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Two-Event Echos in Single-Molecule Kinetics: A Signature of Conformational Fluctuation$
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The relationship between event-averaged measurements and ensemble averaged measurements can be clarified
by averaging along single-molecule trajectories. As a result, phenomenological chemical kinetics is shown to
contain little information about dynamic disorder, and nonequilibrium relaxation experiments in the bulk
state may not be interpreted according to the fluctuatiissipation relation. The desired information about
conformational fluctuations can be inferred from the statistics and correlation of half-reaction events. In
particular, the echo time in the two-event probability distribution directly measures the conformational relaxation
rate, and the amplitude of the echo probes the variance of the reaction rate. Detailed analysis of four different
models (two-channel kinetic scheme, three-channel kinetic scheme, diffusion-modulated reaction, and the
Gaussian stochastic rate model) confirms the generality of the two-event echo and its quantitative relations
with conformation dynamics. As a general description of the fluctuating rate process, the stochastic rate
model and its truncated version provide the flexibility to incorporate various kinetic schemes and functional
forms and serve as a first-order model for analyzing single-molecule quantities.

I. Introduction molecule spectroscopy from low temperatures to room temper-
atures and from glassy systems to reactive chemical systems
and biomolecules. As reviewed by Xie and Trautrdangw
“developments in room temperature single-molecule experiments
include observations of spectral fluctuations, translational and
Yotational diffusion motions, conformational dynamics, fluo-

The issue of multiple time scales is a recurring theme in
physical chemistry and has been explored from various perspec
tives! Traditional chemical kinetics assumes a clear separation
of time scales; that is, the rate process in a reactive system occur:

on the slowest time scale so that all other motions can be rescence resonant energy transfer, exciton dynamics, and enzyme

averaged on the reaction time scal_e to yield d|SS|pat|on and reactivity. These new experiments contain rich information that
random noise. Under these assumptions, the depletion from the

reactant to the product is a Poisson process and the avera needs theoretical interpretations and models. Of particular
) € p proce a9felevance are recent studies of nonexponential reaction dynamics
population disturbance decays exponentially. However, in

. . . in single-molecule kinetics. For example, Hochstrasser co-
proteins and glassy systems, chemical reactions are usually .

- . . “workers and Rigler co-workers measured the fluorescence decay
modulated by geometric constraints, slow structural relaxation,

: , associated with single DNA and tRN/&4 Geva and Skinner
and hydrogen bonding and network in aqueous systems. In the . . . ) .
. . .“applied a stochastic two-state model to interpret biexponential
presence of such slow environmental fluctuations, the competi-

X . b relaxation in these experimertts?> Xie and co-workers dem-

tion between the reaction process and the conformational P )

dynamics leads to nonexponential kinetics and memory effeits onstrated slow fluctuations in the turn-over rate of cholesterol
Yet, such conformational modulation cannot be completely o;(g/?;f: h%rt]gr ;Ig?rh(ijsegingﬁgceentoria:nszir):(r;neait;]i til:ézogs\ir;n
described by phenomenological kinetics and is often not resolvedfh retical st d.i f nﬁ) morv effects in inpl molecul

in bulk measurements. In comparison, single-molecule trajec- k_eot_e gf_zssvl\j 1es 0 q emo yk € edc S | Sd %e olecule
tories consist of a chain of correlated reaction events of various <'"€!cS* €ISS and Co-workers developed fluorescence
durations and thus provide a unique probe to conformational resonance energy transfer as a means to explore conformational

16 ; i . . :
fluctuations. This paper presents quantitative analysis of con- lquna;n:;:_s. d_Theoretl_caIIy, 2. vr\]/ell StUd'fd rﬁactlve systefm IS
formational dynamics as revealed by the two-event echo in Igand-binding proteins, which exemp |fye;ﬁges(§:oncept ot po-
single-molecule kinetics. tential landscapes in protein environm 30 Wang and

. . . Wolynes explored single-molecule reaction dynamics in fluc-
Advances in optical spectroscopy and microscopy have madet i . ts and sh dth tically that the statisti
it possible to directly measure the optical spectrum along single vating environments and showed theoretically that the statistics
molecular trajectories and monitor the molecular dynamics and of smg'le reactloln event; exhibit intermittency anq (.j.o not fo]low
chemical kinetics of individual reactive systefs? Early the Poisson law! Onuchic et al. explored the possibility of using

experiments pioneered by Moerner and co-workers have inves_repllca correlation functions along single-molecule trajectories

tigated the single-molecule emission process in low temperaturet0 analyze complex energy landscapeddukamel and co-

glasses, which has since been analyzed by Skinner, Silbey ancy\/orkers calculated stochastic trajectories of solvent-controlled
other gryoups within the framework of the standard two-level €l€ctron transfer and demonstrated non-Poisson kinetics in the

model18-22 Recent progress has expanded the regime of single-Vaiting time distribution functiod® Metiu and co-workers
devised a four-state kinetic scheme to model room-temperature
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*To whom correspondence should be addressed. E-mail: jianshu@mit.edu.mational cycle of a single working enzyr&Though much
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progress has been made, it remains a challenge to quantifycalculated, the stochastic Gaussian model in section VI provides

dynamic disorder in single-molecule kinetics. a general description of rate fluctuations in a similar way as
It is well appreciated that single-molecule spectroscopy Kubo's stochastic line-shape theory and allows other models

detects spatial disorder without the usual ensemble averagingio be compared and calibrat&®We conclude with a summary

in conventional spectroscopy. An equally important advantage in section VII.

of single-molecule techniques is the direct observation of slow

variations in reaction kinetics, which are often limited by spectral Il. General Considerations of Modulated Reactions

resolution in conventional bulk experiments. In single-molecule ) )

experiments, the traced molecular system interconverts between Modulated reaction models have been used for analyzing the

the dark and bright states so that the observed fluorescence turnfuctuating environment and its effects on chemical kinetics.

on and off intermittently. Such blinking phenomena have been Early examples include a series of papers by Hynes and co-

observed in a variety of systems, including low-temperature workers”38on the influence of so!vent relaxatloq on the.regcnon

glasses, quantum dots, molecular aggregates, and biologicalate constant and the Agmeiopfield model for ligand binding

molecules. The waiting time of each-enff event corresponds 0 Myoglobin? A recent application is the analysis of Xie's

to the duration of a single-molecule reaction event, and the Single enzyme turnover experimefig’ 28

statistics of or-off events of various durations record the real- A generic modulated reaction model is fheconformational-
time trajectory of the single reactive system. In a sense, the channel reactive system, illustrated in Figure 1a. A special case
on—off sequence can be viewed asbinary code which of the generic model is the two-channel model system illustrated

contains the essential information about reaction mechanisms.in Figure 1b of this paper. To be specific, the conformational
The key to decipher this code is the statistical analysis ef on distribution of the reaction is represented by discretized

off blinking trajectories. The use of single-molecule spectros- conformational channels, each associated with a reversible
copy for detecting dynamic disorder has been demonstratedreaction between the dark and bright states, with forward rate
through the measurements of the fluorescence correlationkai and backward raté. The conformational dynamics is
function, the waiting time distribution function, and the two- represented by the interconversion ratg from thejth state
event joint distribution function. Though a clear evidence of 1o theith state when the system is in the bright statg.e., the
non-Markovian and non-Poisson kinetics, these single-moleculeOn state) and the interconversion ratg from thejth state to

measurements and related analyses are qualitative and descrigheith state when the system is in the dark s@ge., the off
tive. state). The different conformational substates are not directly

detectable because only the bright state is monitored by

calculate measured single-molecule statistics and have clearlyﬂuo.rescence emission. In smgle-molequle experiments, the OT"
demonstrated the essential difference between ensemble-aver2t time measures the duratlon_that a single molecule spends in
aged bulk measurements associated with the population dynam-the bright/ o_|ark state, a_md a trajectory ofanff events records

ics of full-reactions and event-averaged single-molecule mea- € dynamics of the single reactive system.

surements associated with a sequence of half-reactions. In The two-channel model in section Ill and the three-channel
particular, the prediction of the focal time in the single-event mModel in section IV are examples of thechannel model, the
distribution function and of the recurrent behavior in the two- diffusion-modulated reaction in section V is a continuous version
event distribution function reveals the nature of conformational Of the N-channel model, and the stochastic Gaussian model in
landscapes. Similar to the photon echo phenomenon, theSection VIcan be understood as the small variance approxima-
recurrence can be understood as the echo signal that is due t&ion of theN-channel model. In the fast modulation limit, the
the inhomogeneous distribution of environments. Analogous to N-channel reaction model reduces to a single-channel reaction
motion narrowing, in the fast modulation limit, the echo signal With an effective rate constant, whereas in the slow modulation
vanishes and the single-exponential law is recovered. The heightimit, it reduces to an inhomogeneous average oNfhannels.

of the echo signal and its position vary with the modulation In the latter limit, the single-molecule system remains ergodic,

rate and, hence, can be a sensitive probe of the dynamicsPut the rate variation within a single reaction event can be
disorder resulting from conformational fluctuations. ignored. We briefly review théN-channel reaction model as

formulated in section Il of ref 27 and then examine general
features of the model within the context of single-molecule
measurements.

In a recent pape¥, we have developed theoretical tools to

Because conformational fluctuations are not directly acces-
sible experimentally, dynamic disorder isyaldenmechanism
that requires quantitative analysis of single-molecule measure- . .
ments. The prediction of the two-event echo signal in ref 27 A Event-Averaged Measurements in Single-Molecule
holds the promise of characterizing dynamic disorder in single- Kinetics. As formulated in ref 27, a reaction process can be
molecule kinetics. However, questions remain with regards to décomposed into a forward half-reaction, which turns the bright
the generality of the recurrence and the quantitative relationship State to the dark state, and a backward half-reaction, which turns
between the echo and conformational dynamics. This paper will € dark state to the bright state. The master equation for the
address these questions as follows: General features of moduforward half-reaction of theN-conformational substates is
lated reactions are reviewed and examined in section Il Wrtten as
Phenomenological kinetics, the fluctuatiodissipation relation, .
and the detailed balance conditions are formulated and clarified Po(t) = —(Ty + KYPL(1) 1)
on the basis of event-averaged single-molecule quantities. Then,
the two-event echo signal is calculated in section Ill to section where the vectoP,; is the survival probability of being in the
VI respectively for the two-channel model, for the three-channel ith conformational substate, the matiliX; = Sjyai — Vaij,
model, for the diffusion model, and for the Gaussian stochastic with yaji = Y;yaji, describes the conformational kinetics in the
model. These calculations show that the distribution and the bright state, and the matrik,j; = Jjjka;i describes the reaction
relaxation rate of conformational fluctuations can be estimated process from the dark state to the bright state. Equation 1 can
from the echo time and the echo amplitude. Of the four models be formally solved by the Green’s function
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Figure 1. (a) Decomposition of th&l conformational-channel reaction model into forward and backward half-reactions. (b) The reaction diagram
of the discrete two-channel model. The forward rateskarandks,, the backward rates akg: andky,, y is the conversion rate from channel 1 to
channel 2, ang' is the interconversion rate from channel 2 to channel 1.

G,(t) = exp[-t(T, + K )] 2 fo0) = D KGalOFa = ) K, Gayi(OF (6)
1

which is aN-dimensional matrix. The Green’s function for the
backward half-reactionGy(t), is defined in a similar fashion.
The two half-reactions are related through the forward rate
constant matriX ; and the backward rate constant maty, fa(taty) = szGb(tZ)KaGa(tl)Fa (7)
yielding the master equation for the full reaction

and the joint distribution function of eroff events

which will be evaluated explicitly for several different models
p.(0) T —K K p.(0) in the following sections. These event-averaged quantities cannot
(.a ) = (K & e _lf K )( at ) €)) be obtained directly in bulk experiments and must be collected
Pe(t) a b b/\Po(t) along a sequence of reaction events of single reactive systems.
B. Phenomenological Chemical KineticsThe rate constant

used in the phenomenological kinetic description can be
interpreted as the average time that the single molecular system
spends in a macroscopic state. To be specific, the average on-
time is evaluated from the single event distribution function as
(2 + Ko)pa = Kooy (42) o= /2t dt = SKa(Ka + Ta)2Fa whereFa is the flux

_ from the bright state to the dark state. Using the properties of
(T + Kp)pp = Kapy (4b) the equilibrium distributionK h,op = (Ka + T'a)pa @and3Ty = 0,
we have

where pa(t),o0(t)] are the population distribution in the dark
and bright states, respectively. The time-independent solution
to eq 3 defines the equilibrium distribution

which relatep, to p, and vice versa. It is shown in ref 27 that

population evolution measured in bulk experiments is equivalent o _

to the summation of all of the possible reaction events along = »/(‘J thy(t) it

single-molecule trajectories and the equilibrium ensemble- 1 2 E Pa
averaged quantities in the bulk state can be realized by time- Z(Ka+ ra)(K y ra) (Ky+T)pN= (8)
averaging single-molecule trajectories over long durations. To a zKaPa

explicitly evaluate single-molecule quantities, we introduce the ) ) .
probability density The same result can be easily obtained from the average survival
time in the bright state, i.e[fLll= fG4(t) Fa dt. The average

= K u0p forward rate constant follows as
(FZ): N (Kapa) &)
K
| — | DAL ©
whereF, is the normalized stationary flux from the bright state Zpa

to the dark state anH, is the normalized stationary flux from

the dark state to the bright state. It follows from eqs 4a and 4b which is an inhomogeneous average of forward rate constants
that YK apa = YKpop = N1, implying that the total flux is a and is independent of conformational dynamics. A similar
conserved quantity. Given the stationary fluxes, we can define definition can be derived for the backward reactidk,1=

the distribution function of single on-time events > Kpon/Y pp. The ratio of the average forward and backward
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reaction rate constants satisfies the phenomenological detailedB. It is shown in ref 27 thaB,4(t) can be expanded in an infinite
balance relation series of terms in the sequence of single-molecule events

|Ram1a = |:R‘()m]b (10) Gaa(t) = Ga(t) +
t oty
wheren, = ¥ pa andn, = 3 pp, are respectively the equilibrium ﬁ) o Call ~ WK Gyl = BIKG(t) dty dty + ... (13)
populations of the bright state and of the dark state. Conse-
quently, phenomenological chemical kinetics is simply an
inhomogeneous average of the microscopic reaction rate con-
stants and therefore does not contain any information about
dynamic disorder.
It should be pointed out that relaxation experiments in the

where the first term represents staying in the bright state without
reaction, the second term represents one sojourn to the dark
state, and so on. To measure the macroscopic relaxation, the
concentration disturbanag(0) in the bright state is introduced
according to the equilibrium conformational distribution, i.e.

bulk state measure the total rate constiiht= [&K,[H- [k,[)and Pai
the forward and backward rate constants are obtained through Pai(0) = —=—C¢,(0) (14)
the detailed balance condition in eq 10. In contrast, single- zpa,i

molecule experiments separate the forward and backward half-

reactions and uniquely determine the two rate constants. 1N€n, the concentration relaxation follows

Furthermore, in the context of single molecules, the detailed
balance relation in eq 10 is self-evident as long-time averaging Ac,(t) = M c.(0) — n,c,(0) (15)
along single-molecule trajectories leads to the equilibrium a n, a aa
population, which according to eq 8 defines the average rate where cy(®) = n,c(0) is the equilibrium concentration of the
constant. bright state. Comparing eq 12 and eq 15, we have

High order moments of the on-time distribution function can
also be calculated fromi'0= /5f(t)t" dt. Generally, higher Acy(t)  C(t) zGaa(t)Pa— n,’
order moments do not satisfif(}= [{M, and the decay process Ac,(0) - c(0) - n —n.2 (16)

a a

is not a Poisson process. Though ensemble-averaged experi-
ments can also measure the waiting-time distribution and high-
order moments, such measurements may suffer from spatial
disorder and require special initial preparation in order to apply
the fluctuatior-dissipation theorem (see the next subsection).
Even if the waiting-time distribution can be obtained, interpret-
ing memory effects and extracting the modulation rate constant
can be difficult. Therefore, single-molecule measurements are
more reliable and robust, and the information about dynamic
disorder can be inferred from the statistics and correlation of
half-reaction events.

C. Fluctuation—Dissipation Relation. A central result of
the fluctuation-dissipation theorem is Onsager’s regression
hypothesis, which relates the relaxation of macroscopic non-
equilibrium disturbances to the correlation of spontaneous
microscopic fluctuations in an equilibrium systéfpplication
of this theorem to chemical kinetics leads to

which is the multichannel version of eq 11. Therefore, the
fluctuation—dissipation relation is obeyed under the condition
that the initial population disturbance is distributed according
to the equilibrium ratio of conformational channels. However,
in the relevant scenario discussed in section I, the conformational
modulation rate is slower than or comparable to the reaction
rate. Then, the initially prepared disturbance will not have
enough time to relax in the conformational substates before the
concentration starts to decay, thus, violating the initial condition
in eq 14 necessary for the fluctuatiedissipation relation in
eq 16. Consequently, the initial preparation of relaxation
experiments in the bulk state must be taken into consideration
in interpreting conformational distribution and dynamics.
Finally, we simplify eq 16 by noting that the asymptotic limit
of Gaq(t) is the equilibrium distributiom,. Thus, the propogator
Gaa(t) can be decomposed @g4(t) = pa + G'a(t), which allows
us to rewrite the fluorescence correlation function as

cwi ZG'aa(t)pa
c(o)  nn,

ACa(t) _ C(t) _ Gaa(t) — Ny
Ac,0) C(0) 1-n,

11)

17)
where Acy(t) = c4(t) — ca(0) describes the concentration
relaxation after a disturbance, measured in ensemble-averagegyhereG',, is the time-dependent part of the Green’s function.

experiments, andC(t) = Ma()na(0)J — na® describes the D. Detailed Balance Conditions.The conservation of the
occupation correlation function of the equilibrated reaction population flux requires an overall balance relation between the
system, measured in single-molecule experiments. bright state and the dark state, as explicitly given in eq 10.

We now generalize eq 11 to multichannel reactions. Consider Ajthough this condition conserves the total flux, it does not
the fluorescent correlation function measured along a single- exclude the possibility of a net current between different

molecule trajectory, starting from an arbitrary initial time on  conformational channels. To exclude this possibility, the forward
the trajectory. The probability of starting from a bright state is  flux and backward flux must be equal

Ny, and the initial on-time is then averaged over the on-time

distribution function, giving K0 = Kyop (18)
o0 hich is a more stringent balance relation than eq 10. It follows
137G DG (t)F, dty w
0 —aa a
[, (On,(0)= - n, = zGaa(t)pa (12) from eqs 4a and 4b that
j(‘) G(to)F, dty T,p,=To,=0 (19)

where the propagation matr®,4(t) is the diagonal component  which are the detailed balance conditions for the equilibrium
of the Green'’s function solution for the master equation in eq conformational distributions in the dark state and the bright state,
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respectively. Furthermore, it is reasonable to assume that thedistribution in the dark state. The distribution function of off-
conformational dynamics are the same for the bright state andtime events is defined in the same fashion. The joint distribution

for the dark state, i.eI'a = I'n. Then, we have, O p, and function of on-off events is defined as
Kp UKy @0)  ftut) = Y KiGy(t)K Ga(t)Fa =
. . . —(Kpt+I)t —(Kat+D)t
which means that the ratio between the forward reaction rate Kpe ™K e KD (25)
constant and backward rate constant is the same for all of the K0

conformational channels. Without loss of generality, this paper

analyzes orroff events based on symmetric reactions vith which can be used to analyze memory effects. In particular,
= K. As is shown in Figure 3 of ref 27, the nature of the two-  the difference functiom (ty,to) = fan(ts,tz) — fa(te)fu(t2) is given
event distribution function does not change with the backward explicitly as

reaction; therefore, the echo from the-eawff correlation for

symmetric reactions is similar to the echo from the on-on d(t,t,) =

correlation for asymmetric reactions. [AFa(t) — (Kys + 7IELDIAF() — (Kys T ¥IEn(t)]

5(0) AL
a

Ill. Two-Channel Model

The two-channel model, the simplest scheme of multichannel
reactions, has been used to analyze event-averaged quantitie¢here the initial value)(0) is a complicated function of the
and to show that the two-event echo has a strong dependencéeaction rate constants and the interconversion rates.
on the conformational distribution and dynamié3he follow- For simplicity, we consider symmetric reactions wikh =
ing derivation generalizes the results in Sec. 3 of ref 27 in that Kp = K. In this case, the forward and backward propagators
the downward rate’ and the upward ratg’ are different. The ~ become the same
master equation for the forward half-reaction is given in eq 1

(26)

with Py, K4, andT defined as G =
P k. 0 e—(K+r)r1 AF(t) + (kg + y9EQ®) y'E(D)
_ _ A\YE AF(t) — + E(t
(1) = (Pzzl(t))’ <= (80) VEQ® Ot +0%0)

r=r,=r,= (V_y ;V ) (21) whereA; = Ap = A, Eq(t) = Ey(t) = E(t), andFa(t) = Fy(t) =
F(t). The equilibrium populations area = pm = y'/[2(y +

The Green’s function is given by "] and pa2 = pp2 = y/[2(y + y")], which depend only on the
interconversion rates. The difference functiiy,t,) is simpli-
G,(t) = K= fied to
1 (AaFa(t) + (ka+ 79EL) VELD S(tuty) =
Aa ’}/Ea(t) AaFa(t) - (kad + Vd)Ea(t) b2
AF(t,) — (k. + v JE)[AF(L) — (k. + y)E(t
(22) 5(0)[ (t) — (ks + 7IE( 1)1[2 () — (ks + vIEM)] (28)

whereA, = /7K f 42K g Kad = (Kaz — Ka1)/2, Kas = (Ka2 - :
+ kal)Z, ye= (,y + ’}/')/2, ya= (yr _ V)/Z; Zos = kas+ )/s:i: Aa, where the initial value is
Fa(t) = (7% + e %)/2, andEy(t) = (e %! — e %+!)/2. These 2. 2 o, 2 2
expressions reduce to eq 14 in ref 27 when= y'. The 5(0)= ki'tks” = k)vs” — vd) (29)
backward Green’s function can be obtained in the same fashion. (Kiyg — ksVs)2
The master equation of the full reaction, given in eq 3, has a
stationary solution with kg = (k2 — ki)/2 andks = (ko + ky)/2. The same-time
, , difference function follows eq 28 a¥t) = d(t,t). From dj(t)/
Pa1 V' [vkep + 7’ Kot T Koz (Kaz + Kip)] dt = 0, the focal time of the same-time difference function is
Paz | _ C V7Koo + ¥'Kop + Koo (Keg + Koyl 23) found as
Ppa V'[vkep T 7' ka 1 Ky (Ko + ko)l ot ot A
Pra| Pk T 7K+ Ky (K + k)] A N S A R (30)

whereC™t = (y + y)[y(kae + ku2) + ¥'(Kaz + kor) + (K +

kp1)(Kaz + ku2)]- The equilibrium flux from the bright state to  where the difference function is zerd(ty) = 0, and the echo
the dark state i$, = NK4ps, and that from the dark state to  time is found to be related to the focal time via

the bright state i, = NK pp,. The normalization factor isl =2

= YKpop = Y Kapa = y%kaokioz + 7' %Kkarkor + ' (Kazkor + Karkiz) te=24 (31)
+ y(Kar + Kor)Kazknz + ' (Kaz + Ke2)Katkor. Thus, the distribution
function of on-time events is where the amplitude of the echo is
—(Kat D)t _ n — L\
e ke 1 o) = 6(0)(—) (32)
f(0 = ) KG,(OF, = W (24) n+1

with n = (ks + vs)/A. From eq 28, we find a minimum along
where[#--[denotes an average over the equilibrium population thet; axis or thet, axis at the echo time, respectively.
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0

0.5 1 1.5 2
Figure 2. Two-dimensional contour plot of the joint distribution
function of two eventd(ti,t;) — f(t2)f(t) for the two-channel model
with ky = 2, k, = 4, andy = y' = 0.5. Att = t,, d(t,tp) reaches its
maximum along the diagonal and its minimum along each time axis

TABLE 1: Echo Time in the Two-Channel Model with k; =
2.5 andk, = 3.2

y 0 0.5 1.0 15 2.0 2.5
tepes  0.667 0571 0500 0444 0400 0.364
temeas 0.645 0555 0485 0440 0.390 0.375
error  34%  29% 31% 09% 26%  3.7%

@ 1te prediS €valuated frome prea= 2/((KC+ ), andte measis Obtained
from the numerical calculation af(t). y = ' is the interconversion
rate. The error is defined ag pred— temea/te,measx 100%.

The same-time difference functiofi(t) is a complicated
function of reaction rate constants and conformational inter-

conversion rates. To facilitate our analysis, we consider several

special cases.

1. Figure 2 is a two-dimensional contour plot of the difference
distribution functiond(ty,to), forky = 2,k = 4, andy = y' =
0.5. As predicted by eq 28, the contour clearly shows a minimum
attr = 0.287 and a maximum & = 0.575 along the diagonal
axis, as well as a minimum at the focal tiragealong thet; and
t, axis.

2. When the reactive time scale is relatively fast, kgy <
ks, we have

te=§ln v —2

Tkt

(33)

K+ yst A
ks+ys_A

where the approximate relation directly measures the average

modulation rate for a given rate constant. In Table 1,kor

3.0 andky = 0.5, the echo time predicted from eq 33preq is
compared with the echo time measured from the same-time
distribution function,te meas FOr a wide range of modulation

rates, these two sets of echo times agree within an error less

than 10%.
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Figure 3. Same-time difference function in the two-channel model
wherey = y' = 2.0 andks = 2.5. The echo time predicted ly= 2t;

~ 2/((KO+ y) is confirmed with small error at large; whereky << ks

is not strictly followed. The amplitude of the echo is approximately
proportional to the variance in the rate constant.
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Figure 4. Same-time difference function in the two-channel model
wheny = 9', k; = 1, andk, = 4. The maximal echo is reached when
y = kflks. As predicted byte = 2t ~ 2/(&KD + ), the echo time
decreases as the modulation ratecreases.

the echo amplitude increases proportionally wigh even for
relatively largekqs?. The plot also confirms that the focal time
is half the echo time and that both times are invarianikifo
4. In the case of equal interconversion ratgss= y, eq 32
still applies withd(0) = ki(k&? — kad)/k? andn = (ks + y)/
k;~+y° It can be shown that the amplitude of the echo

d(te) reaches its maximum afnax = 4/ k>+k,/k; when

_ k' _ oKD

k&0 (35)

which is the critical conformational interconversion rate for the
3. Equation 32 gives the amplitude of the echo, which, under maximal echo. Figure 4 is a plot of the same-time difference

the condition ofkg < y < kg, can be shown to be proportional  distribution function fork; = 1, k, = 4, and several values of
to the variancekg?, i.e. y. The maximal echo occurs at = 0.9, which follows the
critical condition in eq 35. It can also be noticed in Figure 4
that the focal time and the echo time decreaseg axreases,
as predicted by eq 33.

5. In the slow modulation limity,y" << ki 2, which is a pos-
sible scenario for sluggish environments, eq 28 is simplified to

o(ty) Ok

In Figure 3, the same-time difference distribution functixt)
is plotted forks = 2.5 andy = y' = 2.0. As seen from the plot,

(34)
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(k, — k,)? — 1\2R 0.060 ‘
oty = ——— R& 2( R (36) —
4 R+ Ry) \Rk +1 ---- Rs10
—— R=4.0
where R = ko/ky and R, = y'/y. With k; and k; fixed, the = = R2100
maximal echo occurs at 0.040 }
K, » »p
_ _y _ M -
R =R or-=:"-=— (37) z
» = R ki v P2
which implies a detailed balance relationship between the two 0.020 |
channelskips = kzp2. As shown in Figure 5, in the slow
modulation limit,t; andt. are fixed at Inkx/k;]/(k> — ki) and 2

In[ko/ka]/(ke. — ki), respectively. The maximal echo is achieved
when the ratio in eq 37 is satisfied Rt = 4. It can be argued
from this example that memory effects of conformational 0.000.5 o
modulation can be measured by the variation of the reaction t

2 i 2
rate constan@ék) Cand th82 variance of the _f'“_mé"ﬁ’) LITo Figure 5. Conformational conversion rate dependence of the two-
have the maximal ech@(ok)*Lishould be maximized, whereas  eyent echo in the two-channel model with= 1 andk, = 4. In this

2.0 3.0

[oke)?Oshould be minimized. slow modulation limit,y and y' are the downward and upward
interconversion rates, respectively, apgl' < ki . R, is the ratio of
IV. Three-Channel Model the two interconversion rateR, = y'fy.

To explore the generality of the recurrent behavior of the
two-event distribution function, we study a cyclic three-channel
model with

P

2y =y —y k0 0
I=(-y 2 v || K,=K,=[0 K 0| (398) 1.5]
Yy ~y 2y 00 k

Numerical calculations clearly demonstrate the basic features
consistent with our observations in the two-channel model: 1
1. Figure 6 is a contour of the difference functio(is,t,)
calculated for the three-channel model with the modulation rate
y = 0.5 and the three reaction rates= 2.5, k, = 3.0, andks
= 3.5, respectively. As seen from the two-dimensional contour,
the diagonal distribution has a minimum at the focal tithe
and a maximum at the echo tile= 2t;, whereas botld(t,0)
ando(0,t) have a minimum at the echo tintg
2. In Table 2,te preqcalculated fromte ~ 2/((K0+ y) agrees
well with te measmeasured by numerical calculations, for the 0
three-channel model witky = 2.5,k, = 3.0, andks = 3.5. The 0 0.5 1 1.5 2
error is within 10% over a range of. Figure 6. Two-dimensional contour plot @f(ts,t,) for the three-channel
3. Figure 7 shows the linear dependence of the amplitude of model withk, = 2.5, k, = 3, ks = 3.5, andy = 5’ = 0.5. It is clearly
the two-event echo on{ok)?Ofor the three-channel model  shown that, = 2t ~ 2/((kCH y) and that bothd(0t) andd(t,0) reach
described earlier. Again, the echo time and the focal time are their minima att = te.
invariant to({ok)?Cland follow the estimatiom. = 2/(&H- y). ) o .
4. Figure 8 shows the _same-time difference function for E‘ghg k23 aECZh_%ITg'%? E';r‘]éhg_; hﬁg&ﬁ%ﬁ} Model with ki,
several values of. As predicted, the maximal echo occurs at

~ k.2 i i ; y 0 0.5 1.0 1.5 2.0 2.5
y kd /(KCand the focal time is half the echo time and decreases tpes 0667 0571 0500 0444 0400 0364
asy Increases. temess 0.665 0550 0465 0.410 0.370  0.335

We also calculated other three-channel and four-channel gror  03%  3.8%  7.5%  83%  81%  8.7%
models with various parameters and geometries and found essen- at. s evaluated front 2U(KTH 7). andtemeasis Obtained
. : H e,pred e,pred = Y) e,meas
tially the same beh_aV|0r._ Thus, we believe that these featuresfrom the numerical calculation @¥(t). The error is defined ale pred—
are universal for discretized multiple-channel models. In the " "1000%.
next section, we will investigate the diffusion reaction model.

. . diffusive coordinate, which represents collective environmental

V. Diffusion Model motions. The diffusion coordinate is described by the Smolu-
The diffusion-modulated reaction was first introduced by chowski operator

Agmon and Hopfield to describe the ligand binding in myo-

globin, and was analyzed by Zwanzig and elaborated by Wang =192 (_ 5) (39)

and Wolyne%293140 Similar models have been applied for ox\ox 0

studying solvent-controlled electron transfer?® The diffusion

reaction model describes a reactive system modulated by awherel characterizes the relaxation time scale of the diffusive
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0.060 ‘ ‘ function, peq(X) = €¥@)//270; hence, we hav&= «6 and
:'!l —— K, =1.50 [ok)?0= 2«%62.
E! ——-k,’=1.00 To study the master equation for the full rection, we consider
0y e K =0.50 the symmetric case, where the bright and dark states, labeled
ol dz_ asa andb, respectively, have the same relative rate:
o040 | 4 moor k20251
b (pa(x,t)) _ (—k(x) —Lp k9 )(pa(x,t)) 42)
g i pox) ]~ \KX) —k09 = Lo \pu(x)
':l, With the Green’s function in eq 41, we obtain the distribution
0.020 | "‘l, T function of on-time events
. 0, /", dxdy kGXxy.DKY)D
(k(y)O
0.000 = _ . 20 Vs SKO[ZS2 + (p(t)z] ox At (43)
) lp2y©2) 12
Figure 7. Same-time difference functiof(t) in the three-channel
model with kO= 3.0 andy = 0.5. It is clearly shown that the two-  gnd the joint distribution function of eroff events
event echo increases kg increases.
0.060 Ty - @ O~ 7. )7 dxdy dz K)G(xy.DK(Y)G(y.zk(Z)D
. | p—— = =
[t =0 ’ k()0
b -y 267 (2t())+ 297 + 6
E ll . ji 1320 (1) 72 expiit] (44)
ooso | i ! sp(t)™ (1)
| || whereg(t) = [(s + 1)&t + (s — L)e*s9/2 andy(t) = [(s +
s I h 1)elst— (s — 1)e /2. The same-time difference functiat)
° : }l = f(t,t) — f(t)2 is given by
oot i b 2t) + 25 + 657 t)? + 28
R o) = 2] ER 265 g+ 2]
P Vsp®* () P(U2)°y(t12)
P\ (45)
\ with the initial valued(0) = 6x262.
0‘00000 AL

These single-molecule quantities are complicated functions
of k0/A. We examine their behavior in several limiting cases.

1. In the fast modulation limitA — oo, the distribution
functions become

Figure 8. Same-time difference function(t) in the three-channel
model with k0= 3.0 andks? = 1.0. It is clearly shown that the echo
time decreases ag increases. The maximum echo occursyat
kKO~ 0.3, as predicted in eq 35.

f(t) — x0 exp[—«0Ot] (46a)
solvent,6 is the variance of the equilibrium distribution of the f(t,t) — 262 exp[—2«6t] (46b)
diffusion coordinate, andl® = D is the diffusion constant. The
relaxation ratel in the diffusion model is equivalent to the ot)~0 (46¢)
interconversion ratg in the two-channel model. The reaction

ratek(x) is related to the diffusion coordinaseby K(X) = «x? thus resulting in single-exponential kinetics with an effective
with « the proportionality coefficient, so that the survival Fate constankes = k6.

probability satisfies 2. In the slow modulation limitd — 0, the Green’s function

simplifies to
9 N
a P(X,t) = —k(X) P(X,t) + LDP(X,t) (40) G(x,y,t) — (S(X _ y) exp[—szt] (47)
The corresponding Green'’s function is derived in Appendix A, Then, the event averaged distribution functions decay by power
giving law
12 3x0
(s ft) > ————; (48a)
Gyt =erel S 1+ 24012
G0 270(1 — & ) ( , z
oxd — S(x — ye*lSt)z N (s— 1)0¢ —vA) 41) f(t,t) _,Lem (48b)
20(1 — e Y 40 (1 + 4c0t)

O(t) ~ 15¢%0°/(1 + 4c6t)"? — 90°/(1 + 2«c61)°  (48¢c
wheres = v/ 1+4«6/A represents the coupling of the two time ® ( <09 o <09 (48c)

scales associated with diffusion and rate processes. The equiwhich are a result of inhomogeneous averaging of the rate
librium population obtained fronbppeqX) = 0 is a Gaussian  distribution. Because the flug(x)pe(X) is distributed around
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= 0, the diffusion model in the slow modulation limit effectively 0.0060

reduces to a single channel, and therefore, no echo is observed ——= s=140
in this limit. However, if a sufficiently large bias is introduced — s=1.92
into the rate constank(x) = (X — x,)2 the diffusion model ———s

maps to a two-channel model and the echo can be observed in
the inhomogeneous limit. 0.0040 |

3. In the long time regimef(t) and f(t,t), both decay
exponentially as

8(t)

f(t) — 8[5"9 exp[— As— 1)t] (49a) 0.0020 |
(1) — ﬂzg explA(s— 1X]  (49b)
«/—S(S + 1) 0.0000 -
8(t) O exp[-A(s — 1)f] (49¢) o ' :

with the effective rate constaitys = A(s — 1)/2. Figure 9. s dependence of the same-time difference functi¢th in
4. In the short time regime, we expand the distribution the continuous diffusion modet.= ~/1+4«6/4, reflects the competi-
functions to first order irt tion between the time scales of the diffusion and the rate prodéss.
is normalized byd(0), and the time variable is scaled by«H].

4
f(t) — 3’<9(1 - éj«t — Skbt + O[tz]) (50a) TABLE 3: Echo Time in the Diffusion Model with ky = 1.07

16 A 25 25 3.0 35 4.0
. 2p2( 16, 2 te,pred 0.667 0.571 0.500 0.444 0.400
f(tH) — 1570 (1 oA~ Aot + Ot ]) (50b) fomess 0615 0560 0520 0485 0455
error 8.5% 2.0% 3.8% 8.5% 12%
20 2 a i = i i
o) ~ 6 292(1 — 222t — 306t + Oft ) 50c tepreais calculated byte prea = 2/(KO+ A), andte measiS Obtained
® o 3 [t ( ) from the numerical calculation @f(t) in eq 51. The error is defined as

3 . o . |te,pred7 te,meaj‘;/te.meas>< 100%.
which predict the initial decay because of the reaction and
diffusion processes. versions of the discretized multiple-channel model include the
To facilitate calculations, we use«H as the unit time and  two-channel two-state scheme, two-channel three-state scheme,
normalize functiori(t) by 6(0). Thus, the reduced same-time  and three-channel two-state scheme. In the continuous limit, a
difference function reads diffusion coordinate is introduced to modulate the rate con-
stant: the exponential dependence was used to describe diffu-

t/(s2— ~ 1T 2
33 _@:e‘"/(sz 1)[(¢(2t) +29)° + 632_ sion-controlled ligant binding and more recently enzymatic

3 =

0(0) 6 l Vsip () ¥2p(t) " reactions’® the localized population sink was used for solvent-
2)? controlled electron transfer, and the quadratic dependence was
s((p(t) +25) used to describe stochastic gatfiglo analyze and compare
PERyp2)y single-molecule quantities predicted by various reaction schemes

_ - ) ) in a unified framework, we adopt a general approach based on
wheret = tc6, () = [(s + 1)&IED + (s — 1)e sl 1]/2 the stochastic rate model and the cumulant exparféithin
andy(t) = [(s + 1) D — (s — 1)e %! D)/2. As shown this model, environmental fluctuations introduce time-depen-
in Figure 9, the same-time distribution functio(t) has an echo  dence in the rate constant, which is treated as a stochastic
in the region 1< s < 2.81 and reaches its maximum amplitude variable. Each realization of the time-dependent rate constant
ats=1.92. In the slow modulation limit, whesis large,d(t) defines a rate process, and single molecular measurements can
reduces to power law decay and no recurrence is found. In thebe obtained after taking the stochastic average of rate fluctua-
fast modulation limit, wheres approaches 1, reaction kinetic  tions. This approach is inspired by Kubo’s stochastic line-
becomes single exponential and) vanishes. It can also be  shape theory because the rate constant in the rate model and
observed in Figure 9 that the relation between the focal time the frequency in the Kubo’s model are both treated as stochas-
and the echo time, = 2t;, remains valid and that the maximal  tic variable3® In principle, the stochastic properties of the rate
echo occurs at ~ [{0K)?[IKas predicted by eq 35. The echo  are completely described by all of the multiple time cumu-
time, listed in Table 3, confirms the predictiontef= 2/((k[H lants. In practice, we truncate the cumulant expansion to second
7). The two-dimensional contoul(ty,tz) (not included here)  order in time variables, thus yielding@aussian stochastic rate
shows the same features as for the multiple-channel model.model The analysis of single-molecule quantities in the Gauss-
Thus, the conformational fluctuation rate in the diffusion model jan approximation is similar to the study of spectral diffu-

has a strong influence on the two-event echo signal in the same-sjon at cryogenic temperatures by Silbey and co-workers and
time difference function. However, because of its single-channel Skinner and co-worker$:4° Then, various reaction schemes
nature in the inhomogeneous limit, the diffusion model predicts can be mapped to the Gaussian stochastic rate model char-
weaker echo signals than the multiple-channel model. acterized by average rate constants and rate correlation func-
tions, and all single-molecule quantities can be evaluated
accordingly.

The analysis of oroff sequences is usually based on specific ~ A. Cumulant Expansion of the Stochastic Rate ModelThe
kinetic schemes and assumed functional forms. Different rate constant, modulated by slow environmental fluctuations,

VI. Stochastic Rate Model
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can be treated as a stochastic variable. For the forward half-

reaction

k()

on— off (52)

the survival probability distribution function is given by
P(H)=exp( [ k() dr)C (53)

wherek(z) is the stochastic rate variable. Cumulant expansion
of eq 53 leads to

(54)

o (—1 n
P(t) = ex uj: dr, j: dr,, y(TyeeTy)
~ nl

wherey(t1,...,Tn) is thenth order correlation function defined

as

x(t) = &GO
Xa(tyty) = D(tk(ty) L (ty) [IK(t,)

13t tots) = TK(tK(t)k(ts) U TK(ty) MK(t,)k(ts) L
() I (t k() C— C(ty) CIR(tyK(t) -

20K(t,) MK(t,) MK(t5) O

(55)

These cumulant functions contain all of the information neces-

sary to describe the dynamics of modulated rate processes; thus,

all of the single-molecule quantities can be expressed in
cumulants with different weights. Some examples are given in
Appendices B and C.
For a stationary Gaussian proceggts,...tx) = 0 (fork > 2)

andy(t,tz) = x(t1 — t), the survival probability is simplified
to

P(t) = exp[— [k + M(t)] (56)
whereM(t) = f})(t — 7)x(7) dr is the second-order cumulant.
The distribution function of single on-time events is related to
the survival probability by

__dP(@)
F)=—— (57)
which, for the stationary Gaussian case, becomes
F(t) = (kR fotx(r) dr) exp[— &I+ M(t)] (58)

Because the single-event distribution function is always finite,
KO> [4(1 — 7/t)y(r) dr has to be satisfied at any tinmte
Especially, whert approaches infinity[k(0=> fgx(z) dz, i.e.,
there exists a finite time scale for conformational fluctuations.
Given the finite time scale for conformational fluctuations,

the condition for the second-order cumulant expansion can be

established ad> x(0)z., implying a small variance of reaction

rates and a short correlation time for conformational fluctuations.
The stochastic rate model is flexible in describing single-

molecule measurements. With a proper choicg(®f the model

can reproduce power-law and other nonexponential time de-
pendence. The second cumulant expansion of the model,
however, is only accurate for describing Gaussian processes.
The deviation of real measurements from the second cumulant

expansion is an indication of the non-Gaussian behavior.

J. Phys. Chem. B, Vol. 105, No. 28, 2008545

B. Two-Event Echoes in the Gaussian ApproximationTo
simplify our calculations, we consider symmetric reactions with
ki(t) = ko(t) = k(t). In this case, the single-event and two-event
distribution functions can be expressed as

[k(t) exp[— [;k(z) dr]k(0)]
- &0

(59a)

f(t,t) =
[K(t, ;) expl— |, f*tzk(r) dr]k(t,) expl- f;k(r) dr]k(0)0

kO

(59b)

For further simplification, we truncate the cumulant expansion
to second order, giving

[KO- LI + x()
(kO

f(t) = exp[—[KI+ M(t)] (60a)

ft,t) = { K — KRL(E, + 1) + L(ty) + L(t)] + x(t) +
2t + 7t + ) + 2L(, + LILE) + 1] + L, +
L)? — ﬁ%(tl)utl +t) + L)L + 1) +
2t + LA + 2 + L) + L + L) +
L(t, + tZ)L(tZ)]} expl-[KTt, +t,) + M(t, +t,)] (60b)

whereL(t) = M(t) = /4x(r) dr. The detailed derivation of eqs
60a and 60b can be found in Appendix B. Other related single-
molecule quantities are defined in Appendix C.

In the short time limit, wher(t) << »(t)/&] we have

x(t)x(t)

R O I I e T
L) O 03
o o

(61)

which indicates thag(t) is a direct measure of memory effects
in the initial decay regime.

The focal time and the echo time in the same-time difference
function can be derived from the Taylor expansion of eqs 60a
and 60b. We assume the exponential decay formy(of =
x(0)e=2* for simplicity and the small variance condition of
%(0) < K3, i.e., kg < ks, SO thatL(t) = x(0)(1 — e 2Y/(2y),

M(t) = x(0)(e %t — 1 + 2yt)/(4y?). Then, to first order in the
small parametey(0)/(k3, we have

M{l O o ERQl

—2yt
[k )
f(t,t) ~ mﬁ{

f(t) ~

4—§(e_2“ + 2yt —1)]] exp(— k) (62a)
y

_ x(©)
&

ﬁ( Y Ayt —1)

—4yt+ 2e 2yt + Qe—élyt

*2)/1 2)

] exp(2k) (62b)

and the same-time dlfference function
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KH 2y — [K@7Y? TABLE 4: Echo Time in the Stochastic Rate Model with (K[
MO@%@%———%;———)emmamm (63) = 3.0 andx(0) = 0.25
o Y 0 0.5 1.0 15 2.0 25
The minimum ofd(t) can be found at tepea  0.667 0571  0.500 0.444  0.400 0.364
temeas 0.665 ~ 0.575  0.515  0.465 0.425 0.395
po L B2 1 (64) emor  03%  07% 29% 45% 59%  7.8%
F 2y kO KH y

3 tepreals calculated withte prea= 2/((KC+ y), andte measiS Obtained
. from numerical calculation of the stochastic rate model wift) =
and the maximum at %(0)2. The error is defined alfe pred— temeal/te measx 100%.

KH 2
t,= 1 In[ V] r —2 (65) 0.060
y kO KH-y — 1(0)=1.69
The amplitude of the echo proportional to the variance of the - ;Eggzzzgg

rate constant)(ts) [ x(0). Thus, we obtain the same expressions
for te andts as those derived for the two-channel model in section
[ll. In Table 4, the echo time predicted from eq 6@breq iS 0.040 f
compared with the echo time calculated from the same-time
distribution function,te meas Good agreement is found over a
wide range of modulation rates between these two sets of
echo times.

In Figure 10, the same-time difference functiét) calcu-
lated from egs 60a and 60b is plotted fQr= &O= 3.0 and
y = 0.5. For several values gf(0) = ks = [0k?] the focal
time and the echo time remain constant, but the amplitude of
the echo increases proportionally wigf0). In Figure 11, the 0,000
echo time is shown to be twice the focal time and decreases 0.0 :
with the modulation rater accordingte = 2t = 2/(KO+ y). t
The maximal echo is found around= x(0)/KLl These features  Figure 10. Two-event echo in the stochastic rate model viki=
are consistent with our observations in the multiple-channel 3.0,y = 0.5, andy(t) = (0)e">*. The echo timee ~ 2/(RO+ y) is
kinetic model. approximately fixed when varying(0), and the echo increases with

C. Mapping to the Gaussian Stochastic Rate ModeMWe x(0)-
now map the discrete two-channel model to the Gaussian
stochastic rate model. For simplicity, we consider a two-channel
model with symmetric half-reactionk,; = Ky, and with equal
conformational statesy = y'. In this model, the survival
probability function isP(t) = [(A + y)e=%t + (A — y)e %/
(2A).27 Matching the survival probability function with eq 56,

we have, in the second cumulant approximation schéknés
ks and

8(t)

0.020 |

!

!

!

!

!

!

'.
!
!
!
!
!
!
!

2.0

0.060

— y=04
——- =25
—-= y=5.0

8(t)

A2kd2
x() =— > (66)
[y sinh(At) + A cosh(At)] 0.020 |

which gives the variancg(0) = ks and the long-time correlation
x(t) O exp(—2At). Figure 12 is a two-dimensional plot of
(t1,t2) for the stochastic Gaussian model corresponding to a two-
channel model with; = 2, k, = 4, andy = 0.5. In comparison 0.000 )
with Figure 13, the stochastic Gaussian model reproduces all 0.0 0.5 1.0 15 20
of the essential features of the difference function for the t

corresponding two-channel model. To be quantitative, the Figure 11. Two-event echo in the stochastic rate model with=
distribution functions of single events in Figure 13 agree very 3.0,x(0) = 1.0, andy(t) = x(0)e 2. The echo time. ~ 2/(&C+ y)
well by matching the survival probability. The same-time decrease ag increases. The maximum amplitude of the echo is flat
distribution functions calculated from the two models are Within an tlr}tetrr\]/al of & Th?ﬂf?os.'“to” Ofwtr(‘)e . maximal echo is
compared in Figure 14, where the stochastic rate model is shown?PProximately the medium ot this in erval,~ 0.4.

to give reasonable approximations to the position of the echo, 1 TheN-channel kinetic scheme provides a generic model

the amplitude of the echo, and the shape of the same-timeg,. hqerstanding the influence of conformational fluctuations
difference function. The slight deviations are believed to be the ., ro4ction dynamics. On the basis of this model, ensemble-

approximate nature of the second-order cumulant expansion

'
I
t
1
d
i
!
0.040 || 1
i
|
I
1}
i
1
1
1]
||

. G . p '‘averaged measurements can be formulated as a long-time
I.e., non-Gaussian effects. average along single-molecule trajectories. As a result, phe-

nomenological chemical kinetics is shown to be an inhomoge-
VIl. Summary

neous average of reaction rate constants and thus does not
The aim of this paper is to establish a quantitative relation contain any information about dynamic disorder. It is also shown
between the two-event echo and conformational fluctuations. that the fluctuation-dissipation relation is obeyed on the single-
The primary findings of our analysis can be summarized as molecule level only if the initial nonequilibrium disturbance is

follows: prepared according to conformational equilibrium. This condi-
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0.000 A
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t
0 Figure 14. Comparison of the same-time difference functi(t) in

0 0.5 1 1.5 2 the two-channel model and in the corresponding stochastic rate model

with k; = 2, k; = 4, andy = 0.5. The stochastic rate model gives
Figure 12. Two-dimensional contour plot of the joint distribution  good approximations to the echo time, the echo height, and the shape
function of two eventsi(ty,t;) = f(ty,tz) — f(t)f(tz) in the stochastic of o(t).

rate model withk, = 2, k, = 4, andy = y, = y, = 0.5.(t) andf(t,t2)

are calculated by egs 60a and 60b, respectively, within eq 66

: ) ; - of the reaction rate constant, and other variables, thus resulting
obtained from matching the survival probability. . . . - .
in a direct estimation of the average relaxation rate of confor-
4.0 - mational fluctuations, for a given ensemble-averaged reaction
—— two-channel model rate constant.

— -~ stochastic rate model

3. The correlation between the amplitude of the echo and
the distribution of reaction rate constants provides useful
8.0 1 information about conformational landscapes. The amplitude
of the echo is shown to be proportional to the variance of the
reaction rate constani(t) 0 [0k2[] For a given set of reaction
rate constants, the maximum echo occurs at approximately
~ [0K)2IkL) which is proportional to the variance of the
reaction rate constant. In the slow modulation limit, the ex-
istence of the two-event echo can be related to the individu-

f(t)
o
[=]

1.0} ality and distinctiveness of conformational landscapes. The
maximum echo occurs when the difference between rate
constants associated with different conformational channels is

4 : maximized, whereas the difference between reactive fluxes is

%% 0.5 1.0 15 2.0 minimized.

t 4. The stochastic rate model provides a complete and unified

Figure 13. Comparison of the single-event distribution functions in description of the stochastic nature of the fluctuating rate
the two-channel model and in the corresponding stochastic rate modelconstant. Its second-order cumulant expansion, on the basis of

with k; = 2, k; = 4, andy = 0.5. The single-event distribution function  the small variance assumption, leads to the Gaussian stochastic
f(t) in stochastic rate model is calculated by eq 60a with given in rate model that serves as a first-order model for analyzing
eq 66.

single-molecule trajectories. Similar to Kubo’s stochastic line-

tion imposes a difficult condition on the use of ensemble- Shape theory, the stochastic Gaussian model describes the
averaged measurements to probe conformational fluctuations fluctuating rate process with an average rate constast (K[
In addition, a more stringent detailed balance condition can be @nd a rate correlation functigr(t) = [Jk(t) — k{[k(0) — kL]
established to exclude the possibility of microscopic current The resulting formalism reproduces the recurrent behavior in
between different conformational channels. the two-event joint distribution function. Through the mapping

2. Calculations of four different models (the two-channel tO the Gaussian stochastic rate model, various modulated
kinetic model, the three-channel kinetic model, the diffusion reaction schemes can be compared and characterized in a unified
reaction model, and the stochastic rate model) confirm the framework.
universal features of the two-event joint distribution function These results provide a quantitative tool to interpret and
and its quantitative relationship to conformational dynamics. analyze event-averaged single-molecule quantities. Though a
In the two-dimensional plane ofty,t,), there is a local minimum single time scale for conformational fluctuations is assumed for
at the focal timef;, and a local maximum at the echo tintg, the simplicity of calculations, applications of current analysis
along the diagonal cross-sectiéft,t) and there is a minimum  to power-law decay and other nonexponential relaxation pro-
at the echo time along both theaxis and the; axis. The echo cesses can also be formulated. Furthermore, conformational
time is twice the focal timete = 2t;, and can be approximated, relaxation is reflected not only in modulated reactions but also
within 10% error, byte = 2/(KRO+ 0. This approximate in other dynamic processes, including diffusion and quantum
relation is independent of the backward reaction, the distribution dissipation. Theoretical analysis of possible single-molecule
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measurements of these processes is an interesting topic for futurd’ he equivalence can be confirmed by replading?, anda in

studies?0-53
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Appendix A: The Green’s Function in the Diffusion
Model

Equation 41 satisfies the Smoluchowski equation with a
quadratic sink

aﬁt GOyt = —Gy) + A0 a% (a% n g)e(x,y,t) (A1)

with the initial condition

G(xy,0)=06(x—y) (A2)
Applying the transformation
GOey) = glxy,)er (A3)

wherea = (s — 1)/(40), s = v 1+4«0/2, we find thatg(x,y,t)
satisfies the FokkerPlanck equation for the Ornstein-Uhlen-
beck process with a constant potential sink

82

A
8X2 g(X,y,t) - E(S - 1)g(X,y,t)

0 _ ;s
p ax,y,t) = ’is aXx + 10

(Ad)
with the initial condition
gxy,t) = o(x —y) (A5)
Further, we rewritegg(x,y,t) as
gixy.t) = g (xy.te 2! (A6)

wheregi(x,y,t) is the Green'’s function for the standard Ornstein-
Ulenbeck process.

P

ax

with y = AsandD = 6. The standard solution to eq A7 is

given in ref 54 as
X — ye "h?
exd — y(x—y _Z)t (A8)
2D(1—e 7

Therefore, the Green’s function for the Ornstein-Uhlenbeck
process in a constant potential sink is

P _

i (A7)

d
y X xP)+D

Y
27D(1 — e 2

gl(X,y,t) =

1/2
g(x y t) — e—l(S—l)UZ

s
276(1 — e Y

exp[_ M‘ (A9)

26(1 — e 2

which, after the transformation in eq A3, leadsG(x,y,t) in eq
41. The same result was obtained by G. H. Weiss in ref 55.

his derivation with10, 1/, and« in our notation.
Appendix B: Single-Event and Two-Event Distribution
Functions in the Gaussian Stochastic Rate Model

We first define a two-time survival probability function as

P(toty) = @xpl- [ 'k(z) dr] (] (B1)

where theZ--[Jrepresents a stochastic average. Then, the single-
event distribution functioif(t) defined in eq 59b can be related
to P(to,tl) by

1 FP(toty) TR exp(= fok(@) dr)k(O)0
KO oty ot, oOu=t

f(t) =
(B2)

The second cumulant expansion truncated at second order gives
P(to,t1) explicitly as

P(toty) = expl~ K, — 1) + M(t, — )] (B3)

whereM(t) = f})(t — 7)x(r) dr. Substitution of eq B3 into eq
B2 leads tof(t) in eq 60a. Similarly, a four-time survival
probability function is defined as

Pliotyti,t) = BXpE( [, + [IK@) drly  (B4)

The two-event distribution functiofft;,t;) defined in eq 59b is
related toP(ty,t,,t;,t5) by

1 PP (tyty, b, 1)

Mt = Gy at, at, ot

[K(t, +t,) exp(— [/ I1+t2k(r) do)k(ty) exp(— [ k(r) d)k(0)D
&0

=01 =t U=t +t,

(B5)
The four-time survival probability functiorP(tyt,,t;,t5) is
obtained in the second cumulant approximation as
Plto,ty thty) = exp[= Bt + 1, — 1) — t)) + M(t; —t) +
M(t; — t) + M(t; — to) — M(t; — tg) — M(t; — t)) +
M(t; — t))] (B6)
which in combination with eq B5 leads to eq 60b.
Appendix C: Other Single-Molecule Quantities in the

Gaussian Stochastic Model

In the forward half-reaction of the stochastic rate model, the
normalized correlation function of two on-time events of
durationst; andt, separated by time is expressed as

&ty 2P0 Joki(t) dvy expe [ () a)0

on /Ty = t. 1 +7+t

T exp [k de)Texpe [ () )0
(c1)

The second-order truncation of eq C1 leads to

Co(tyTty) = expM(t, + t, + 7) + M(z) — M(t; + 1) —
M(t, + 7)] (C2)
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whereM(t) = it — 7)yon(r) dz. In the small time limit, the
above expression reduces

Coltptty) — 1

i, (C3)

= Xon(?)

t,t,—0

which provides a direct measure of the rate correlation function

Zon(D).
Another function to illustrate memory effects is the-aoff
population correlation function

_ |3:00ff(t)a:oon(o)[l
O B (0peO €
where pon(t) and por(t) satisfy the master equation for the full
reaction
pon(t) _ _kf(t) kb(t) pon(t)
(poﬁ(t) )‘ (kfa) —kb<t>)(poﬁ(t)) (©5)

Using the second cumulant expansion, the-off population
correlation function can be derived as

C(t) = exp[—2[KE + 4M(1)] (C6)
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