. For
dt colored noise, there is no general way to derive differential
. . ' equations; however, we can easily include multiple-time cor-
so that the path with stationary end poil) = E, andE(t) relation within the functional formalism as in eq 12 or influence
= E. has zero energy and satisfies functionals.
B. Path Integral Formulation of the Two-State Diffusion
E? = D?A°F? (15) Model. The solvent effect on electron transfer is often modeled

as an electronic two-level system coupled to a thermal nuclear
This type of solution is known as the instanton, which was first bath, with the Hamiltonian given as
discovered by Miller and has been widely used in quantum rate
calculations. In Figure 1, the instanton trajectory consists of an H = Hy s+ Hgan (29)
uphill path connecting the reactant to the transition state and a
downhill path connecting the transition state to the product. The Here, the two-level part of the Hamiltonian is explicitly written
uphill path is solved from the positive square root of eq5, as
= U'(E) and, on substitution into eq 11, gives

. Hrio(E) = Uy(B)| 10| + U,(E)I 22| + V(| 102 + 201))
Sp= [ EAUE) =plUM) -U@]  (16) (20)

which recovers the Arrhenius activation formula. The downhill whereV is the coupling constant ardy(E) andU»(E) are the
path is solved from the negative square root of eq 5= two adiabatic energy surfaces. The stochastic varigbtethe
—U'(E) and, on substitution into eq 11, yields zero action. Thus, solvent-induced polarization energy between electronic states,
the uphill path corresponds to a thermal-activated process,which represents the collective effect of the baslgstem
whereas the downhill path corresponds to a free-descent processcouplingl® Because the electron-transfer process involves the
The steepest descent evaluation of eq 5 requires integration ovecollective motion of a large number of solvent degrees of



10574 J. Phys. Chem. A, Vol. 103, No. 49, 1999 Cao

freedom, the functional form for the free energy surface is andv = Fpi,, and define a vectgs = [p1, p2, u#, v]. Then, the

Gaussian, thus giving two-state diffusion operator can be cast into the matrix form
(E+ﬂ.)2 L1 0 0O 00 0 -2V
Ui(B) =—4 (21a) L —L 4L —=l0 0 o0f fo0 0 2
) e V10 0 L0 00 0 w
(E-A) 0 0 0L/ V-V-0o0
U,(E) = (21b)
2 44 (27)

where/ is the solvent reorganization energy ant the free wherelp is the diagonal diffusion matrix withs = Ly = Lj»
energy bias. andLy is the off-diagonal two-level electronic coupling matrix.
Because many chemically and biologically important electron- To construct the functional expression for the two-state diffusion
transfer processes take place in the overdamped solvent environequation, we first write the propagator in the discretized form
ment, it is reasonable to treat the bath degree of freeB@s
a diffusive coordinaté’ Then, the Hamiltonian in eq 19 leads G(t) = €" = lim [G,(A)Gp(A)" (28)
to a two-state diffusion equation N
with A = t/N, Gp(A) = exp(LpA) and Gy(A) = explLvA).
% p(t) =L p(t) = (Lp + L)o(t) (22) Following the der@vatipn in the procee(.jing. subsection, the matrix
element of the diffusion propagator is given by

where Lp is the Fokker-Planck operator for the solvent 1
polarization energy andy = [Hr.g]/ik is the Liouville operator [E|Gp . (A)IE = 47DA exp[=S,(E.E_pl (29)
for the two-level system. Explicitly, eq 1 can be expressed in
terms of the density matrix elements with S, the discretized action
0, = Loy +iV(op, — 23a U,(E)—U,E_ E —E_,)°
P1 1P1 (P12 = P21) ( ) Sﬂ(EwEiﬂ) — g (E) > ,M( i—1)  ( |4DA| )
P2 = Lopy = IV(p1, = p21) (23b)
E218r B — 22PUr(E) (30)
P12 = LaaP1p — iw1o01, +1V(py — p) (23c) 4 = e 2 e
P21 = Lyyppr T iwq05, — V(0 — py) (23d) The matrix of the electronic coupling propagator can also be
evaluated explicitly by rewritindg.y as
where the Planck constafitis set to unity for simplicitywi»
= U1(E) — U2(E) = E — ¢, p, is the diagonal matrix element L, = (O B) (31)
for electronic population, angd,,, is the off-diagonal matrix v c'o

element for electronic coherence. Hetg,is defined on the
free energy surface of theh electronic state with B andC denoting vector8 = [—2V, 2V, w] andC = [V,
=V, —w], respectively, and T denoting the transpose of a vector.
aU (E) Then, the corresponding propagator is given in the closed form

Jd (0
o) 4 )

L sinh@A) —1/0 B
GAE=e=I+—" -
andL, andL,; are defined on the averaged free energy surface co

Lol $0(E) coshgA) — 1
_, =tutle_ g0 (0 pUE) 2
Lo =t =7 9E (8E+’8 0E ) (25) 9

BC' O
0 C'B

) (32)

whereg? = C'B andE dependence is implied through variables
V and W. Putting all of the pieces together, we arrive at the
path integral solution to the two-state diffusion equation

whereU is the average of the two free energy surfaces

U,(E) + UxE) _E+ R

U(E) = 2 4

+

(26)

NIm

Gt) = fD[E(r)]GV(EN)e*S(EN,EN,j).__

The diffusion constant is defined &= Q[E[] where[E2[}= Gy (Eye &G, (E)e &) (33)
21ksT is the mean-square fluctuation of the solvent polarization
energy andrp = 1/Q is the characteristic time scale of the whereD[E(t)] is the measure defined in eq 6. Beca@sgand
Debye solvent. The correlation function of the solvent polariza- Gy do not commute, this path integral expression cannot be
tion energy is given byE(t) E(0)(= [E2Cexp(—Qt). Note that further simplified.
because the nuclear dynamics is modeled by the Felkanck C. Nonadiabatic Reaction Path.As stated earlier, the
operator, the possibility of vibrational coherence is excluded in steepest descent path is the most probable reactive path with
the electron-transfer dynamics. This set of semiclassical two- the smallest OnsageMachlup action under the stationary
state equations has been previously derived in different contextsboundary conditions. An electron-transfer process involves both
by several author¥,3&-41 the change in electronic states and the change in nuclear
To facilitate functional analysis, we separate the real and coordinates. To incorporate this fact, we define the reactant state
imaginary parts of the coherent density matrix, ikes Rpi12 as|all= [0(E+4), 0, 0, 0] and the product state &s1= [0,
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o(E—1), 0, 0], which are stationary on the corresponding
electronic surface. Then, the electronic transition probability can
be expressed as

Per = [B]G(t)|al] (34)
where G(t) is given in eq 33. This definition is analogous to
the electronic overlap matrix introduced in the Pechukas theory

for mixed classicatquantum dynamic Along the same line,
we define an effective action as

Per = [ DIE(@)e ) (35)
so that e represents the weight associated with a nonadiabatic
path. Then, following the argument in section Il.A, the nona-

diabatic steepest descent path can be solved from the-Euler

Lagrange equation, leading to

%—LZE—E ~E )+ADﬁ2 [(CF, F [+
6)(1 _ZDA( i i+1 i—1. 4 ; u /,tm
F F,0L] +§2[DF#E— [F,GL] + Aw'TP O=0 (36)

whereF, = F,(E), o' = dw(E)/9E, andP,, = 0,40,3 — 0,304
is a projection operator. Her&\[Jdenotes an average over the
density matrix

_ [GG(tt) AG(,0)lal]
- [BG(tt) G(t,0)al]

(37)

where the propagato6 is explicitly given in eq 33 or,
equivalently,

_ Le(t)IAlat)U
o(t)lact)0 (38)

wherea(t;) is the forward distribution starting from the reactant,
a(t) = La(ti), andc(t;) is the backward distribution starting from
the productg(t)) = c(t;) L. Finally, taking the limit ofA — 0,
we have the equation of motion in the continuous form

E= ﬂzozz [F,F,0+ DBy OF,, Ly|O+ 2Dw' P 0 (39)
I u
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(a) Potential

(b) Effective Potential

Figure 1. Typical double-well potential (a) with the corresponding
effective potential (b). The potentid)_(E) is the lower adiabatic
potential defined in eq 40, witil = 8.0, 8¢ = 0, andpV = 1.0, and

the effective potential is defined &ky = —2F2 = —[82(U")2. For all

of the figures in the letter, time and energy variables are scaled by the
thermal energys andh is taken as unity. The value of actidhis
calculated from eq 11.

Ill. Results and Discussions

A. Steepest Descent Paths on a Single Adiabatic Surface.
To begin, we examine the steepest descent path on a single

surface, given as
E 2 E — ¢€\2
+2i,/v+( . ) (40)

which is the adiabatic potential obtained by diagonalizing the
two-state Hamiltonian in eq 20 witb; and U, given respec-
tively by eqs 21a and 21b. As stated earlier, the Etllexgrange
equation in eq 13 leads to the classical dynamics of a particle
in an inverted potentidle = —B2F(E). This inverted potential

is plotted in Figure 1b along with the lower adiabatic potential
U_(E) in Figure 1a, fopV = 1, 4 = 8, andfe = 0. All of the
parameters and variables in this paper are scaledAyithg.,

the unit of energy or frequency isfAlAnd the unit of time i$.

As illustrated in Figure 1, the three stationary points are the

reactantE, = —v A°—4V? the transition stateE, = 0: and the
product, Ec. = vA?>—4V2 Thus, the uphill path B, — Ep)

B2+ )2
a°

U,(E) =

which defines the nonadiabatic steepest descent path, namelygescribes the activated rate process, and the downhill gath (

the Brownian trajectory that is most likely to induce electron
transfer. Equation 39 is the central result of the paper.
Based on the above formulation, a computational algorithm

— E.) describes the free descent path.
Ideally, by analogy with the instanton trajectory, the steepest
descent path at the three stationary points has zero momentum,

to solve the nonadiabatic steepest descent path can be designeghd hence the path duration is infinitely long. In practice,

as follows:

1. An initial guess ofE(t) is used as an input. The density
matricesc(t) and a(t) are propagated according to this initial
guess.

2. For the given density matrix, the Euldragrange equation

however, numerical solutions are limited by a finite path
duration with a finite number of grid points. In Figure 2, the
steepest descent path is plotted for the potential in Figure 1
with increasing path durations (&)= 100, (b)N = 200, and

(c) N=700. The trajectories are discretized with time increment

in eq 36 for the steepest descent path is iterated to a convergech = 0.13 and are integrated according to eq 13 with fixed

path E(t).
3. The path integral expression in eq 33 is propagated forward

boundary conditions aEy = E, and Ey = E.. As the path
duration increases, the momentum at the end points decreases

and backward again according to the new steepest descent patand the trajectory converges to the steepest descent solution.

to yield a new pair ofc(t) and a(t).

The corresponding Onsage¥achlup action is evaluated ac-

4. Steps 3 and 4 are repeated until convergence is reachedcording to eq 11 and is shown to converge to the exact value
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10

(a) 100x0.1

time

S = 1.1290
(b)

20

(b) 200x0.1

1s |- -

time 10 [ N

s L S = 1.1240

Figure 3. Adiabatic potential surfaces (solid curves) versus diabatic

i i potential surfaces (dotted curves). The diabatic potentials/ g =
s L (c) 700x0.1 4 (E + 1)%(42) andU,(E) = (E — 4)%/(41) with S1 = 8, and the adiabatic
potentials are given by eq 40. The three diagrams represent three kinetic
regimes: (a)3V = 0.1 (nonadiabatic); (bpV = 1.0 (adiabatic); (c)

70

50 |- -

a0 | - BV = 4.0 (delocalized state).
time
30 —
initial guess. In the cases we studied, convergence can be
=r | s=12as achieved after 19-1(° iterations.
e - ; 7 1. Nonadiabatic Electron Transfein Figure 3a gV = 0.1),
° L = > = - the pair of diabatic curves are very close to the pair of adiabatic
e curves, except for the cusp at the curve crossing point. Thus,
Figure 2. Plot of the steepest descent path for the potential in Figure in the nonadiabatic limit, the electron-transfer process is confined
1 calculated with increasing path durations: (&)= 100, (b)N = to a small region near the curve crossing point and the resulting

200, and (c)N = 700. The trajectories are discretized with time  rate constant can be evaluated within the Marcus model and its
incrementA = 0.1 and are integrated according to eq 13 with fixed extensions.

boundary conditions &, = E, andEy = E.. . . . .
In Figure 4, the nonadiabatic steepest descent path is plotted

of Som = 1.125. At convergence, the steepest descent path’ (8) /V = 0.1 and (b)fV = 0.5. Similar to Figure 3, the -
consists of an uphill segment, a downhill segment, and three nonadiabatic path_s consist of an uphill segment, a downhill
stationary segments. For a symmetric barrier, the steepestsegment’ two stationary se.g.ments at the reactant and product,
descent path has a reflection symmetry with respe to 0 and a segment at the transition state. However, the segment at

and t/2. Further, the time spent on the uphill and downhill the transition state is not stationary but oscillatory, and the

segments is almost a constant independent of the path durationnumber of oscillations increases with the electronic coupling

Therefore, for an ideal steepest descent path of infinite duration,conStam' Th'.s obser\(atlon reflects the §|gn|f|cant dlffergnce
the uphill and downhill segments become transient, and the between barrier crossing and curve crossing. In fact, for Figure

stationary segments split the path with constant ratios. 4a, we can follow the curve crossing as first moving to the right

o on the diabatic surfack); and then crossing from; to U,
B. Steepest Descent Paths for the Two-State Diffusion  ,rough a nonadiabatic transition. Similarly for Figure 4b, we

Equation. Because of nonadiabatic electronic coupling, the two- -5 trace the history of curve crossing and identify multiple
state diffusion equation exhibits much richer physics than the ¢rossings. Therefore, electron transfer in Figure 4a is well-
single surface diffusion equation. In Figure 3, the diabatic gescribed by first-order perturbation theory, whereas electron
potential surfaces); andU, are plotted for (aV = 0.1, (b) transfer in Figure 4b requires higher-order corrections in terms
BV = 1.0, and (c)3V = 4.0, along with the upper and lower  of the electronic coupling constant. Further, the separation of
adiabatic potentials from eq 40. As discussed in the Introduction, gctivated diffusion (the uphill segment) and curve crossing (the
these three sets of potential surfaces represent (a) nonadiabatigransition state segment) confirms that the effective electron-

(b) adiabatic, and (c) coherent electron transfer. Here, we presentransfer rate is a combined result of these two processes, as
detailed numerical examples of nonadiabatic steepest descenshown in the rate expressions derived eafiég 42

paths for the three cases and thus illustrate the characteristic 14 relate the calculated nonadiabatic steepest descent paths

features in the three regimes. to the corresponding electron-transfer rate constants, we plot
As shown in section I1.C, the nonadiabatic steepest descentin Figure 5 the electronic transition probabiliBer in eq 34

path is determined from eq 36 with the initial state takefeds  calculated along the nonadiabatic steepest descent path as a

= [0(E+4), 0, 0, 0] and the final state gsfJ= [0, S(E—A), function of the electronic coupling constantThe Marcus rate

0,0]. The path is discretized on a grid af = 0.1 withN = theory predicts that the electron-transfer rate constant is

700 grid points and is iterated according to the procedure proportional to the coupling constant squarks, 0 V2, in the

described in section II.C. Except for the electronic coupling nonadiabatic regime. This quadratic dependence is represented

constant, the parameters used in the calculations are alwaysy the dotted curve in Figure 5, with the prefactor determined

taken a3l = 8.0,Q = 1.0, andBe = 0.0. For convenience, from the case oV = 0.01. The agreement between the two

a straight path connecting the two end points is used as thecurves suggests that the steepest descent path is the dominant
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Figure 4. Plot of the nonadiabatic steepest descent path fgf\(aF E

0.1 and (b)fV = 0.5. The trajectories are discretized with time  Figure 6. Plot of a nonadiabatic steepest descent path calculated with

incrementA = 0.15 on a grid ofN = 700 and are solved iteratively  the same set of parameters as in Figure 4 except f#\(a} 1.0 and
from eqgs 36 and 37 with fixed boundary conditions. Except for the (b) BV = 2.0.

electronic coupling constant, the parameters used in all of the figures

tak A =8.0,Q2 =10 = 0.0. . . .
are taken ag B + andfe process becomes a thermal-activated barrier crossing on the

0.03 . ; . lower adiabatic surfacéJ_(E). Judging from the potential
surfaces, the crossover from nonadiabatic to adiabatic electron
/ transfer takes place AV ~ 1. The exact nature of the crossover
0.025 - A depends on the dynamic response time scale of the solvent.
;. In Figure 6, the nonadiabatic steepest descent path is plotted
0.02} ransition probabilly J for (@) BV = 1.0 and (b)3V = 2.0. Not surprisingly, the resulting
----- quadratic prediction . path in Figure 6a is nearly identical with the corresponding
adiabatic path in Figure 2c, thus supporting the notion of
adiabatic electron transfer at large coupling constants. As the
electronic coupling constant increasesf = 2.0 in Figure
6b, the stationary segment in the transition-state regime becomes
longer because of the lowered barrier height.

These adiabatic paths in Figure 6 are significantly different
1 from the nonadiabatic curve-crossing paths in Figure 4. How-
ever, with a different scale in Figure 7, the oscillatory behavior
‘ observed in the weak-coupling regime reappears with a much
0 0.05 0.1 0.15 0.2 smaller amplitude. Further, the oscillation frequency is almost

v a constant proportional to the coupling constant This

Figure 5. Plot of the electronic transition probabiliffer defined in observation confirms the adiabatic picture proposed in an earlier
eq34asa function of the _co_upling constant. The dotted curve is the paper?s where electronic coherence can be understood as Rabi
quadratic golden-rule prediction (except for a constant). oscillations modulated by solvent fluctuations. As seen from
path for electron transfer and provides a possible means toFigures 6 and 7, when the electronic coupling constant increases
calculate the rate constant based on the instanton approach. Afom the nonadiabatic to adiabatic regime, the frequency of
the electronic coupling constant further increases, the calculatednonadiabatic oscillations increases while the amplitude de-
transition probability becomes smaller than the quadratic creases, so that on the coarse-grained level the nonadiabatic
prediction, thus supporting the possibility of the adiabatic effect steepest descent path appears to be the same as the correspond-
and the solvent diffusion effect at a relatively large coupling ing adiabatic steepest descent path.
constant® 3. Transition from Incoherent to Coherent Electron Transfer

2. Crosseer from the Nonadiabatic to the Adiabatic Regime. In Figure 3, as the electronic coupling constant increases from
In Figure 3b BV = 1.0), the two adiabatic curves are well- BV =1.0topV = 4.0, the barrier on the lower adiabatic surface
separated at the curve-crossing point, and the electron-transfedisappears; electron transfer with delocalized electronic states

0.005 -

0
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Figure 7. Magnified plot of Figure 6. The transition-state region of . . . .
Figure 8. Plot of a nonadiabatic steepest descent path calculated with

the steepest descent path is enlarged by a factoréahiart a and by - SLE

a factor of 16 in part b. the same set of parameters as in Figure 4 except fg#\(ay 4.0 and
L . b) BV = 6.0.

becomes coherent. Though the expression in eq 40 predicts thé )6

localization—delocalization transition at half the reorganization 0.9 . — 1 ,

energy, the nature of coherent electron transfer depends critically

on the time scales of the system. 0.8
To understand this transition, the nonadiabatic steepest o
descent path is plotted in Figure 8 for (& = 4 and (b)sV = '
6. In comparison with the adiabatic paths in Figure 6, the 0.6
stationary segment at the transition state extends over the whole ratio
time axis. Consequently, the path rises sharply to the transition 0.5
state from the two end points, and the stationary segments at
the reactant and the product vanish, thus indicating that the 0.4
simple rate behavior no longer exists. Strictly speaking, the
steepest descent path is not an instanton solution and cannot be 0-3
associated with a rate process. In fact, similar to Figures 6 and 0.2 ) ) ‘ )
7, the extended path at the transition state is not stationary but 1 2 3 4 5 6
highly oscillatory around the transition state. Next, to demon- v

strate the transition from localized to delocalized electron Figure 9. Plot of the ratio between the time spent at the transition
transfer, the ratio of the transition state segment to the total State and the total path duratidn<705) as a function of the electronic
path duration t{ = 708) is calculated as a function of the coupling constangV.

electronic coupling constant. As shown in Figure 9, this ratio
increases with the electronic coupling constant until reaching a
plateau of about 80%, and the transition takes place ardund
= 3.5. Furthermore, this plateau value is also a function of the
path duration. In Figure 10, steepest descent pathgVYor

1.0 are compared at several different path durations:t &)
108, (b)t =503, and (c)t = 5003. Clearly, as the path duration In summary, the nonadiabatic steepest descent path method
increases, the ratio of the stationary segment increases until itis a useful tool to analyze and characterize electron-transfer
reaches almost 99% for the casetof 5003, indicating that kinetics:

for an ideal steepest descent path of infinite path duration the 1. An ideal steepest descent path on a single surface consists
kinetic transition can be much sharper than that shown in Figure of three stationary segments, which are connected by two
9. Additionally, the effective action is almost a constant transient segments. The transient uphill segment connects the
independent oN because the contribution from the extended reactant to the transition state and represents the thermal-
path at the transition state sums to zero. In short, the steepestctivated barrier crossing process, whereas the transient downhill

descent path for coherent electron transfer is a stationary
coherent path which rises instantaneously from the initial and
final states to the transition state.

IV. Conclusions
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10 T T general frequency-dependent rate coefficient can be derived from
(2)100x0.1 the nonadiabatic instanton solution, as has been demonstrated
s r 7 by Wolynes and co-workers for reactions in slowly relaxing
environment$® and by McKane, Chandler, McCammon, Jon-
°r b sson, and others in various contexts. Our future efforts will be
directed toward developing the instanton rate solution from the
‘r 01134 | nonadiabatic steepest descent path, which will allow us to
calculate electron-transfer rate constants from the nonadiabatic
limit to the adiabatic limit with full account of solvent relaxation
effects including the possibility of nonexponential correlation.
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