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The relationship between event-averaged measurements and ensemble averaged measurements can be clarified
by averaging along single-molecule trajectories. As a result, phenomenological chemical kinetics is shown to
contain little information about dynamic disorder, and nonequilibrium relaxation experiments in the bulk
state may not be interpreted according to the fluctuation-dissipation relation. The desired information about
conformational fluctuations can be inferred from the statistics and correlation of half-reaction events. In
particular, the echo time in the two-event probability distribution directly measures the conformational relaxation
rate, and the amplitude of the echo probes the variance of the reaction rate. Detailed analysis of four different
models (two-channel kinetic scheme, three-channel kinetic scheme, diffusion-modulated reaction, and the
Gaussian stochastic rate model) confirms the generality of the two-event echo and its quantitative relations
with conformation dynamics. As a general description of the fluctuating rate process, the stochastic rate
model and its truncated version provide the flexibility to incorporate various kinetic schemes and functional
forms and serve as a first-order model for analyzing single-molecule quantities.

I. Introduction

The issue of multiple time scales is a recurring theme in
physical chemistry and has been explored from various perspec-
tives.1 Traditional chemical kinetics assumes a clear separation
of time scales; that is, the rate process in a reactive system occurs
on the slowest time scale so that all other motions can be
averaged on the reaction time scale to yield dissipation and
random noise. Under these assumptions, the depletion from the
reactant to the product is a Poisson process and the average
population disturbance decays exponentially. However, in
proteins and glassy systems, chemical reactions are usually
modulated by geometric constraints, slow structural relaxation,
and hydrogen bonding and network in aqueous systems. In the
presence of such slow environmental fluctuations, the competi-
tion between the reaction process and the conformational
dynamics leads to nonexponential kinetics and memory effects.2-8

Yet, such conformational modulation cannot be completely
described by phenomenological kinetics and is often not resolved
in bulk measurements. In comparison, single-molecule trajec-
tories consist of a chain of correlated reaction events of various
durations and thus provide a unique probe to conformational
fluctuations. This paper presents quantitative analysis of con-
formational dynamics as revealed by the two-event echo in
single-molecule kinetics.

Advances in optical spectroscopy and microscopy have made
it possible to directly measure the optical spectrum along single
molecular trajectories and monitor the molecular dynamics and
chemical kinetics of individual reactive systems.9-17 Early
experiments pioneered by Moerner and co-workers have inves-
tigated the single-molecule emission process in low temperature
glasses, which has since been analyzed by Skinner, Silbey, and
other groups within the framework of the standard two-level
model.18-22 Recent progress has expanded the regime of single-

molecule spectroscopy from low temperatures to room temper-
atures and from glassy systems to reactive chemical systems
and biomolecules. As reviewed by Xie and Trautman,23 new
developments in room temperature single-molecule experiments
include observations of spectral fluctuations, translational and
rotational diffusion motions, conformational dynamics, fluo-
rescence resonant energy transfer, exciton dynamics, and enzyme
reactivity. These new experiments contain rich information that
needs theoretical interpretations and models. Of particular
relevance are recent studies of nonexponential reaction dynamics
in single-molecule kinetics. For example, Hochstrasser co-
workers and Rigler co-workers measured the fluorescence decay
associated with single DNA and tRNA.13,14 Geva and Skinner
applied a stochastic two-state model to interpret biexponential
relaxation in these experiments.24,25 Xie and co-workers dem-
onstrated slow fluctuations in the turn-over rate of cholesterol
oxidation and the dependence of enzymatic turnovers on
previous history.15 This experiment has since inspired several
theoretical studies of memory effects in single-molecule
kinetics.26-28 Weiss and co-workers developed fluorescence
resonance energy transfer as a means to explore conformational
dynamics.16 Theoretically, a well-studied reactive system is
ligand-binding proteins, which exemplify the concept of po-
tential landscapes in protein environments.3,29,30 Wang and
Wolynes explored single-molecule reaction dynamics in fluc-
tuating environments and showed theoretically that the statistics
of single reaction events exhibit intermittency and do not follow
the Poisson law.31 Onuchic et al. explored the possibility of using
replica correlation functions along single-molecule trajectories
to analyze complex energy landscapes.32 Mukamel and co-
workers calculated stochastic trajectories of solvent-controlled
electron transfer and demonstrated non-Poisson kinetics in the
waiting time distribution function.33 Metiu and co-workers
devised a four-state kinetic scheme to model room-temperature
fluorescence of single dye molecules adsorbed on a glass
surface.34 Agmon introduced a diffusion model for the confor-
mational cycle of a single working enzyme.28 Though much
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progress has been made, it remains a challenge to quantify
dynamic disorder in single-molecule kinetics.

It is well appreciated that single-molecule spectroscopy
detects spatial disorder without the usual ensemble averaging
in conventional spectroscopy. An equally important advantage
of single-molecule techniques is the direct observation of slow
variations in reaction kinetics, which are often limited by spectral
resolution in conventional bulk experiments. In single-molecule
experiments, the traced molecular system interconverts between
the dark and bright states so that the observed fluorescence turns
on and off intermittently. Such blinking phenomena have been
observed in a variety of systems, including low-temperature
glasses, quantum dots, molecular aggregates, and biological
molecules. The waiting time of each on-off event corresponds
to the duration of a single-molecule reaction event, and the
statistics of on-off events of various durations record the real-
time trajectory of the single reactive system. In a sense, the
on-off sequence can be viewed as abinary code, which
contains the essential information about reaction mechanisms.
The key to decipher this code is the statistical analysis of on-
off blinking trajectories. The use of single-molecule spectros-
copy for detecting dynamic disorder has been demonstrated
through the measurements of the fluorescence correlation
function, the waiting time distribution function, and the two-
event joint distribution function. Though a clear evidence of
non-Markovian and non-Poisson kinetics, these single-molecule
measurements and related analyses are qualitative and descrip-
tive.

In a recent paper,27 we have developed theoretical tools to
calculate measured single-molecule statistics and have clearly
demonstrated the essential difference between ensemble-aver-
aged bulk measurements associated with the population dynam-
ics of full-reactions and event-averaged single-molecule mea-
surements associated with a sequence of half-reactions. In
particular, the prediction of the focal time in the single-event
distribution function and of the recurrent behavior in the two-
event distribution function reveals the nature of conformational
landscapes. Similar to the photon echo phenomenon, the
recurrence can be understood as the echo signal that is due to
the inhomogeneous distribution of environments. Analogous to
motion narrowing, in the fast modulation limit, the echo signal
vanishes and the single-exponential law is recovered. The height
of the echo signal and its position vary with the modulation
rate and, hence, can be a sensitive probe of the dynamics
disorder resulting from conformational fluctuations.

Because conformational fluctuations are not directly acces-
sible experimentally, dynamic disorder is ahiddenmechanism
that requires quantitative analysis of single-molecule measure-
ments. The prediction of the two-event echo signal in ref 27
holds the promise of characterizing dynamic disorder in single-
molecule kinetics. However, questions remain with regards to
the generality of the recurrence and the quantitative relationship
between the echo and conformational dynamics. This paper will
address these questions as follows: General features of modu-
lated reactions are reviewed and examined in section II.
Phenomenological kinetics, the fluctuation-dissipation relation,
and the detailed balance conditions are formulated and clarified
on the basis of event-averaged single-molecule quantities. Then,
the two-event echo signal is calculated in section III to section
VI respectively for the two-channel model, for the three-channel
model, for the diffusion model, and for the Gaussian stochastic
model. These calculations show that the distribution and the
relaxation rate of conformational fluctuations can be estimated
from the echo time and the echo amplitude. Of the four models

calculated, the stochastic Gaussian model in section VI provides
a general description of rate fluctuations in a similar way as
Kubo’s stochastic line-shape theory and allows other models
to be compared and calibrated.35,36We conclude with a summary
in section VII.

II. General Considerations of Modulated Reactions

Modulated reaction models have been used for analyzing the
fluctuating environment and its effects on chemical kinetics.
Early examples include a series of papers by Hynes and co-
workers37,38on the influence of solvent relaxation on the reaction
rate constant and the Agmon-Hopfield model for ligand binding
to myoglobin.3 A recent application is the analysis of Xie’s
single enzyme turnover experiment.15,27,28

A generic modulated reaction model is theN-conformational-
channel reactive system, illustrated in Figure 1a. A special case
of the generic model is the two-channel model system illustrated
in Figure 1b of this paper. To be specific, the conformational
distribution of the reaction is represented byN discretized
conformational channels, each associated with a reversible
reaction between the dark and bright states, with forward rate
ka,i and backward ratekb,i. The conformational dynamics is
represented by the interconversion rateγa,ij from the jth state
to theith state when the system is in the bright stateA (i.e., the
on state) and the interconversion rateγb,ij from the jth state to
the ith state when the system is in the dark stateB (i.e., the off
state). The different conformational substates are not directly
detectable because only the bright state is monitored by
fluorescence emission. In single-molecule experiments, the on/
off time measures the duration that a single molecule spends in
the bright/dark state, and a trajectory of on-off events records
the dynamics of the single reactive system.

The two-channel model in section III and the three-channel
model in section IV are examples of theN-channel model, the
diffusion-modulated reaction in section V is a continuous version
of the N-channel model, and the stochastic Gaussian model in
section VI can be understood as the small variance approxima-
tion of theN-channel model. In the fast modulation limit, the
N-channel reaction model reduces to a single-channel reaction
with an effective rate constant, whereas in the slow modulation
limit, it reduces to an inhomogeneous average of theN channels.
In the latter limit, the single-molecule system remains ergodic,
but the rate variation within a single reaction event can be
ignored. We briefly review theN-channel reaction model as
formulated in section II of ref 27 and then examine general
features of the model within the context of single-molecule
measurements.

A. Event-Averaged Measurements in Single-Molecule
Kinetics. As formulated in ref 27, a reaction process can be
decomposed into a forward half-reaction, which turns the bright
state to the dark state, and a backward half-reaction, which turns
the dark state to the bright state. The master equation for the
forward half-reaction of theN-conformational substates is
written as

where the vectorPa,i is the survival probability of being in the
ith conformational substate, the matrixΓa,ij ) δijγa,ii - γa,ij,
with γa,ii ) ∑jγa,ji, describes the conformational kinetics in the
bright state, and the matrixKa,ij ) δijka,i describes the reaction
process from the dark state to the bright state. Equation 1 can
be formally solved by the Green’s function

P4 a(t) ) -(Γa + Ka)Pa(t) (1)
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which is aN-dimensional matrix. The Green’s function for the
backward half-reaction,Gb(t), is defined in a similar fashion.
The two half-reactions are related through the forward rate
constant matrixKa and the backward rate constant matrixKb,
yielding the master equation for the full reaction

where [Fa(t),Fb(t)] are the population distribution in the dark
and bright states, respectively. The time-independent solution
to eq 3 defines the equilibrium distribution

which relateFa to Fb and vice versa. It is shown in ref 27 that
population evolution measured in bulk experiments is equivalent
to the summation of all of the possible reaction events along
single-molecule trajectories and the equilibrium ensemble-
averaged quantities in the bulk state can be realized by time-
averaging single-molecule trajectories over long durations. To
explicitly evaluate single-molecule quantities, we introduce the
probability density

whereFa is the normalized stationary flux from the bright state
to the dark state andFb is the normalized stationary flux from
the dark state to the bright state. It follows from eqs 4a and 4b
that ∑KaFa ) ∑KbFb ) N-1, implying that the total flux is a
conserved quantity. Given the stationary fluxes, we can define
the distribution function of single on-time events

and the joint distribution function of on-off events

which will be evaluated explicitly for several different models
in the following sections. These event-averaged quantities cannot
be obtained directly in bulk experiments and must be collected
along a sequence of reaction events of single reactive systems.

B. Phenomenological Chemical Kinetics.The rate constant
used in the phenomenological kinetic description can be
interpreted as the average time that the single molecular system
spends in a macroscopic state. To be specific, the average on-
time is evaluated from the single event distribution function as
〈ta〉 ) ∫0

∞tfa(t) dt ) ∑Ka(Ka + Γa)-2Fa, whereFa is the flux
from the bright state to the dark state. Using the properties of
the equilibrium distribution,KbFb ) (Ka + Γa)Fa and∑Γa ) 0,
we have

The same result can be easily obtained from the average survival
time in the bright state, i.e.,〈ta〉 ) ∫Ga(t) Fa dt. The average
forward rate constant follows as

which is an inhomogeneous average of forward rate constants
and is independent of conformational dynamics. A similar
definition can be derived for the backward reaction,〈kb〉 )
∑KbFb/∑Fb. The ratio of the average forward and backward

Figure 1. (a) Decomposition of theN conformational-channel reaction model into forward and backward half-reactions. (b) The reaction diagram
of the discrete two-channel model. The forward rates areka1 andka2, the backward rates arekb1 andkb2, γ is the conversion rate from channel 1 to
channel 2, andγ′ is the interconversion rate from channel 2 to channel 1.

Ga(t) ) exp[-t(Γa + Ka)] (2)

(F̆a(t)
F̆b(t) ) ) (-Γa - Ka Kb

Ka -Γb - Kb
)(Fa(t)

Fb(t) ) (3)

(Γa + Ka)Fa ) KbFb (4a)

(Γb + Kb)Fb ) KaFa (4b)

(Fa

Fb
)) N (KbFb

KaFa
) (5)

fa(t) ) ∑KaGa(t)Fa ) ∑
i,j

Ka,iGa,ij(t)Fa,j (6)

fab(t2,t1) ) ∑KbGb(t2)KaGa(t1)Fa (7)

〈ta〉 ) ∫0

∞
tfa(t) dt )

∑(Ka + Γa)( 1
Ka + Γa

)2
(Ka + Γa)FaN ) ∑Fa

∑KaFa

(8)

〈ka〉 ) ∑KaFa

∑Fa

(9)
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reaction rate constants satisfies the phenomenological detailed
balance relation

wherena ) ∑Fa andnb ) ∑Fb are respectively the equilibrium
populations of the bright state and of the dark state. Conse-
quently, phenomenological chemical kinetics is simply an
inhomogeneous average of the microscopic reaction rate con-
stants and therefore does not contain any information about
dynamic disorder.

It should be pointed out that relaxation experiments in the
bulk state measure the total rate constant〈k〉 ) 〈ka〉 + 〈kb〉, and
the forward and backward rate constants are obtained through
the detailed balance condition in eq 10. In contrast, single-
molecule experiments separate the forward and backward half-
reactions and uniquely determine the two rate constants.
Furthermore, in the context of single molecules, the detailed
balance relation in eq 10 is self-evident as long-time averaging
along single-molecule trajectories leads to the equilibrium
population, which according to eq 8 defines the average rate
constant.

High order moments of the on-time distribution function can
also be calculated from〈tn〉 ) ∫0

∞f(t)tn dt. Generally, higher
order moments do not satisfy〈tn〉 * 〈t〉n, and the decay process
is not a Poisson process. Though ensemble-averaged experi-
ments can also measure the waiting-time distribution and high-
order moments, such measurements may suffer from spatial
disorder and require special initial preparation in order to apply
the fluctuation-dissipation theorem (see the next subsection).
Even if the waiting-time distribution can be obtained, interpret-
ing memory effects and extracting the modulation rate constant
can be difficult. Therefore, single-molecule measurements are
more reliable and robust, and the information about dynamic
disorder can be inferred from the statistics and correlation of
half-reaction events.

C. Fluctuation-Dissipation Relation. A central result of
the fluctuation-dissipation theorem is Onsager’s regression
hypothesis, which relates the relaxation of macroscopic non-
equilibrium disturbances to the correlation of spontaneous
microscopic fluctuations in an equilibrium system.39 Application
of this theorem to chemical kinetics leads to

where ∆ca(t) ) ca(t) - ca(∞) describes the concentration
relaxation after a disturbance, measured in ensemble-averaged
experiments, andC(t) ) 〈na(t)na(0)〉 - na

2 describes the
occupation correlation function of the equilibrated reaction
system, measured in single-molecule experiments.

We now generalize eq 11 to multichannel reactions. Consider
the fluorescent correlation function measured along a single-
molecule trajectory, starting from an arbitrary initial time on
the trajectory. The probability of starting from a bright state is
na, and the initial on-time is then averaged over the on-time
distribution function, giving

where the propagation matrixGaa(t) is the diagonal component
of the Green’s function solution for the master equation in eq

3. It is shown in ref 27 thatGaa(t) can be expanded in an infinite
series of terms in the sequence of single-molecule events

where the first term represents staying in the bright state without
reaction, the second term represents one sojourn to the dark
state, and so on. To measure the macroscopic relaxation, the
concentration disturbanceca(0) in the bright state is introduced
according to the equilibrium conformational distribution, i.e.

Then, the concentration relaxation follows

whereca(∞) ) nac(0) is the equilibrium concentration of the
bright state. Comparing eq 12 and eq 15, we have

which is the multichannel version of eq 11. Therefore, the
fluctuation-dissipation relation is obeyed under the condition
that the initial population disturbance is distributed according
to the equilibrium ratio of conformational channels. However,
in the relevant scenario discussed in section I, the conformational
modulation rate is slower than or comparable to the reaction
rate. Then, the initially prepared disturbance will not have
enough time to relax in the conformational substates before the
concentration starts to decay, thus, violating the initial condition
in eq 14 necessary for the fluctuation-dissipation relation in
eq 16. Consequently, the initial preparation of relaxation
experiments in the bulk state must be taken into consideration
in interpreting conformational distribution and dynamics.

Finally, we simplify eq 16 by noting that the asymptotic limit
of Gaa(t) is the equilibrium distributionFa. Thus, the propogator
Gaa(t) can be decomposed asGaa(t) ) Fa + G′aa(t), which allows
us to rewrite the fluorescence correlation function as

whereG′aa is the time-dependent part of the Green’s function.
D. Detailed Balance Conditions.The conservation of the

population flux requires an overall balance relation between the
bright state and the dark state, as explicitly given in eq 10.
Although this condition conserves the total flux, it does not
exclude the possibility of a net current between different
conformational channels. To exclude this possibility, the forward
flux and backward flux must be equal

which is a more stringent balance relation than eq 10. It follows
from eqs 4a and 4b that

which are the detailed balance conditions for the equilibrium
conformational distributions in the dark state and the bright state,

〈ka〉na ) 〈kb〉nb (10)

∆ca(t)

∆ca(0)
)

C(t)

C(0)
)

Gaa(t) - na

1 - na
(11)

〈na(t)na(0)〉 )
∫0

∞
Gaa(t)G(t0)Fa dt0

∫0

∞
G(t0)Fa dt0

na ) ∑Gaa(t)Fa (12)

Gaa(t) ) Ga(t) +

∫0

t ∫0

t1Ga(t - t1)KbGb(t1 - t2)KbGa(t2) dt1 dt2 + ... (13)

Fa,i(0) )
Fa,i

∑Fa,i

ca(0) (14)

∆ca(t) ) ∑Gaa(t)Fa,t

na
ca(0) - naca(0) (15)

∆ca(t)

∆ca(0)
)

C(t)

C(0)
) ∑Gaa(t)Fa - na

2

na - na
2

(16)

C(t)

C(0)
) ∑G′aa(t)Fa

nanb
(17)

KaFa ) KbFb (18)

ΓaFa ) ΓbFb ) 0 (19)
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respectively. Furthermore, it is reasonable to assume that the
conformational dynamics are the same for the bright state and
for the dark state, i.e.,Γa ) Γb. Then, we haveFa ∝ Fb and

which means that the ratio between the forward reaction rate
constant and backward rate constant is the same for all of the
conformational channels. Without loss of generality, this paper
analyzes on-off events based on symmetric reactions withKa

) Kb. As is shown in Figure 3 of ref 27, the nature of the two-
event distribution function does not change with the backward
reaction; therefore, the echo from the on-off correlation for
symmetric reactions is similar to the echo from the on-on
correlation for asymmetric reactions.

III. Two-Channel Model

The two-channel model, the simplest scheme of multichannel
reactions, has been used to analyze event-averaged quantities
and to show that the two-event echo has a strong dependence
on the conformational distribution and dynamics.27 The follow-
ing derivation generalizes the results in Sec. 3 of ref 27 in that
the downward rateγ and the upward rateγ′ are different. The
master equation for the forward half-reaction is given in eq 1
with Pa, Ka, andΓ defined as

The Green’s function is given by

where∆a ) xγs
2+kad

2+2kadγd, kad ) (ka2 - ka1)/2, kas ) (ka2

+ ka1)2, γs ) (γ + γ′)/2, γd ) (γ′ - γ)/2, za( ) kas + γs ( ∆a,
Fa(t) ) (e-za-t + e-za+t)/2, andEa(t) ) (e-za-t - e-za+t)/2. These
expressions reduce to eq 14 in ref 27 whenγ ) γ′. The
backward Green’s function can be obtained in the same fashion.
The master equation of the full reaction, given in eq 3, has a
stationary solution

whereC-1 ) (γ + γ′)[γ(ka2 + kb2) + γ′(ka1 + kb1) + (ka1 +
kb1)(ka2 + kb2)]. The equilibrium flux from the bright state to
the dark state isFb ) NKaFa, and that from the dark state to
the bright state isFa ) NKbFb. The normalization factor isN-1

) ∑KbFb ) ∑KaFa ) γ2ka2kb2 + γ′2ka1kb1 + γγ′(ka2kb1 + ka1kb2)
+ γ(ka1 + kb1)ka2kb2 + γ′(ka2 + kb2)ka1kb1. Thus, the distribution
function of on-time events is

where〈‚‚‚〉 denotes an average over the equilibrium population

distribution in the dark state. The distribution function of off-
time events is defined in the same fashion. The joint distribution
function of on-off events is defined as

which can be used to analyze memory effects. In particular,
the difference functionδ(t1,t2) ) fab(t1,t2) - fa(t1)fb(t2) is given
explicitly as

where the initial valueδ(0) is a complicated function of the
reaction rate constants and the interconversion rates.

For simplicity, we consider symmetric reactions withKa )
Kb ) K . In this case, the forward and backward propagators
become the same

where∆a ) ∆b ) ∆, Ea(t) ) Eb(t) ) E(t), andFa(t) ) Fb(t) )
F(t). The equilibrium populations areFa1 ) Fb1 ) γ′/[2(γ +
γ′)] and Fa2 ) Fb2 ) γ/[2(γ + γ′)], which depend only on the
interconversion rates. The difference functionδ(t1,t2) is simpli-
fied to

where the initial value is

with kd ) (k2 - k1)/2 andks ) (k2 + k1)/2. The same-time
difference function follows eq 28 asδ(t) ) δ(t,t). From dδ(t)/
dt ) 0, the focal time of the same-time difference function is
found as

where the difference function is zero,δ(tf) ) 0, and the echo
time is found to be related to the focal time via

where the amplitude of the echo is

with η ) (ks + γs)/∆. From eq 28, we find a minimum along
the t1 axis or thet2 axis at the echo time, respectively.

fab(t1,t2) ) ∑KbGb(t2)KaGa(t1)Fa )

〈Kbe
-(Kb+Γ)t2Kae

-(Ka+Γ)t1Kb〉
〈Kb〉

(25)

δ(t1,t2) )

δ(0)
[∆aFa(t1) - (ka,s + γs)Ea(t1)][∆bFb(t2) - (kb,s + γs)Eb(t2)]

∆a∆b

(26)

G(t) )

e-(K+Γ)t 1
∆(∆F(t) + (kd + γd)E(t) γ′E(t)

γE(t) ∆F(t) - (kd + γd)E(t) )
(27)

δ(t1,t2) )

δ(0)
[∆F(t1) - (ks + γs)E(t1)][∆F(t2) - (ks + γs)E(t2)]

∆2
(28)

δ(0) )
kd

2(ks
2 - kd

2)(γs
2 - γd

2)

(kdγd - ksγs)
2

(29)

tf ) 1
2∆

ln
z+

z-
) 1

2∆
ln

ks + γs + ∆
ks + γs - ∆

(30)

te ) 2tf (31)

δ(te) ) δ(0)(η - 1
η + 1)2η

(32)

Kb ∝ Ka (20)

Pa(t) ) (Pa1(t)
Pa2(t) ), Ka ) (ka1 0

0 ka2
),

Γ ) Γa ) Γb ) (γ -γ′
-γ γ′ ) (21)

Ga(t) ) e-(Ka+Γ)t )

1
∆a

(∆aFa(t) + (kad + γd)Ea(t) γ′Ea(t)
γEa(t) ∆aFa(t) - (kad + γd)Ea(t) )

(22)

(Fa1

Fa2

Fb1

Fb2
) ) C (γ′[γkb2 + γ′kb1 + kb1 (ka2 + kb2)]

γ[γkb2 + γ′kb1 + kb2 (ka1 + kb1)]
γ′[γka2 + γ′ka1 + ka1 (ka2 + kb2)]
γ[γka2 + γ′ka1 + ka2 (ka1 + kb1)]

) (23)

fa(t) ) ∑KaGa(t)Fa )
〈Kae

-(Ka+Γ)tKb〉
〈Kb〉

(24)
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The same-time difference functionδ(t) is a complicated
function of reaction rate constants and conformational inter-
conversion rates. To facilitate our analysis, we consider several
special cases.

1. Figure 2 is a two-dimensional contour plot of the difference
distribution function,δ(t1,t2), for k1 ) 2, k2 ) 4, andγ ) γ′ )
0.5. As predicted by eq 28, the contour clearly shows a minimum
at tf ) 0.287 and a maximum atte ) 0.575 along the diagonal
axis, as well as a minimum at the focal timete along thet1 and
t2 axis.

2. When the reactive time scale is relatively fast, i.e.,kd,γ ,
ks, we have

where the approximate relation directly measures the average
modulation rate for a given rate constant. In Table 1, forks )
3.0 andkd ) 0.5, the echo time predicted from eq 33,te,pred, is
compared with the echo time measured from the same-time
distribution function,te,meas. For a wide range of modulation
rates, these two sets of echo times agree within an error less
than 10%.

3. Equation 32 gives the amplitude of the echo, which, under
the condition ofkd < γ < ks, can be shown to be proportional
to the variancekd

2, i.e.

In Figure 3, the same-time difference distribution functionδ(t)
is plotted forks ) 2.5 andγ ) γ′ ) 2.0. As seen from the plot,

the echo amplitude increases proportionally withkd
2, even for

relatively largekd
2. The plot also confirms that the focal time

is half the echo time and that both times are invariant tokd
2.

4. In the case of equal interconversion rates,γ′ ) γ, eq 32
still applies withδ(0) ) kd

2(ks
2 - kd

2)/ks
2 and η ) (ks + γ)/

xkd
2+γ2. It can be shown that the amplitude of the echo

δ(te) reaches its maximum atηmax ) xks
2+kd

2/kd when

which is the critical conformational interconversion rate for the
maximal echo. Figure 4 is a plot of the same-time difference
distribution function fork1 ) 1, k2 ) 4, and several values of
γ. The maximal echo occurs atγ ) 0.9, which follows the
critical condition in eq 35. It can also be noticed in Figure 4
that the focal time and the echo time decrease asγ increases,
as predicted by eq 33.

5. In the slow modulation limit,γ,γ′ , k1,2, which is a pos-
sible scenario for sluggish environments, eq 28 is simplified to

Figure 2. Two-dimensional contour plot of the joint distribution
function of two eventsf(t1,t2) - f(t1)f(t2) for the two-channel model
with k1 ) 2, k2 ) 4, andγ ) γ′ ) 0.5. At t ) te, δ(t1,t2) reaches its
maximum along the diagonal and its minimum along each time axis.

TABLE 1: Echo Time in the Two-Channel Model with k1 )
2.5 andk2 ) 3.5a

γ 0 0.5 1.0 1.5 2.0 2.5
te,pred 0.667 0.571 0.500 0.444 0.400 0.364
te,meas 0.645 0.555 0.485 0.440 0.390 0.375
error 3.4% 2.9% 3.1% 0.9% 2.6% 3.7%

a te,predis evaluated fromte,pred) 2/(〈k〉 + γ), andte,measis obtained
from the numerical calculation ofδ(t). γ ) γ′ is the interconversion
rate. The error is defined as|te,pred- te,meas|/te,meas× 100%.

te ) 1
∆

ln[ks + γs + ∆
ks + γs - ∆] ≈ 2

ks + γs
(33)

δ(te) ∝ kd
2 (34)

Figure 3. Same-time difference function in the two-channel model
whereγ ) γ′ ) 2.0 andks ) 2.5. The echo time predicted byte ) 2tf
≈ 2/(〈k〉 + γ) is confirmed with small error at largekd wherekd , ks

is not strictly followed. The amplitude of the echo is approximately
proportional to the variance in the rate constant.

Figure 4. Same-time difference function in the two-channel model
whenγ ) γ′, k1 ) 1, andk2 ) 4. The maximal echo is reached when
γ ) kd

2/ks. As predicted byte ) 2tf ≈ 2/(〈k〉) + γ), the echo time
decreases as the modulation rateγ increases.

γ )
kd

2

ks
)

〈(δk)2〉
〈k〉

(35)
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where Rk ) k2/k1 and Rγ ) γ′/γ. With k1 and k2 fixed, the
maximal echo occurs at

which implies a detailed balance relationship between the two
channels,k1F1 ) k2F2. As shown in Figure 5, in the slow
modulation limit,tf andte are fixed at ln[k2/k1]/(k2 - k1) and 2
ln[k2/k1]/(k2 - k1), respectively. The maximal echo is achieved
when the ratio in eq 37 is satisfied atRγ ) 4. It can be argued
from this example that memory effects of conformational
modulation can be measured by the variation of the reaction
rate constants〈(δk)2〉 and the variance of the flux〈(δkF)2〉. To
have the maximal echo,〈(δk)2〉 should be maximized, whereas
〈(δkF)2〉 should be minimized.

IV. Three-Channel Model

To explore the generality of the recurrent behavior of the
two-event distribution function, we study a cyclic three-channel
model with

Numerical calculations clearly demonstrate the basic features
consistent with our observations in the two-channel model:

1. Figure 6 is a contour of the difference functionδ(t1,t2)
calculated for the three-channel model with the modulation rate
γ ) 0.5 and the three reaction ratesk1 ) 2.5,k2 ) 3.0, andk3

) 3.5, respectively. As seen from the two-dimensional contour,
the diagonal distribution has a minimum at the focal timetf
and a maximum at the echo timete ) 2tf, whereas bothδ(t,0)
andδ(0,t) have a minimum at the echo timete.

2. In Table 2,te,predcalculated fromte ≈ 2/(〈k〉 + γ) agrees
well with te,measmeasured by numerical calculations, for the
three-channel model withk1 ) 2.5,k2 ) 3.0, andk3 ) 3.5. The
error is within 10% over a range ofγ.

3. Figure 7 shows the linear dependence of the amplitude of
the two-event echo on〈(δk)2〉 for the three-channel model
described earlier. Again, the echo time and the focal time are
invariant to〈(δk)2〉 and follow the estimationte ) 2/(〈k〉 + γ).

4. Figure 8 shows the same-time difference function for
several values ofγ. As predicted, the maximal echo occurs at
γ ≈ kd

2/〈k〉 and the focal time is half the echo time and decreases
asγ increases.

We also calculated other three-channel and four-channel
models with various parameters and geometries and found essen-
tially the same behavior. Thus, we believe that these features
are universal for discretized multiple-channel models. In the
next section, we will investigate the diffusion reaction model.

V. Diffusion Model

The diffusion-modulated reaction was first introduced by
Agmon and Hopfield to describe the ligand binding in myo-
globin, and was analyzed by Zwanzig and elaborated by Wang
and Wolynes3,29,31,40 Similar models have been applied for
studying solvent-controlled electron transfer.41-45 The diffusion
reaction model describes a reactive system modulated by a

diffusive coordinate, which represents collective environmental
motions. The diffusion coordinate is described by the Smolu-
chowski operator

whereλ characterizes the relaxation time scale of the diffusive

δ(te) )
(k2 - k1)

2

4

RkRγ

(Rk + Rγ)
2(Rk - 1

Rk + 1)2Rk

(36)

Rγ ) Rk or
k2

k1
) γ′

γ
)

F1

F2
(37)

Γ ) (2γ -γ -γ
-γ 2γ γ
-γ -γ 2γ ); Ka ) Kb ) (k1 0 0

0 k2 0
0 0 k3

) (38)

Figure 5. Conformational conversion rate dependence of the two-
event echo in the two-channel model withk1 ) 1 andk2 ) 4. In this
slow modulation limit, γ and γ′ are the downward and upward
interconversion rates, respectively, andγ,γ′ , k1,2. Rγ is the ratio of
the two interconversion rates,Rγ ) γ′/γ.

Figure 6. Two-dimensional contour plot ofδ(t1,t2) for the three-channel
model withk1 ) 2.5,k2 ) 3, k3 ) 3.5, andγ ) γ′ ) 0.5. It is clearly
shown thatte z 2tf ≈ 2/(〈k〉 + γ) and that bothδ(0,t) andδ(t,0) reach
their minima att ) te.

TABLE 2: Echo Time in the Three-Channel Model with k1,
k2, and k3 as 2.5, 3.0, and 3.5, Respectivelya

γ 0 0.5 1.0 1.5 2.0 2.5
te,pred 0.667 0.571 0.500 0.444 0.400 0.364
te,meas 0.665 0.550 0.465 0.410 0.370 0.335
error 0.3% 3.8% 7.5% 8.3% 8.1% 8.7%

a te,predis evaluated fromte,pred) 2/(〈k〉 + γ), andte,measis obtained
from the numerical calculation ofδ(t). The error is defined as|te,pred-
te,meas|/te,meas× 100%.

L̂D ) λθ ∂

∂x ( ∂

∂x
+ x

θ) (39)
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solvent,θ is the variance of the equilibrium distribution of the
diffusion coordinate, andλθ ) D is the diffusion constant. The
relaxation rateλ in the diffusion model is equivalent to the
interconversion rateγ in the two-channel model. The reaction
ratek(x) is related to the diffusion coordinatex by k(x) ) κx2,
with κ the proportionality coefficient, so that the survival
probability satisfies

The corresponding Green’s function is derived in Appendix A,
giving

wheres ) x1+4κθ/λ represents the coupling of the two time
scales associated with diffusion and rate processes. The equi-
librium population obtained fromL̂DFeq(x) ) 0 is a Gaussian

function,Feq(x) ) e-x2/(2θ)/x2πθ; hence, we have〈k〉 ) κθ and
〈(δk)2〉 ) 2κ2θ2.

To study the master equation for the full rection, we consider
the symmetric case, where the bright and dark states, labeled
asa andb, respectively, have the same relative rate:

With the Green’s function in eq 41, we obtain the distribution
function of on-time events

and the joint distribution function of on-off events

whereæ(t) ) [(s + 1)eλst + (s - 1)e-λst]/2 andψ(t) ) [(s +
1)eλst - (s - 1)e-λst]/2. The same-time difference functionδ(t)
) f(t,t) - f(t)2 is given by

with the initial valueδ(0) ) 6κ2θ2.
These single-molecule quantities are complicated functions

of κθ/λ. We examine their behavior in several limiting cases.
1. In the fast modulation limit,λ f ∞, the distribution

functions become

thus resulting in single-exponential kinetics with an effective
rate constantkeff ) κθ.

2. In the slow modulation limit,λ f 0, the Green’s function
simplifies to

Then, the event averaged distribution functions decay by power
law

which are a result of inhomogeneous averaging of the rate
distribution. Because the fluxk(x)Feq(x) is distributed aroundx

Figure 7. Same-time difference functionδ(t) in the three-channel
model with 〈k〉 ) 3.0 andγ ) 0.5. It is clearly shown that the two-
event echo increases askd

2 increases.

Figure 8. Same-time difference functionδ(t) in the three-channel
model with〈k〉 ) 3.0 andkd

2 ) 1.0. It is clearly shown that the echo
time decreases asγ increases. The maximum echo occurs atγ ≈
kd

2/〈k〉 ≈ 0.3, as predicted in eq 35.

∂

∂t
P(x,t) ) -k(x) P(x,t) + L̂DP(x,t) (40)

G(x,y,t) ) e-λ(s-1)t/2[ s

2πθ(1 - e-2λst)]1/2

exp[-
s(x - ye-λst)2

2θ(1 - e-2λst)
+

(s - 1)(x2 - y2)
4θ ] (41)

(F̆a(x,t)
F̆b(x,t) ) ) (-k(x) - L̂D k(x)

k(x) -k(x) - L̂D
)(Fa(x,t)

Fb(x,t) ) (42)

f(t) )
〈∫-∞

∞ ∫-∞

∞
dx dy k(x)G(x,y,t)k(y)〉

〈k(y)〉
)

xsκθ[2s2 + æ(t)2]

[æ(t/2)ψ(t/2)]5/2
exp[λt

2] (43)

f(t,t) )
〈∫-∞

∞ ∫-∞

∞ ∫-∞

∞
dx dy dz k(x)G(x,y,t)k(y)G(y,z,t)k(z)〉

〈k(z)〉
)

κ
2θ2[(æ(2t) + 2s)2 + 6s2]

xsæ(t)3/2ψ(t)7/2
exp[λt] (44)

δ(t) ) κ
2θ2[(æ(2t) + 2s)2 + 6s2

xsæ(t)3/2ψ(t)7/2
-

s(æ(t)2 + 2s2)2

æ(t/2)5ψ(t/2)5 ] exp[λt]

(45)

f(t) f κθ exp[-κθt] (46a)

f(t,t) f κ
2θ2 exp[-2κθt] (46b)

δ(t) ≈ 0 (46c)

G(x,y,t) ) δ(x - y) exp[-κx2t] (47)

f(t) f
3κθ

(1 + 2κθt)5/2
(48a)

f(t,t) f
15κ2θ2

(1 + 4κθt)7/2
(48b)

δ(t) ≈ 15κ2θ2/(1 + 4κθt)7/2 - 9κ
2θ2/(1 + 2κθt)5 (48c)
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) 0, the diffusion model in the slow modulation limit effectively
reduces to a single channel, and therefore, no echo is observed
in this limit. However, if a sufficiently large bias is introduced
into the rate constant,k(x) ) κ(x - xb)2, the diffusion model
maps to a two-channel model and the echo can be observed in
the inhomogeneous limit.

3. In the long time regime,f(t) and f(t,t), both decay
exponentially as

with the effective rate constantkeff ) λ(s - 1)/2.
4. In the short time regime, we expand the distribution

functions to first order int

which predict the initial decay because of the reaction and
diffusion processes.

To facilitate calculations, we use 1/κθ as the unit time and
normalize functionδ(t) by δ(0). Thus, the reduced same-time
difference function reads

wheret̃ ) tκθ, æ̃(j̃) ) [(s + 1)e4st̃/(s2-1) + (s - 1)e-4st̃/(s2-1)]/2
andψ̃(t̃) ) [(s + 1)e4st̃/(s2-1) - (s - 1)e-4st̃/(s2-1)]/2. As shown
in Figure 9, the same-time distribution functionδ̃(t̃) has an echo
in the region 1< s < 2.81 and reaches its maximum amplitude
at s ) 1.92. In the slow modulation limit, wheres is large,δ̃(t̃)
reduces to power law decay and no recurrence is found. In the
fast modulation limit, wheres approaches 1, reaction kinetic
becomes single exponential andδ̃(t̃) vanishes. It can also be
observed in Figure 9 that the relation between the focal time
and the echo time,te ) 2tf, remains valid and that the maximal
echo occurs atλ ≈ 〈(δk)2〉/〈k〉 as predicted by eq 35. The echo
time, listed in Table 3, confirms the prediction ofte ) 2/(〈k〉 +
γ). The two-dimensional contourδ(t1,t2) (not included here)
shows the same features as for the multiple-channel model.
Thus, the conformational fluctuation rate in the diffusion model
has a strong influence on the two-event echo signal in the same-
time difference function. However, because of its single-channel
nature in the inhomogeneous limit, the diffusion model predicts
weaker echo signals than the multiple-channel model.

VI. Stochastic Rate Model

The analysis of on-off sequences is usually based on specific
kinetic schemes and assumed functional forms. Different

versions of the discretized multiple-channel model include the
two-channel two-state scheme, two-channel three-state scheme,
and three-channel two-state scheme. In the continuous limit, a
diffusion coordinate is introduced to modulate the rate con-
stant: the exponential dependence was used to describe diffu-
sion-controlled ligant binding and more recently enzymatic
reactions,28 the localized population sink was used for solvent-
controlled electron transfer, and the quadratic dependence was
used to describe stochastic gating.31 To analyze and compare
single-molecule quantities predicted by various reaction schemes
in a unified framework, we adopt a general approach based on
the stochastic rate model and the cumulant expansion.46,47 In
this model, environmental fluctuations introduce time-depen-
dence in the rate constant, which is treated as a stochastic
variable. Each realization of the time-dependent rate constant
defines a rate process, and single molecular measurements can
be obtained after taking the stochastic average of rate fluctua-
tions. This approach is inspired by Kubo’s stochastic line-
shape theory because the rate constant in the rate model and
the frequency in the Kubo’s model are both treated as stochas-
tic variable.35 In principle, the stochastic properties of the rate
are completely described by all of the multiple time cumu-
lants. In practice, we truncate the cumulant expansion to second
order in time variables, thus yielding aGaussian stochastic rate
model. The analysis of single-molecule quantities in the Gauss-
ian approximation is similar to the study of spectral diffu-
sion at cryogenic temperatures by Silbey and co-workers and
Skinner and co-workers.48,49 Then, various reaction schemes
can be mapped to the Gaussian stochastic rate model char-
acterized by average rate constants and rate correlation func-
tions, and all single-molecule quantities can be evaluated
accordingly.

A. Cumulant Expansion of the Stochastic Rate Model.The
rate constant, modulated by slow environmental fluctuations,

Figure 9. s dependence of the same-time difference functionδ(t) in
the continuous diffusion model.s ) x1+4κθ/λ, reflects the competi-
tion between the time scales of the diffusion and the rate process.δ(t)
is normalized byδ(0), and the time variable is scaled by 1/(κθ).

TABLE 3: Echo Time in the Diffusion Model with Kθ ) 1.0a

λ 2.5 2.5 3.0 3.5 4.0
te,pred 0.667 0.571 0.500 0.444 0.400
te,meas 0.615 0.560 0.520 0.485 0.455
error 8.5% 2.0% 3.8% 8.5% 12%

a te,pred is calculated byte,pred ) 2/(〈k〉 + λ), and te,measis obtained
from the numerical calculation ofδ̃(t̃) in eq 51. The error is defined as
|te,pred- te,meas|/te,meas× 100%.

f(t) f
8xsκθ
(s + 1)3

exp[- λ
2
(s - 1)t] (49a)

f(t,t) f
8κ

2θ2

xs(s + 1)3
exp[-λ(s - 1)t] (49b)

δ(t) ∝ exp[-λ(s - 1)t] (49c)

f(t) f 3κθ(1 - 4
3
λt - 5κθt + O[t2]) (50a)

f(t,t) f 15κ2θ2(1 - 16
5

λt - 14κθt + O[t2]) (50b)

δ(t) ≈ 6κ
2θ2(1 - 20

3
λt - 30κθt + O[t2]) (50c)

δ̃( t̃) )
δ(t)

δ(0)
) e4t̃/(s2-1)

6 [(æ̃(2t̃) + 2s)2 + 6s2

xsæ̃( t̃)3/2ψ̃( t̃)7/2
-

s(æ̃( t̃)2 + 2s2)2

æ̃( t̃/2)5ψ̃( t̃/2)5] (51)
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can be treated as a stochastic variable. For the forward half-
reaction

the survival probability distribution function is given by

wherek(τ) is the stochastic rate variable. Cumulant expansion
of eq 53 leads to

whereøn(τ1,...,τn) is thenth order correlation function defined
as

These cumulant functions contain all of the information neces-
sary to describe the dynamics of modulated rate processes; thus,
all of the single-molecule quantities can be expressed in
cumulants with different weights. Some examples are given in
Appendices B and C.

For a stationary Gaussian process,øk(t1,...,tk) ) 0 (for k > 2)
andø2(t1,t2) ) ø(t1 - t2), the survival probability is simplified
to

whereM(t) ) ∫0
t (t - τ)ø(τ) dτ is the second-order cumulant.

The distribution function of single on-time events is related to
the survival probability by

which, for the stationary Gaussian case, becomes

Because the single-event distribution function is always finite,
〈k〉 g ∫0

t (1 - τ/t)ø(τ) dτ has to be satisfied at any timet.
Especially, whent approaches infinity,〈k〉 g ∫0

∞ø(τ) dτ, i.e.,
there exists a finite time scale for conformational fluctuations.
Given the finite time scale for conformational fluctuations,τc,
the condition for the second-order cumulant expansion can be
established as〈k〉 g ø(0)τc, implying a small variance of reaction
rates and a short correlation time for conformational fluctuations.

The stochastic rate model is flexible in describing single-
molecule measurements. With a proper choice ofø(t), the model
can reproduce power-law and other nonexponential time de-
pendence. The second cumulant expansion of the model,
however, is only accurate for describing Gaussian processes.
The deviation of real measurements from the second cumulant
expansion is an indication of the non-Gaussian behavior.

B. Two-Event Echoes in the Gaussian Approximation.To
simplify our calculations, we consider symmetric reactions with
kf(t) ) kb(t) ) k(t). In this case, the single-event and two-event
distribution functions can be expressed as

For further simplification, we truncate the cumulant expansion
to second order, giving

whereL(t) ) Ṁ(t) ) ∫0
t ø(τ) dτ. The detailed derivation of eqs

60a and 60b can be found in Appendix B. Other related single-
molecule quantities are defined in Appendix C.

In the short time limit, whenL(t) , ø(t)/〈k〉, we have

which indicates thatø(t) is a direct measure of memory effects
in the initial decay regime.

The focal time and the echo time in the same-time difference
function can be derived from the Taylor expansion of eqs 60a
and 60b. We assume the exponential decay form ofø(t) )
ø(0)e-2γt for simplicity and the small variance condition of
ø(0) , 〈k〉2, i.e., kd , ks, so thatL(t) ) ø(0)(1 - e-2γt)/(2γ),
M(t) ) ø(0)(e-2γt - 1 + 2γt)/(4γ2). Then, to first order in the
small parameterø(0)/〈k〉2, we have

and the same-time difference function

on98
k(τ)

off (52)

P(t)) 〈exp(-∫0

t
k(τ) dτ)〉 (53)

P(t) ) exp[∑
n)1

∞ (-1)n

n!
∫0

t
dτ1 ‚‚‚∫0

t
dτn øn(τ1,...,τn)] (54)

ø1(t) ) 〈k(t)〉

ø2(t1,t2) ) 〈k(t1)k(t2)〉 - 〈k(t1)〉〈k(t2)〉

ø3(t1,t2,t3) ) 〈k(t1)k(t2)k(t3)〉 - 〈k(t1)〉〈k(t2)k(t3)〉 -
〈k(t2)〉〈k(t1)k(t3)〉 - 〈k(t3)〉〈k(t1)k(t2)〉 +

2〈k(t1)〉〈k(t2)〉〈k(t3)〉

... (55)

P(t) ) exp[-〈k〉t + M(t)] (56)

F(t) ) -
dP(t)

dt
(57)

F(t) ) (〈k〉 -∫0

t
ø(τ) dτ) exp[-〈k〉t + M(t)] (58)

f(t) )
〈k(t) exp[-∫0

t
k(τ) dτ]k(0)〉

〈k〉
(59a)

f(t1,t2) )

〈k(t1+t2) exp[-∫t1

t1+t2k(τ) dτ]k(t1) exp[-∫0

t1k(τ) dτ]k(0)〉

〈k〉
(59b)

f(t) )
[〈k〉 - L(t)]2 + ø(t)

〈k〉
exp[-〈k〉t + M(t)] (60a)

f(t1,t2) ) {〈k〉2 - 〈k〉[2L(t1 + t2) + L(t1) + L(t2)] + ø(t1) +

ø(t2) + ø(t1 + t2) + 2L(t1 + t2)[L(t1) + I(t2)] + L(t1 +

L2)
2 - 1

〈k〉
[ø(t1)L(t1 + t2) + ø(t2)L(t1 + t2) +

ø(t1 + t2)L(t1) + ø(t1 + t2)L(t2) + L(t1 + t2)L(t1) +

L(t1 + t2)L(t2)]} exp[-〈k〉(t1 + t2) + M(t1 + t2)] (60b)

f(t1,t2) - f(t1)f(t2)

f(t1)f(t2)
≈

ø(t1 + t2) -
ø(t1)ø(t2)

〈k〉2

(〈k〉 +
ø(t1)

〈k〉 )(〈k〉 +
ø(t2)

〈k〉 )
tf0
≈ ø(t1 + t2)

〈k〉2

(61)

f(t) ≈ 〈k〉{1 +
ø(0)

〈k〉2[e-2γt -
〈k〉
γ

(1 - e-2γt) +

〈k〉2

4γ2
(e-2γt + 2γt -1)]} exp(-〈k〉t) (62a)

f(t,t) ≈ 〈k〉2{1 -
ø(0)

〈k〉2[e-4γt + 2e-2γt +
〈k〉
γ

(e-4γt +

e-2γt - 2) +
〈k〉2

4γ2
(e-4γt + 4γt -1)]} exp(-2〈k〉t) (62b)
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The minimum ofδ(t) can be found at

and the maximum at

The amplitude of the echo proportional to the variance of the
rate constant,δ(te) ∝ ø(0). Thus, we obtain the same expressions
for te andtf as those derived for the two-channel model in section
III. In Table 4, the echo time predicted from eq 60b,te,pred, is
compared with the echo time calculated from the same-time
distribution function,te,meas. Good agreement is found over a
wide range of modulation ratesγ between these two sets of
echo times.

In Figure 10, the same-time difference functionδ(t) calcu-
lated from eqs 60a and 60b is plotted forks ) 〈k〉 ) 3.0 and
γ ) 0.5. For several values ofø(0) ) kd

2 ) 〈δk2〉, the focal
time and the echo time remain constant, but the amplitude of
the echo increases proportionally withø(0). In Figure 11, the
echo time is shown to be twice the focal time and decreases
with the modulation rateγ accordingte ) 2tf ) 2/(〈k〉 + γ).
The maximal echo is found aroundγ ) ø(0)/〈k〉. These features
are consistent with our observations in the multiple-channel
kinetic model.

C. Mapping to the Gaussian Stochastic Rate Model.We
now map the discrete two-channel model to the Gaussian
stochastic rate model. For simplicity, we consider a two-channel
model with symmetric half-reactions,Ka ) Kb, and with equal
conformational states,γ ) γ′. In this model, the survival
probability function isP(t) ) [(∆ + γ)e-Z-t + (∆ - γ)e-Z+t]/
(2∆).27 Matching the survival probability function with eq 56,
we have, in the second cumulant approximation scheme,〈k〉 )
ks and

which gives the varianceø(0) ) kd
2 and the long-time correlation

ø(t) ∝ exp(-2∆t). Figure 12 is a two-dimensional plot ofδ-
(t1,t2) for the stochastic Gaussian model corresponding to a two-
channel model withk1 ) 2, k2 ) 4, andγ ) 0.5. In comparison
with Figure 13, the stochastic Gaussian model reproduces all
of the essential features of the difference function for the
corresponding two-channel model. To be quantitative, the
distribution functions of single events in Figure 13 agree very
well by matching the survival probability. The same-time
distribution functions calculated from the two models are
compared in Figure 14, where the stochastic rate model is shown
to give reasonable approximations to the position of the echo,
the amplitude of the echo, and the shape of the same-time
difference function. The slight deviations are believed to be the
approximate nature of the second-order cumulant expansion,
i.e., non-Gaussian effects.

VII. Summary

The aim of this paper is to establish a quantitative relation
between the two-event echo and conformational fluctuations.
The primary findings of our analysis can be summarized as
follows:

1. TheN-channel kinetic scheme provides a generic model
for understanding the influence of conformational fluctuations
on reaction dynamics. On the basis of this model, ensemble-
averaged measurements can be formulated as a long-time
average along single-molecule trajectories. As a result, phe-
nomenological chemical kinetics is shown to be an inhomoge-
neous average of reaction rate constants and thus does not
contain any information about dynamic disorder. It is also shown
that the fluctuation-dissipation relation is obeyed on the single-
molecule level only if the initial nonequilibrium disturbance is
prepared according to conformational equilibrium. This condi-

δ(t) ≈ ø(0)(〈k〉 + 2γ - 〈k〉e2γt

2γ )2

exp(-2〈k〉t) (63)

tf ) 1
2γ

ln[〈k〉 + 2γ
〈k〉 ] ≈ 1

〈k〉 + γ
(64)

te ) 1
γ

ln[〈k〉 + 2γ
〈k〉 ] ≈ 2

〈k〉 + γ
(65)

ø(t) )
∆2kd

2

[γ sinh(∆t) + ∆ cosh(∆t)]2
(66)

TABLE 4: Echo Time in the Stochastic Rate Model with 〈k〉
) 3.0 and ø(0) ) 0.25a

γ 0 0.5 1.0 1.5 2.0 2.5
te,pred 0.667 0.571 0.500 0.444 0.400 0.364
te,meas 0.665 0.575 0.515 0.465 0.425 0.395
error 0.3% 0.7% 2.9% 4.5% 5.9% 7.8%

a te,predis calculated withte,pred) 2/(〈k〉 + γ), andte,measis obtained
from numerical calculation of the stochastic rate model withø(t) )
ø(0)-2γt. The error is defined as|te,pred- te,meas|/te,meas× 100%.

Figure 10. Two-event echo in the stochastic rate model with〈k〉 )
3.0, γ ) 0.5, andø(t) ) ø(0)e-2γt. The echo timete ≈ 2/(〈k〉 + γ) is
approximately fixed when varyingø(0), and the echo increases with
ø(0).

Figure 11. Two-event echo in the stochastic rate model with〈k〉 )
3.0, ø(0) ) 1.0, andø(t) ) ø(0)e-2γt. The echo timete ≈ 2/(〈k〉 + γ)
decrease asγ increases. The maximum amplitude of the echo is flat
within an interval of γ. The position of the maximal echo is
approximately the medium of this interval,γ ≈ 0.4.
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tion imposes a difficult condition on the use of ensemble-
averaged measurements to probe conformational fluctuations.
In addition, a more stringent detailed balance condition can be
established to exclude the possibility of microscopic current
between different conformational channels.

2. Calculations of four different models (the two-channel
kinetic model, the three-channel kinetic model, the diffusion
reaction model, and the stochastic rate model) confirm the
universal features of the two-event joint distribution function
and its quantitative relationship to conformational dynamics.
In the two-dimensional plane ofδ(t1,t2), there is a local minimum
at the focal time,tf, and a local maximum at the echo time,te,
along the diagonal cross-sectionδ(t,t) and there is a minimum
at the echo time along both thet1 axis and thet2 axis. The echo
time is twice the focal time,te ) 2tf, and can be approximated,
within 10% error, byte ) 2/(〈k〉 + 〈γ〉). This approximate
relation is independent of the backward reaction, the distribution

of the reaction rate constant, and other variables, thus resulting
in a direct estimation of the average relaxation rate of confor-
mational fluctuations, for a given ensemble-averaged reaction
rate constant.

3. The correlation between the amplitude of the echo and
the distribution of reaction rate constants provides useful
information about conformational landscapes. The amplitude
of the echo is shown to be proportional to the variance of the
reaction rate constant,δ(te) ∝ 〈δk2〉. For a given set of reaction
rate constants, the maximum echo occurs at approximatelyγ
≈ 〈(δk)2〉/〈k〉, which is proportional to the variance of the
reaction rate constant. In the slow modulation limit, the ex-
istence of the two-event echo can be related to the individu-
ality and distinctiveness of conformational landscapes. The
maximum echo occurs when the difference between rate
constants associated with different conformational channels is
maximized, whereas the difference between reactive fluxes is
minimized.

4. The stochastic rate model provides a complete and unified
description of the stochastic nature of the fluctuating rate
constant. Its second-order cumulant expansion, on the basis of
the small variance assumption, leads to the Gaussian stochastic
rate model that serves as a first-order model for analyzing
single-molecule trajectories. Similar to Kubo’s stochastic line-
shape theory, the stochastic Gaussian model describes the
fluctuating rate process with an average rate constantks ) 〈k〉
and a rate correlation functionø(t) ) 〈[k(t) - ks][k(0) - ks]〉.
The resulting formalism reproduces the recurrent behavior in
the two-event joint distribution function. Through the mapping
to the Gaussian stochastic rate model, various modulated
reaction schemes can be compared and characterized in a unified
framework.

These results provide a quantitative tool to interpret and
analyze event-averaged single-molecule quantities. Though a
single time scale for conformational fluctuations is assumed for
the simplicity of calculations, applications of current analysis
to power-law decay and other nonexponential relaxation pro-
cesses can also be formulated. Furthermore, conformational
relaxation is reflected not only in modulated reactions but also
in other dynamic processes, including diffusion and quantum
dissipation. Theoretical analysis of possible single-molecule

Figure 12. Two-dimensional contour plot of the joint distribution
function of two eventsδ(t1,t2) ) f(t1,t2) - f(t1)f(t2) in the stochastic
rate model withk1 ) 2, k2 ) 4, andγ ) γ1 ) γ2 ) 0.5. f(t) andf(t1,t2)
are calculated by eqs 60a and 60b, respectively, withø(t) in eq 66
obtained from matching the survival probability.

Figure 13. Comparison of the single-event distribution functions in
the two-channel model and in the corresponding stochastic rate model
with k1 ) 2, k2 ) 4, andγ ) 0.5. The single-event distribution function
f(t) in stochastic rate model is calculated by eq 60a withø(t) given in
eq 66.

Figure 14. Comparison of the same-time difference functionδ(t) in
the two-channel model and in the corresponding stochastic rate model
with k1 ) 2, k2 ) 4, andγ ) 0.5. The stochastic rate model gives
good approximations to the echo time, the echo height, and the shape
of δ(t).
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measurements of these processes is an interesting topic for future
studies.50-53
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Appendix A: The Green’s Function in the Diffusion
Model

Equation 41 satisfies the Smoluchowski equation with a
quadratic sink

with the initial condition

Applying the transformation

whereR ) (s - 1)/(4θ), s ) x1+4κθ/λ, we find thatg(x,y,t)
satisfies the Fokker-Planck equation for the Ornstein-Uhlen-
beck process with a constant potential sink

with the initial condition

Further, we rewriteg(x,y,t) as

whereg1(x,y,t) is the Green’s function for the standard Ornstein-
Ulenbeck process.

with γ ) λs and D ) λθ. The standard solution to eq A7 is
given in ref 54 as

Therefore, the Green’s function for the Ornstein-Uhlenbeck
process in a constant potential sink is

which, after the transformation in eq A3, leads toG(x,y,t) in eq
41. The same result was obtained by G. H. Weiss in ref 55.

The equivalence can be confirmed by replacingD, â, andR in
his derivation withλθ, 1/θ, andκ in our notation.

Appendix B: Single-Event and Two-Event Distribution
Functions in the Gaussian Stochastic Rate Model

We first define a two-time survival probability function as

where the〈‚‚‚〉s represents a stochastic average. Then, the single-
event distribution functionf(t) defined in eq 59b can be related
to P(t0,t1) by

The second cumulant expansion truncated at second order gives
P(t0,t1) explicitly as

whereM(t) ) ∫0
t (t - τ)ø(τ) dτ. Substitution of eq B3 into eq

B2 leads tof(t) in eq 60a. Similarly, a four-time survival
probability function is defined as

The two-event distribution functionf(t1,t2) defined in eq 59b is
related toP(t0,t1,t′1,t′2) by

The four-time survival probability functionP(t0,t1,t′1,t′2) is
obtained in the second cumulant approximation as

which in combination with eq B5 leads to eq 60b.

Appendix C: Other Single-Molecule Quantities in the
Gaussian Stochastic Model

In the forward half-reaction of the stochastic rate model, the
normalized correlation function of two on-time events of
durationst1 and t2 separated by timeτ is expressed as

The second-order truncation of eq C1 leads to

∂

∂t
G(x,y,t) ) -κx2G(x,y,t) + λθ ∂

∂x ( ∂

∂x
+ x

θ)G(x,y,t) (A1)

G(x,y,0) ) δ(x - y) (A2)

G(x,y,t) ) g(x,y,t)eR(x2-y2) (A3)

∂

∂t
g(x,y,t) ) [λs

∂

∂x
x + λθ ∂

2

∂x2]g(x,y,t) - λ
2
(s - 1)g(x,y,t)

(A4)

g(x,y,t) ) δ(x - y) (A5)

g(x,y,t) ) g1(x,y,t)e-λ/2(s-1)t (A6)

∂P
∂t

) γ ∂

∂x
(xP) + D

∂
2P

∂x2
(A7)

g1(x,y,t) ) x γ
2πD(1 - e-2γt)

exp[-
γ(x - ye-γt)2

2D(1 - e-2γt)] (A8)

g(x,y,t) ) e-λ(s-1)t/2[ s

2πθ(1 - e-2λst)]1/2

exp[-
s(x - ye-λst)2

2θ(1 - e-2λst)] (A9)

P(t0,t1) ) 〈exp[-∫t0

t1k(τ) dτ]〉s (B1)

f(t) ) - 1
〈k〉

∂
2P(t0,t1)

∂t0 ∂t1
|t0)0,t1)t )

〈k(t) exp(-∫0

t
k(τ) dτ)k(0)〉

〈k〉
(B2)

P(t0,t1) ) exp[- 〈k〉(t1 - t0) + M(t1 - t0)] (B3)

P(t0,t1,t′1,t′2) ) 〈exp[-(∫t0

t1 + ∫t′1

t′2)k(τ) dτ]〉s (B4)

f(t1,t2) ) 1
〈k〉

∂
3P(t0,t1,t′1,t′2)
∂t0 ∂t1 ∂t′2

|t0)0,t′1)t1,t′2)t1+t2
)

〈k(t1 + t2) exp(-∫t1

t1+t2k(τ) dτ)k(t1) exp(-∫0

t1k(τ) dτ)k(0)〉

〈k〉
(B5)

P(t0,t1,t′1,t′2) ) exp[-〈k〉(t1 + t′2 - t′1 - t0) + M(t1 - t0) +
M(t′2 - t′1) + M(t′2 - t0) - M(t′1 - t0) - M(t′2 - t1) +

M(t′1 - t1)] (B6)

Con(t1,τ,t2) )
〈exp(-∫0

t1kf(t′) dt′) exp(-∫t1

t1+τ+t2kf(t′) dt′)〉

〈exp(-∫0

t1kf(t′) dt′)〉〈exp(-∫t1

t1+τ+t2kf(t′) dt′)〉
(C1)

Con(t1,τ,t2) ) exp[M(t1 + t2 + τ) + M(τ) - M(t1 + τ) -
M(t2 + τ)] (C2)

6548 J. Phys. Chem. B, Vol. 105, No. 28, 2001 Yang and Cao



whereM(t) ) ∫0
t (t - τ)øon(τ) dτ. In the small time limit, the

above expression reduces

which provides a direct measure of the rate correlation function
øon(t).

Another function to illustrate memory effects is the on-off
population correlation function

whereFon(t) andFoff(t) satisfy the master equation for the full
reaction

Using the second cumulant expansion, the on-off population
correlation function can be derived as

where the forward and the backward reactions are assumed to
be equivalent.
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lim
t1,t2f0

Con(t1,τ,t2) - 1

t1t2
) øon(τ) (C3)

C(t) )
〈δFoff(t)δFon(0)〉
〈δFoff(0)δFon(0)〉

(C4)

(F̆on(t)
Foff(t) )) (-kf(t) kb(t)

kf(t) -kb(t) )(Fon(t)
Foff(t) ) (C5)

C(t) ) exp[-2〈k〉t + 4M(t)] (C6)
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