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The theory of polarizable fluids is developed on the basis of a model fluid consisting of 
anisotropic Drude oscillators with embedded permanent dipoles. A matrix Monte Carlo method 
is used to simulate these fluids and to compare their dielectric properties with the predictions of 
the mean spherical approximation (MSA) theory. Simple identities are used in conjunction with 
the matrix expressions to derive mean spherical approximations to the screening functions for 
charges and permanent multipoles in polarizable fluids. This is useful in the theory of the 
solvated electron. 

I. INTRODUCTION 

It is becoming increasingly clear that electrical induc- 
tion has an important effect in fluids. In liquid water in- 
duced dipoles can be 50% as large as the permanent di- 
poles. Large scale quantum chemical calculations show 
that polarizability and hyperpolarizability play a very im- 
portant role in the properties of molecular aggregates and 
clusters.“’ A model that incorporates induction is the well 
studied Drude oscillator model, an isotropic harmonic os- 
cillator with a frequency oo, mass p, and charges +4 and 
-q connected by a harmonic spring. If the electrostatic 
interaction between the Drude oscillators is treated in the 
dipole-dipole approximation the problem reduces to a ma- 
trix problem. This simplification provides an excellent plat- 
form for studying the dielectric and spectral properties of 
many-body systems3-9 and because linear response theory 
then holds exactly in the dipole-dipole approximation 
many physical quantities can be easily formulated and cal- 
culated. In addition, the classical and the quantum linear 
response to an external field are the same so that, although 
the problem of electrical induction is intrinsically quantum 
mechanical, most of the results derived for the classical 
Drude model need little modification when adapted for 
quantum systems. lo91 i 

The Drude oscillator model has been used to study 
5uids of either nonpolar-polarizable or polar polarizable 
molecules.3”2-‘4 Pratt13 and independently Hoye and Stel14 
have studied a classical fluid of isotropic Drude oscillators. 
Using the mean spherical approximation (MSA) they de- 
rived a self-consistent theory of the renormalized polariz- 
ability, a quantity that increases with fluid density. Hoye 
and Ste11i5’i6 and independently Chandler” applied the 
MSA to the path integral representation of the quantum 
Drude oscillators. This simple generalization leads to a 
theory of quantum polarizable fluids. Analytical continua- 
tion of the MSA theory gives the absorption spectrum of 
the polarization fluctuations.8’9”7-21 Although an approxi- 
mation, the MSA model has played an important role in 
the present understanding of electrostatic interactions in 
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dielectrics. More recently, Stratt and co-workers proposed 
a nonlinear theory which gives better agreement with sim- 
ulation than the MSA approximation.22-24 

In polar fluids the major contribution to the dielectric 
constant comes from the permanent dipoles. In this paper 
we study both kinds of fluids. In fluids containing polar 
molecules that are also polarizable the molecules are mod- 
eled as anisotropic Drude oscillators in which the elec- 
tronic motion along the direction of the permanent dipole 
and perpendicular to it have different force constants, or 
equivalently different polarizabilities along the parallel and 
perpendicular directions4 The molecules can then be 
treated using a polarizability matrix or tensor in the lab 
fixed coordinate frame. In nonpolar fluids the molecules 
can either be optically spherical or optically anisotropic. In 
the latter case one can assign anisotropic harmonic Drude 
oscillators as we have recently to study the optical birefrin- 
gence of smectic and nematic liquid crystals.25 

The most general Hamiltonian for polar-polarizable 
fluids consisting of molecules with anisotropic polarizabil- 
ities acted upon by an inhomogeneous electric field is 
treated in Sec. II. Because the internal motions of the 
Drude oscillators are fast compared to the molecular trans- 
lations and rotations the Born-Oppenheimer approxima- 
tion is invoked. The fluctuating degrees of freedom of the 
Drude oscillator are integrated out to yield a matrix ex- 
pression for the Drude oscillator partition function as well 
as the potential of mean force for the nuclear configura- 
tions. All relevant physical properties, such as the polar- 
ization energy of a solvated charge or permanent multi- 
pole, the dielectric constant, and the electronic adsorption 
spectrum can all be simulated using matrix techniques. In 
addition many of the previous theoretical results based on 
the MSA theory can be derived from a matrix formulation 
as has been pointed out earlier.8’9 The derivations are anal- 
ogous to the Greens function formalism in solid state the- 
ory.26127 The renormalized polarizability and the dielectric 
constant can be expressed in terms of the polarization ma- 
trix. A straightforward diagrammatic expansion of the ma- 
trix leads to a mean field theory equivalent to the 
MSA.8~‘9*20~!8 Furthermore, by identifying the off-diagonal 
elements as the dipolar correlation function, one can derive 
the equations for the renormalized polarizability, for the 
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screening functions for a point dipole and point charge 
dissolved in the fluid, and for the dielectric constant. An 
easy extension of the matrix analysis gives us the spectral 
line shapes in the MSA. Several of these points have been 
made in other papers 899~17~19920a24 but we feel that the reader 
will have an easier time if we repeat some of this in our 
notation. 

Recently, Felderhof and Cichocki63722g have developed 
a numerical scheme to calculate the electronic spectrum of 
nopolar hard sphere fluids. They were able to determine 
the spectral density in the Stieltjes representation of the 
dielectrical constant. This method is based on the determi- 
nation of moments using Monte Carlo or molecular dy- 
namics simulations and using these moments in Pad6 ap- 
proximates of continued fraction representations. This 
method is not easily generalized to clusters, solutions or 
anisotropic fluids; moreover, it is not a general procedure 
for determining other thermal properties of polarizable flu- 
ids by simulation. 

The approach we pursue in this paper and else- 
where25’30’31 is based on the fact that all the equilibrium 
and dynamical properties of systems composed of Drude 
oscillators can be formulated as a matrix theory. Usually 
the dispersion oscillator frequency w. is assumed to be high 
compared to the characteristic time scale of the nuclear 
motion so that the varing dipole can quickly respond to the 
changing environment, and a Born-Oppenheimer approx- 
imation is valid. We apply matrix techniques to the simu- 
lation of fluids and clusters and to the determination of the 
polarization spectrum in a variety of complicated circum- 
stances. We call this the matrix Monte Carlo method. The 
numerical solution of the absorption spectrum reduces to 
an eigenvalue problem. The method of matrix diagonaliza- 
tion is very general and versatile. One can treat clusters, 
mixtures, and anisotropic liquids (discussed in another pa- 
per) by matrix operations, systems ‘that do not lend them- 
selves to the Felderhof treatment. Not only is this scheme 
practical but it should also lends itself to parallel algo- 
rithms. 

I 

In Sec. III we use the matrix formulation to derive the 
generalized Clausius-Mossotti equation for the dielectric 
constant of polarizable-dipolar fluids. In Sec. IV an ap- 
proximate expression for the the dielectric constant of 
polar-polarizable systems is derived. Section V A estab- 
lishes a simple identity which is used to derive the self- 
consistent equation for the renormalized polarizability, the 
screening function of charges and permanent multipole sol- 
utes, and the dielectric constant (see Sets. V B-V E). In 
Sec. VI methods are introduced, based on the matrix for- 
mulation, for performing Monte Carlo Simulations of po- 
larizable fluids. In Sec. VII A the results of the MSA the- 
ory are compared with matrix Monte Carlo simulations. It 
is found that the MSA theory dielectric constant of polar 
polarizable fluids at high molecular polarizability deviates 
significantly from the simulation. Finally in Sec. VII C 
comparison of theory and simulation for the nonpolar po- 
larizable fluids is discussed. 

II. MATRIX FORMULATION OF A THEORY OF POLAR 
POLARIZABLE FLUIDS 

Consider an axially symmetric molecule. In the body- 
fixed coordinate frame in which the principal axis (the 
direction of the permanent dipole) is labeled z and the two 
other orthogonal axes are labeled x and y, the dimension- 
less polarizability tensor, Q? ‘, is 

(2.1) 

\ 0 0 4 
where aZ=all and axr=a,,,,=al , and the polarizability 
matrix in the body-fixed frame is a%‘. In the laboratory 
fixed coordinate frame the polarizability matrix of a Drude 
molecular ellipsoid labeled i is c@‘~ in which matrix Cei is 
related to 5% ’ through a transformation ~i=~7/T~ ‘pi, 
where the rotational matrix ~32~ is 

0 

(2.2) 

in which 6i and I are the Euler angles formed by the 
body-fixed reference frame of molecule i with respect to the 
lab-lixcd reference frame. 

The internal Hamiltonian of one Drude molecule with 
an embedded permanent dipole, mi, in an electrical field, 
E”, is then 

H=ffo(pi,qi) - (Pi+mi) * @ ’ 

$Tf*%i’2Ti pi’%,rlepi 
=a& 2 + 2a - (Pi+mi) * J$, 

(2.3) 
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where pi is the instantaneous dipole and rri is its conjugate 
momentum defined as ri= %rl * ~,/a&, and where mi 
=mui is the permanent dipole where m  is the permanent 
dipole moment and ui is a unit vector specifying the orien- 
tation of the permanent dipole. The expectation value of 
the dipole vector in an applied field is easily found to linear 
terms in the field, 

where the total dipole is simply the sum of the induced 
dipole and the average field oriented permanent moment as 
if these contributions contribute independently, a result 
which is valid in the gas phase. 

The Hamiltonian for a fluid composed of N axially 
symmetric Drude molecules is then 

,?-a a \ H= z, (&+z) + & uo(Rij~Ui~Uj) 
+ E HO(Pi9fli) - C (Pi+mi) * rij - (Pj+mj) 

i i>j 

- C. (Pi+mi) * Ey, 
i 

where {Pi,Ji3 are, respectively, the linear and angular mo- 
menta of the molecule, Rij=Ri-Rj is the vector cormect- 
ing particle i to particlej, Ue(Rij,Ui,Uj) is the short range 
interaction potential between atoms i and j, arising from 
the overlap interactions between the atoms, and where the 
dipoledipole propagator is 

3RP.R?‘.-~vR?. 
TV?= Y IJ IJ 

I/ 7’ ~~ 
(2.6) 

Tensors and matrices in this paper are represented by cal- 
ligraphic symbols; X is the identity tensor or matrix; the 
upper indices pv stand for coordinate components; the 
lower indices i or j stand for particles. 

The dielectric response of polar polarizable fluids re- 
flects two time scales, a slow time scale characterizing the 

reorientations of the permanent dipoles and a fast time 
scale characterizing the response of the embedded Drude 
oscillators. Thus the frequency dependent dielectric con- 
stant will reflect this separation of time scales by having 
low frequency bands arising from the reorientation of the 
permanent dipoles (rotational relaxation) and high fre- 
quency bands corresponding to charge redistribution in the 
molecules. The zero frequency (static) dielectric constant 
will of course have contributions from both of these time 
scales but usually the contribution from the permanent 
dipoles will dominate. Given the separation in time scales, 
the charge redistribution should rapidly follow changes in 
the nuclear positions and changes in the orientations of the 
permanent dipoles. The system should be well approxi- 
mated by the adiabatic approximation, that is, the Bom- 
Oppenheimer approximation.3291 

In the adiabatic approximation, the nuclear degrees of 
freedom need not be treated as dynamical variables. Thus 
the conjugate momenta of the nuclear positions and orien- 
tations in Rq. (2.5) are omitted giving the Born- 
Oppenheimer Hamiltonian 

-@SO= C uo(Rij,ui,uj) +HDo, (2.7) i>j 
where the Drude oscillator Hamiltonian is, 

HDO= C Ho(Pi,ri) - C (Pi+mi) . rij * (Pj+mj> 
i i>j 

- 7 (Pi+mi) * Ey- (2.8) 

The first term U. in Eq. (2.7) determines the distribution 
function of the nuclear configurations and the second term 
Hno determines the dynamics of the system. The dynamics 
of the instantaneous dipoles for each nuclear configuration 
is averaged over all the possible configurations. This gives 
the heterogeneous band shape. 

The expectation value of the observable, 
O({Ri3,Cui3,CPi),C;ri)) is 

(2.9) 

where the denominator in Rq. (2.9) is the canonical par- 
tition function, Zn, in the BO approximation. It is a simple 
matter to express ZBo as 

ZBO= d{Ri3d{ui3ZDo({Ri3,Cui3) s 

xexp -P C u(Rijtui,uj) 9 I 1 2-j 
(2.10) 

where Zm({Ri),{Ui)) is the partition function of the 
Dmde oscillators for a fixed nuclear configuration. 

Because HDo is quadratic in both {pi) and {?ri), the 

I 

multivariate Gaussian integral can be evaluated exactly 
giving, 

- * (g-‘m+aE’) -rn%?-‘m] 
1 
, 

J. Chem. Phys., Vol. 99, No. 9, 1 November 1993 

Downloaded 27 Mar 2001 to 18.60.2.110. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Cao and B. J. Berne: Simulation of polarizable fluids 7001 

where 2’ is an irrelevant prefactqr, %? is a ~Nx 3N matrix 
with each diagonal block given by % ‘r= Ce~~ij, and & is 
a 3NX3N matrix defined as 

J$=$$-‘-c&7. ~-~~~ (2.12) 

This definition of & will be particularly convenient for the 
calculation of the electronic absorption spectrum of liquid 
crystals, a subject addressed in another paper. For spheri- 
cal particle-s, G? takes the form of &=N-aY which is 
useful in the matrix formulation of the MSA theory, a 
subject discussed later. 

It is simple to show that the potential of mean force for 
the nuclear coordinates in the BO approximation is3* 

-& ; [ (mu-‘+aE’> * d-’ 

* (%-‘m+aE’) -m%‘-‘ml, (2.13) 

where the second term arises from the prefactor [det &]1’2 
in Eq. (2.11). 

The second term in Eq. (2.13) gives the classical 
many-body dispersion energy of the system which is small 
because the vibrational amplitudes of the Drude oscillators 
are very small, 0( JkT). Zero point fluctuations in quan- 
tum systems give large amplitudes and correspondingly 
much larger dispersion interactions (see Ref. 30). In most 
simulations only the two-body part of the dispersion inter- 
action is usually included by incorporating it into the sim- 
ple pairwise potentials but it should be recognized that the 
above expression contains many-body effects to all orders. 

The last term is the polarization energy of the system 
in the external field. For a given nuclear configuration, we 
can calculate the polarization energy. This expression has 
been used in simulations of an electron in polarizable fluids 
like water and xenon. Although the electron is a quantum 
particle, the use of Eq. (2.13) can be justified if the quan- 
tum Drude oscillators are high frequency oscillators. This 
topic will be discussed in the context of the screening func- 
tion in a forthcoming paper.31 

As can be seen here and later on, all the relevant quan- 
tities can be determined by applying proper matrix tech- 
niques. In this paper and other papers25’30*31 these matrices 
are evaluated both analytically and numerically. 

III. THE DIELECTRIC CONSTANT 

Because the molecular reorientational relaxation is 
much slower than the electronic relaxation, the high fre- 
quency dielectric response is only determined by the spon- 
taneous fluctuations of the Drude oscillators. The static 
response is determined by both the fluctuating dipoles and 
the permanent dipoles. In the rest of the paper, we focus 
our attention on the calculation of the static response, the 
dielectric constant E. 

Linear response theory gives the average dipole in a 
weak inhomogeneous static electric field. Expanding Eq. 
(2.11) to linear order in the external field E” yields 

(pi+mi) =a(~-‘),E~+p(sm’sm’)~jE~, 

where 

(3.1) 

&=&-lg--lm 9 
(3.2) 

Sm’=m’- (m’), 

is the polarizability renormalized permanent dipole vector 
and the corresponding fluctuation. For an orientational 
disorder system, we have (m’) = (m) =0 when the exter- 
nal field is absent. As usual repeated indices are to be 
summed over. The matrix a( &‘-‘>ij in Bq. (3.1) defines a 
poiarizability response matrix to the external static field. 
The angular bracket denotes an average over the nuclear 
configurations specified by the Boltzmann distribution 
function of the nuclear positions and molecular orienta- 
tions,- exp[ -/3Ul, where the total potential energy of a par- 
ticular configuration is 

. 
U= C Uo(Rij,Ui,Uj)-k z mi(..T* d” * % ‘-l)ijmj 

i>j 13 
(3.3) 

which is the potential of mean force for the nuclear con- 
figuration when the external field is absent. 

In general, the dielectric permittivity E is defined as 

eE=E+4?rP, (3.4) 

where the polarization density is 

P(r) = ( ; (Pi+mi)S(r-ri) ). (3.5) 

For a homogeneous isotropic fluid, the polarization density 
becomes a constant vector P= p( (p +m) ) directed along 
the external field. In anisotropic fluids (liquid crystals) the 
dielectric permittivity will be an axially symmetric tensor 
and the polarization density can be directed along a direc- 
tion different than the external field. 

The Maxwell field E differs from the applied external 
field E” because it includes the electric field of the induced 
dipoles. Consider a large spherical sample of polarizable 
Eaterial immersed in a medium of dielectric constant 
Eo* 4*29 It is a standard exercise to solve the Maxwell equa- 
tions for this system and obtain an expression for the di- 
electric constant of the material, 

(E-l)G!EOfl) 

( 
Pm2 

(e+2Eo) 
=45-p agl+Tg2 

1 
(3.6) 

in which a is the average of the trace of the polarizability 
matrix a% given by 

axx+ayy+azz a= ~~ 
3 ‘~-~-i (3.7) 

and g, and g2 are the Kirkwood g-factors defined individ- 
ually aS 

gl(eo) = lim 
N+co 

and 

(3.8) 
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2 
g2( Eo) = lim 

N-m 
(3.9) 

In this matrix formulation the polarizability a does not 
only contribute to the first term of Eq. (3.6) but also mod- 
ulates the permanent dipole m  by Eq. (3.2). Just as many- 
body interactions yield a renormalized polarizability which 
is larger than the original bare polarizability it is also ex- 
pected that these interactions will lead to a larger effective 
interaction of two permanent dipoles which depends non- 
linearly on the polarizability. 

The expression for the dielectric constant, Eq. (3.6)) is 
very general. In the limit a-+0 it reduces to the dielectric 
constant of a nonpolarizable dipolar fluid; in the limit 
m-0 it reduces to the dielectric constant of a polarizable 
nonpolar fluid. For an isotropic fluid, the matrix V re- 
duces to the identity matrix X and the intermolecular po- 
tential, Uo( Rij,Ui,Uj), becomes a central potentid. 

It is important to note that the left-hand side of Eq. 
(3.6) has factors dependent on the boundary conditions, 
whereas the right-hand side seemingly does not. Obviously, 
since Eq. (3.6) relates the macroscopic quantities on the 
left-hand side to the microscopic quantities on the right- 
hand side, the dependence on boundary conditions must 
appear in the matrix formulation.‘4929,33 

IV. AN APPROXIMATE THEORY FOR 
POLAR-POLARIZABLE FLUIDS 

Pratt and Hoye and Stell introduced the MSA theory 
for nonpolar polarizable fluids based on a Drude oscillator 
with dipole-dipole interactions.‘3*‘5’16 The dipole moment 
fluctuation was treated using classical statistical mechan- 
ics. The graph theoretical studies of the internal degrees of 
freedom, pioneered by Pratt and Chandler,3k36 prove to be 
very useful for treating this problem and related problems 
such as the calculation of the electronical band structure 
and phonon spectrum in liquids as was already recognized 
by Stratt.21,28*37 We have shown that these systems can also 
be investigated both numerically and analytically using a 
matrix formulation. The matrix method is a direct and 
simple alternative. The two approaches are essentially 
equivalent and complementary in many aspects. 

Here we generalize Pratt’s approach to polar- 
polarizable fluids. Both the permanent dipole and the fluc- 
tuating dipole contribute to the dielectric constant. In the 
mean spherical approximation theory the fluid molecules 
are assumed to have an effective dipole moment. For a 
particular molecule, the probability distribution of the fluc- 
tuating dipole is described by the excess chemical potential 
of an intramolecular degree of freedom solvated in the ef- 
fective polar fluid. However because this particular mole- 
cule is no different from the rest of molecules in the fluid, 
the average of the fluctuating total dipole moment is set 
equal to the effective dipole moment. This strategy leads to 
a self-consistent equation for the effective dipole moment. 
If m, is the effective dipole moment in a homogeneous, 
isotropic fluid, the excess chemical potential of the mole- 
cule solvated in the dipolar solvent can be calculated by the 
standard charging method, 

Ap= pmdp,($), (4.1) 

where (p is the interaction energy between the chosen mol- 
ecule and the rest of the particles in the fluid, that is, 

4=- j2 P1 ‘,Tli’Pi- (4.2) 

In the mean spherical approximation, the quantity (&j/ 
a&) can be related to the average dipolar interaction en- 
ergy by 

(4.3) 

where ( U/N), is the average dipolar energy in the effective 
dipolar fluid. 

In Appendix A the internal energy was identified as 8, 
the sum of the simply connected diagrams, that is, 

(4.4) 

in which Z is then approximated by the first two diagrams 

t2 
N- 

=-l-t,/t,’ (4.5) 

where t2 and t3 are discussed in the Appendix. Also the 
effective polarizability a, is related to the effective dipole 
moment by the well-known expression a,=/lmz/3. Now, it 
is a simple matter to integrate Eq. (4.1) to find that 

(4.6) 

According to Chandler and Pratt,34T35 the distribution 
function of the fluctuating dipole is 

fb)=exp[ -(P,(&+4+)] / 
gdpexp[ -(P(%+A~p)] (4.7) 

in which the denominator is the normalization factor. 
From this it follows that the effective dipole moment is 

(h+p12) = s @ f(p) (m+p12=mz. (4.8) 

Combining Eqs. (4.6), (4.7), and (4.8) leads to self- 
consistent equations for the effective polarizability ae, 

where ai is given by 

1 1 Z 
7=--- 
ai CZi a,’ (4.10) 

and the effective polarizability is the average of the trace 
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[see Eq. (5.3)] over nuclear positions is such that all 3N 
(4.11) diagonal elements must be equal. If these elements are 

summed and divided by 3N one obtains the average effec- 
tive polarizability of an atom in the fluid. This is the renor- 
malized polarizability E, 

The index i refers to the three components in the body- 
fixed frame in which ml=m2=0, m3=m, and a1=a2 
=a1 , a3 =ali . The above equations will reduce to the 
self-consistent equation of Pratt if the permanent dipole mi 
vanishes. 

Alternative formulations of the theory of polar- 
polarizable fluids are available.‘0*38 Hoye and Stelf have 
presented a more sophisticated dielectric theory of polar 
molecules with fluctuating polarizability. These authors 
showed that the dielectric constant can be calculated in the 
mean spherical approximation and that the single super- 
chain approximation and the results for polar-polarizable 
fluids are equivalent to an effective dipolar fluid. More de- 
tails can be found in their paper and other references cited 
in this section. 

The method we present here is a simple extension of 
the work on nonpolar polarizable fluids. Moreover the ma- 
trix formulation makes it possible to perform a simulation 
of the full spectrum for comparison with MSA theory. 

The self-energy term B of Eq. (4.5) is calculated using 
the effective dipole moment m,. Because ): is a positive 
monotonically increasing function of the density, al 
> ai, and the contribution from the permanent dipole as 
well as the contribution from the fluctuating dipole is mag- 
nified. The effective dipole moment and hence the dielectric 
constant thus increases strongly with the density and the 
polar&ability. Furthermore the polarizability anisotropy, 
q >a1 t will further increase the dielectric constant. 

Once Eq. (4.9) is solved for m,, Wertheim’s expres- 
sion for the dielectric constant of polar fluids is used to 
determine the dielectric constant of polar-polarizable flu- 
ids 4314239 

V. MATRIX FORMULATION OF NONPOLAR 
POLARIZABLE FLUIDS 

The above results simplify considerably when applied 
to a nonpolar fluid of isotropic Drude oscillators. Then 
mi=O, % “=X, LZ?=/-a7. The Drude oscillator 
Hamiltonian of fluid is then 

HDo= T &+ T $- iz pi*rij*Pj- C Pi-E:, 

I (5.1) 
where E” is the external field, {Pi,pJ are the instantaneous 
dipoles and their associated velocities, the dipole-dipole 
propagator Y- is given in Eq. (2.6). 

The response of particle i to an external 
applied at j, given by Eq. (2.4)) becomes 

pi= ad; * * E$ 

where the matrix .e! in Eq. (2.12) becomes 

a?=/--aF. _ ~~__ ~~. 

field field Ey 

(5.2) 

(5.3) 

This contains effects due to the interacting Drude oscillator 
system. In a neat isotropic nonpolar fluid all of the parti- 
cles are identical so that the thermal average of &’ matrix 

@=:mi &a(Tr d-‘)=a((&;‘)), (5.4) 

where the ( ( * * *) ) designates an average over the N parti- 
cles and where the limit is the thermodynamic limit. In an 
isotropic fluid i? is a spherical tensor and the renormalized 
polarizability is then proportional to the trace of the po- 
larizability matrix over particle indices and Cartesian com- 
ponents. It is important to note that this renormalized mo- 
lecular polarizability is not an observable. It is of interest 
because in MSA it satisfies a self-consistent equation from 
which it can be determined.13 In the Appendix A we 
present a detailed diagrammatic study of the renormalized 
polarizability. 

All the results for the classical Dmde system can be 
easily transformed into the quantum mechanical version 
with the help of a normal mode transformation. Full quan- 
tum mechanical analysis leads to the calculation of the 
many-body dispersion interaction3’ and the quantum sol- 
vation of an electron in the polarizable fluid which will be 
discussed in a forthcoming paper.31 

Section V A establishes two simple identities which are 
then used to derive the self-consistent equation for the 
renormalized polarizability in Sec. V B. Section V C gives 
the- screening function of charges and permanent multipole 
solutes, and the dielectric constant is given in Sec. V D. 
Finally in Sec. V E we show how to determine the dynam- 
ics and spectral line shapes in MSA fluids. 

A. Simple identities 

Wertheim found an analytical solution to the MSA 
theory of a fluid of hard spheres with embedded permanent 
dipoles.14 Although the MSA theory is not a quantitatively 
satisfactory theory, Wertheim’s work has had a great in- 
fluence on later work in the field. Pratt13 then showed that 
in the MSA a nonpolar polarizable fluid with renormalized 
polarizability JZ? is equivalent to a polar fluid in which the 
spheres have embedded permanent dipole moments of 
magnitude, 

,+3; 

that is with permanent moments equal to the root mean 
square dipole moment of the induced dipole in the nonpo- 
lar fluid. 

In this section we exploit Pratt’s observation to estab- 
lish a formal connection between the matrix theory for 
LJ?-’ and the MSA. This connection proves to be particu- 
larly fruitful. It leads to a simple method for deriving self- 
consistent equations, deriving expressions for screening 
functions for charges in polarizable fluids, and for deter- 
mining the dielectric constant. This approach is particu- 
larly simple and rewarding. 
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If a tagged particle, labeled 0 has a fixed dipole po, 
what is the average induced dipole of another oscillator at 
another position? The induced dipoles satisfy a set of field 
equations, 

Pi’a(~8JPO+-7ijPj)9 (5.6) 

where Tap0 is the field at i due to the permanent dipole p. 
and ~ijpj is the field due to all the other induced dipoles 
(repeated indices imply summation). The matrix solution 
for Pi is 

pi= (~-a.Y-)~~‘a~jopo , (5.7) 

where the matrix (X-aY) differs from JZ? of Eq. (5.3 j 
because the index zero is excluded from the matrix. Thus 
(X-aF) is a (3N-3) x (3N-3) matrix where none of 
the indices can be the index for particle 0. Now from Wer- 
theim’s MSA theory of polar hard sphere fluids a dipole p. 
on one particle gives an aligned dipole 

(Pi> ‘%aPO ..( 5.8) 

on another particle in which &” is the dipolar pair corre- 
lation function for the equivalent dipolar fluid. The tensor 
%’ has the explicit form,14 - 

sY=hA9-+hDd?, ,- (5.9) 

where g is the tensor defined as 

#YY= (jR?.RY-R?.S 
fJ IJ IJ I/ PLY 

)/R?. 
I/ (5.10) 

and where hA and h D are given in closed form by Wer- 
theim. l4 

Eliminating pi between Eqs. (5.8) and (5.7) gives 

((X--am-‘a7) =+A?. (5.11) 

The matrix .& includes the zero index particle because the 
sites associated with both endings are polarizable. In the 
MSA this factor is accounted for by replacing the bare 
polarizability a of particle 0 by the renormalized polariz- 
ability E. Thus the off-diagonal element (O.D.) of LZ? can 
be identified as 

(ad-‘) O.D. =&Y. (5.i2) 

This identity has been used by Chen and Stratt’ to obtain 
the off-diagonal contribution of polarization matrix to the 
absorption spectrum. 

These two identities establish a connection between the 
dipolar MSA and the matrix solution to the polarizable 
fluid. Some interesting results follow from this identity. 

B. Self-consistent equation for renormalized 
polarizability 

Equations (5.12) and (5.11) provide a simple means 
for deriving the self-consistent equation of Pratt. The di- 
agonal element of the .&- ’ matrix can be expressed in 
terms of the off-diagonal elements by using simple operator 
identities like (fl- a.?-) - ’ (fl- a7) =X. For example, 

(N-aF)Gl= 1 +aFli* (X-aZT)zyl 

which can be expressed as 

a-g,‘=a+a ~~*j~CY~~*. 

i 
Substitution of Eqs. (5.12) and (5.9) into Eq. (5.14) fol- 
lowed by contraction of the tensors then allows this to be 
written in integral form, 

z=l+p g(r)7(a&-1)o.D.dr. 
I 

(5.15) 

On substituting Eq. (5.12), one easily obtains, -. 

z=l+pt g(r) shDdr -I (5.16) 

which is exactly the equation for 53 obtained by Pratt. 
Thus in a very simple and straightforward way, the 

self-consistency of the matrix expansion leads to the self- 
consistent equation for the renormalized polarizability 
which can otherwise be determined only from a lengthy 
graphical reduction procedure as discussed in the Appen- 
dix. 

C. The screening function for solvated permanent 
multipoles 

A problem of recent interest is that of electron or ion 
solvation in a polarizable fluid. It has been found that, if 
the polarizability is large enough, the electron solvation 
process is greatly affected by many-body polarization ef- 
fects.40,41 Here we consider the classical theory. If one of 
the Drude oscillators is replaced by a point charge or a 
point dipole or any multipole, what is the electrostatic field 
in the fluid? The field equations are then12 

E=E’+aY-E, (5.17) 

where E” is the bare field introduced by the electrical 
source, be it a charge or permanent multipole, and the term 
a7 * E is the field due to induced dipoles. The solution of 
Eq. (5.17) can be substituted back into itself to give, 

E=E”+ (>--aY)-’ . aY* E’. (5.18) 

By combining the above solution and Eq. (5.11)) we cal- 
culate the average electric field at the point r with respect 
to the permanent multipole, 

(E(r)) =E’(r> +$ s E’(r’)g(r’) *X’(r-r’)dr’. 

(5.19) 
This is a self-consistent equation for the average electric 
field. Here pg(r’) is the radial distribution of the atoms at 
r’ from the multipole. Substitution of Eq. (5.9) gives an 
equation for the electric field in terms of the functions hA 
and hD. The detailed calculation of the field E involves 
Fourier transformation of vectors and tensors and is best 
left for the Appendix. 

Because the quantities are averaged over fluid config- ._ .- 
urations, the average Maxwell field (E) must be along the 
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same direction as the bare field of the charge. The ratio of 
the magnitudes of the local to the bare field is defined to be 
the screening function f(r), 

I 03 I f(r) =pq- * (5.20) 

The polarization energy of the system, Qpp, in the external 
field can be found in Ref. 3 1. A simple approximation is to 
average this over nuclear configurations keeping particles i 
and j fixed, that is to replace AU’ by its average value 
(Au’). The resulting polarization energy can be expressed 
in terms of f(r) as follows: 

‘h= -; c aE&@;‘)+ -; c 4(ri) (@)2. 
(5.21) 

The approach is valid if the polarization field is weak and 
the many-body correlation functions alter little due to the 
present of the external field. 

D. MSA theory of the dielectric constant 

The methods outlined in the previous sections can be 
used to derive an expression for the dielectric constant of a 
polarizable fluid. In a constant external field the column 
vector of induced dipoles is 

~=a.&-~. E”. (5.22) 

Taking the average, (~~lp&3(r-ri>), of the above equa- 
tion, and applying Eq. (5.12) yields, 

P(r) = (p(r)) =Q E”+$ 
1 J 

GY(r-r’) *E’dr’ . 1 
(5.23) 

Fourier transformation of Eq. (5.23) gives 

Fk+z( I++?~) .I%; (5.24) 

where all of the quantities with a A on them are Fourier 
transforms of the corresponding spatial properties. Ac- 
cording to the definition of the susceptibility ~~k=~“&~ we 
obtain the longitudinal and transverse components of the 
Fourier transform of the response function, 

j$ (k) =pE 1+$ @+2h^F) 
1 1 (5.25) 

and 

iy (k)=pb 1+p (&-h^f) . 
1 1 (5.26) 

For a homogeneous isotropic fluid, the static suscepti- 
bility is, 

. (5.27) 

Finally, combining with Eq. (3.6) and letting E~=E, we 
find 

(E-1)(&+1) 471. 
9E =3 -Qppgk, 

where gk is the Kirkwood g-factor given by14 

(5.28) 

This is the MSA expression for the dielectric constant 
of polarizable fluid. l4 The Kirkwood g- factor arises from 
the dipole-dipole interaction between different particles. In 
the low density limit, gk+ 1, the correlation between par- 
ticles vanishes, and the dielectric constant reduce to a lin- 
ear summation of contributions from each particles in the 
fluid. 

E. Dynamics and absorption spectrum in the MSA 

Chandler et al. l7 employed analytical continuation of 
the Euclidean time quantum response response function to 
extend Pratt’s equilibrium MSA theory13 to the dynamics 
and spectrum of a fluid of quantum dispersion oscillators. 
We follow a similar path to study a system described by a 
quadratic Hamiltonian. In such systems, the quantum and 
classical response functions are the same. Since the subject 
has been explored by several authors,89gp17 this section 
serves as a natural extension of the equilibrium studies and 
provides an interesting comparison with simulation. 

All the operations used in deriving the results of MSA 
are still valid for the frequency-dependent response func- 
tions. 25 Thus, it is a simp le matter to generalize the self- 
consistent equation Eq. (A5) to determine a renormalized 
frequency dependent polarizability E ( w ) , 

(5.30) 

where a ( w ) = a/[ 1 - (w/we) “1 is the frequency dependent 
polarizability of a single Drude oscillator. If the function 
2[Z(w)] is again approximated by Eq. (A6), Eq. (5.30) 
reduces to a quadratic equation. The singularities of E (0) 
are simple in a finite system, but turn into a branch cut in 
the thermodynamic limit. The line spectrum of a finite 
system is then smeared into a continuous spectrum in the 
thermodynamic limit. The imaginary part, E(w) gives the 
spectrum of polarization fluctuations. 

To obtain the frequency dependent dielectric response 
function E(W), we insert the renormalized polarizability 
csi (w) into the Kirkwood expression Eq. (5.28). The imag- 
inary part of E(W) is the electronic absorption spectrum 
due to dipolar excitations in the MSA approximation. 

One can immediately recognize the similarity of Eq. 
(5.30) to the self-consistent equation in the Green function 
analysis which can be easily recovered by interpreting iE as 
the average of the trace, w2 as the energy spectrum, Z and 
as the self-energy term. 1g120927928,37 Essentially, both ap- 
proaches are equivalent to the random matrix problem 
which arises because from topological disorder or thermal 
disorder. The resulting mean field equation always leads to 
a continuous and broadened spectrum. 
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We now treat a binary mixture in which the resonant 
frequencies and the static polarizabilities of the two com- 
ponents are different. This system was not treated before. 
The average renormalized polarizability E(w) then be- 
comes the weighed sum of the two components, and the 
self-consistent equation reads 

E(o) =x1 al(w) 
al(w) 

l-- c(o) 2[3w) 1 

+x2 
a2h) 

a2b) 
l-7 a(w) ~[a@ )1 ’ 

(5.31) 

where Xi and X2 are the mole fractions of the two compo- 
nents and ai (w ) and a1 (w) are the frequency-dependent 
polarizabilities of a single Drude oscillator for the two 
components, 

(5.32) 

in which <= 1,2 stand for the two components. 

VI. MONTE CARLO METHOD FOR SIMULATING 
POLARIZABLE FLUIDS 

The frequency response of a system of Drude oscilla- 
tors to a time dependent electric field is the same for clas- 
sical and quantum systems because the Hamiltonian is 
quadratic.‘*r7 A fluid of Drude oscillators driven by a 
monochromatic electromagnetic field Ei( 0) emitif obeys the 
set of linear equations of motion, 

. . 
~+pi-a~i~pi=aEi(o)e-‘“‘, 

I 
where Oi is the intrinsic frequency of the harmonic oscil- 
lator and a is the static polarizability. 

The particular solution of Eq. (6.1) gives the fre- 
quency dependent response function, or the susceptibility 
mat~,6J>9J7 

where p is the density, a is the static polarizability, and the 
matrix .Z?F is detlned as 

Wij=WfSij-WP~iij~ 

Diagonalization of the matrix .ZV gives 

Xii(O) =Wi 9 
( 

AT12xg-1) wj3 
ij 

where Aij=/z$ij is the diagonal matrix, /zi is the ith eigen- 
value and Y is the transformation matrix. Thus we obtain 
the power spectrum 

where x”(o) is the imaginary part of the response matrix. 
The dielectric constant can be obtained in a similar fash- 
ion. The details of the matrix Monte Carlo method for 
evaluating the susceptibility are given in a previous pa- 
per.25 

Because the dipole-dipole interaction is long ranged, 
the calculations will be very sensitive to the system size and 
geometry and thus to the boundary conditions.1492g933 The 
dipole propagator defined in Eq. (2.6) has to be modified 
depending on the cavity size, L, and the value of dielectric 
constant of the surrounding medium, eo. We adopt the 
Ewald summation technique of deleeuw, Perram, and 
Smith.33 The modified dipole propagator is then, 

1 3 47T 
3-12’~ VV&JR12/~) -2Eo+ 1 z fl, (6.6) 

where L is the edge of the cubic system studied and 4, is 
the Ewald summation, 

(pew= & -L& e-~rm/c~2+Z2~+ -$ ““;‘:!::;” ) 

(6.7) 
in which c is an arbitrary constant, and erfc is complemen- 
tary error function. The choice of constant c and the con- 
vergence of the series have been discussed in the paper by 
de Leeuw et al. The constant c in our simulations is taken 
to be c=4.0 which is sufficiently large that the only term 
contributing in the real space part in Eq. (6.7) is n’=O, 
the conventional minimum image term, and the number 
of reciprocal vectors n used in the first term of Eq. (6.7) 
is 124. 

To assure the convergence, systems of both 108 parti- 
cles and 256 particles are simulated were compared and no 
difference was found at the densities reported here. The 
step size of the MC move was adjusted to yield a 50% 
acceptance rate. Initially the system was placed on a fee 
lattice and was then equilibrated for 105-lo6 configura- 
tions. Matrix diagonizations were performed for more than 
lo3 noncorrelated liquid configurations to obtain the di- 
electric constant and spectrum. 

VII. RESULTS 

A. Polar polarizable fluids 

In this section we calculate the dielectric constant of 
polar-polarizable fluid using an approximate theory and 
compare the results of this theory to simulations of the 
fluid. 

de Leeuw et al. 33 have discussed the Ewald summation 
technique in great detail. The dielectric constant of the 
fluid should be invariant to the choice of the dielectric 
constant e. of the surrounding medium. Nevertheless the 
choice co= 1 suppresses the dipolar fluctuation more effi- 
ciently than other choices of ao. As long as a and pm2 are 
not too large, we run simulations in a surrounding vacuum, 
eo= 1. In this case Eq. (3.6) reduces to the generalized 
Clausius Mossotti formula. Pluids consist of hard sphere 
molecules with dimensionless polarizability, a* =a/d, 
and dimensionless dipole moment defined such that 
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FIG. 1. The dielectric constant of a polar-polarixable fluid plotted as a 
function of the reduced polarizability a*. The parameters of the fluids are 
given in the text. (a) q , the Monte Carlo simulation result for a spherical 
polar polarixable fluid with 8= 1.0 and p*=O.S; (b) X, the MSA result 
for the same isotropic fluid as in curve (a); (c) + , the MSA result for the 
anisotropic fluid with &l.O and p*=O.8 but with Q,, /a1 = 1.44 where 
(al +2aL )/3 is the same as the spherical polarizability used in 
curve (a). 

0=m2p/d, where (T is the hard sphere diameter. For pur- 
poses of calibration we simulate the nonpolarizable polar 
fluid, a=O, under the same conditions as in the paper of de 
Leeuw et aZ., that is p* =0.8 and 19= 1.0. The system con- 
sists of 108 particles. The nuclear configurations are sam- 
pled using metropolis Monte Carlo sampling. The maxi- 
mum step sizes of tentative moves of the spatial 
coordinates and the two Euler angles are adjusted to yield 
an acceptance rate of 50%. The system is equilibrated after 
lo6 configurations. In Fig. 1, curve (a) is the dielectric 
constant for several different values of the polarizability 
a*. We observe that the dielectric constant increases 
quickly at large values of polarizability. This nonlinearly 
demonstrates the importance of many-body effects in 
polar-polarizable fluids. 

Even though Eq. (3.6) is formulated for the general 
polarization matrix g, implementation of Monte Carlo 
simulations is limited by computer capacity. If the polar- 
izability is isotropic as in the above simulation, the matrix 
G! is independent of molecular reorientations and changes 
when the nuclear positions are moved. This allows us to 
invert the matrix approximately lo3 times during the 
whole run to attain convergence in reasonable cpu time. 
For anisotropic polarizability, the matrix .&-I must be 
updated whenever both the position and orientation are 
moved because the matrix .&’ now depends on both the 
spatial and angular coordinates. The simulation now re- 
quires that the matrix be inverted 105-lo’! times, a feat 
requiring the use of a massively parallel computer. 

The solution of the Eqs. (4.9), (4.10), and (4.11) 
gives the predictions of the approximation theory. For 
comparison, we plot the analytical results for the same 
conditions as the simulations in curve (b). At low polar- 
izability, the two curves agree reasonably well; at high po- 
larizability, the simulation results are much larger than 
those predicted by the theory. The discrepancy of the an- 
alytical results and simulation results is expected at high 

J. Cao and B. J. Berne: Simulation of polarizable fluids 7007 

polarizability because the mean spherical approximation 
underestimates the strong coupling between the induced 
dipoles and permanent dipoles. Curve (c) is the approxi- 
mation solution for anisotropic polarizability tensor. All 
the parameters are the same as for curves (a) and (b) 
except that all /al = 1.44. Obviously, curve (c) increases 
with a much faster than curves (a) and (b). As can be 
seen from EQ. (3.2), it is mainly the polarizability along 
the direction of the permanent dipole, all , that renormal- 
izes the permanent dipole moment and thus increases the 
polarization field. Therefore, it is expected that the larger 
all-/til is at fixed value of (a,, +2a, )/3 the larger will be 
the dielectric constant E. 

From the perspective of the approximation theory, a 
polar polarizable fluid is equivalent to a polar fluid with an 
effective dipole moment determined by Eq. (4.8). This in- 
dicates that the dielectric constant of a polar-polarizable 
fluid can be mapped to a corresponding nonpolarizable 
polar fluid at the same density and temperature but with an 
effective dipole moment. 

All atoms and molecules have induced dipoles due to 
the electronic fluctuations. The dielectric properties oft at- 
oms or spherical molecules are completely determined by 
fluctuations in the induced dipoles. Strictly speaking, all 
polar fluids are polarizable but because such fluids are dif- 
ficult to treat they are often approximated by the rigid 
dipole approximation. We show here both numerically and 
analytically how the dielectric constant for polarizable po- 
lar fluids increases with polarizability and thereby demon- 
strate the significance of many-body polarization in polar 
fluids. Only nonspherical molecules can have a permanent 
dipole. Strictly speaking, the polarizability of such mole- 
cules is anisotropic, that is, charge fluctuations have differ- 
ent amplitudes along and perpendicular to the molecular 
symmetry axis. Nevertheless if the polarizability is small, 
its anisotropy can be ignored. Here we present the general 
formulation for molecules with anisotropic polarizability 
but we carry out the numerical simulations for the case 
where the polarizability is isotropic. To assess the impor- 
tance of polarizability anisotropy we present the analytical 
results for the more general situation. The calculations of 
the approximation theory show that the dielectric constant 
increases with polarizability anisotropy alI /a, for fixed 
value of the trace of the polarizability tensor. This obser- 
vation gives further convincing evidence of the importance 
of many-body polarization in the liquid phase. 

B. The screening functions 

The screening function defined by Eq. (5.20) (and de- 
tailed expressions given in the Appendix) is calculated for 
(a) a permanent point charge and (b) a permanent point 
dipole in a polarizable hard sphere fluid of reduced density 
p* = pa3 = 0.8 and reduced polarizability a* =a/d =0.2. 
(c is the hard sphere diameter.) In Fig. 2 curves of the 
screening functions are plotted vs the distance from the 
charge or the dipole. 

Notice that curve (a) is much lower than curve (b), in 
other words, the screening function of a point charge is 
much stronger than that of a point dipole. Obviously the 
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FIG. 2. The screening function defmed by Eq. (5.20) for (a) a permanent 
point charge (the solid curve) and (b) a permanent point dipole (the 
bold curve) in a polarisable hard sphere fluid of reduced density p* = pd 
=0.8 and reduced polarizabiity a*=a/$=0.2. (o is the hard sphere 
diameter.) 

screening function for higher order multipoles is succes- 
sively weaker because each in turn is less capable to polar- 
izing the solvent. On the other hand, the locations of peaks 
are similar for the two curves because these screening func- 
tions are determined by the structure of the solvent. The 
amplitudes of the screening functions, on the other hand, 
are determined by the charge distribution of the electrical 
source. 

It should be noted that this MSA theory of screening is 
different than Lekner’s.42 Lekner’s theory is essentially 
equivalent to applying a superposition approximation to all 
of the spatial many-body correlation functions of the nu- 
clear coordinates. It only includes chain diagrams whereas 
the MSA theory includes higher order diagrams and 
should thus be more accurate than Lekner’s.3’ Berne et al. 
have applied the Lekner theory to polarization calculations 
of the quantum solvation of electron#’ and compare these 
to full many-body calculations without the superposition 
approximation.43 They show that the Lekner theory is 
good to within 10%. 

C. Results fok nonpolar polarizable fluids 

For the sake of comparison, we simulate an equimolar 
hard-sphere fluid mixture (Xi =X2=0.5) at a reduced 
density of p*=pd=0.382 and a reduced polar&ability of 
a*=a/d=0.06 h w ere o is the hard sphere diameter. The 
Ewald summation is applied with the surrounding medium 
taken as a perfect conductor. Power spectra are plotted 
along with the with MSA predictions in Fig. 3 for ol=wO 
and w2=1.200 and in Fig. 4 for ol=wo and w2=1.5wo. 

iii =o+Q+ q +eo 
+ 4I + *.. 

FIG. 3. The power spectrum of a hard sphere mixture containing equal 
size sphere at a reduced density of p*=O.384. The mole fractions of the 
two components are the same, that is, X,=&=0.5. The polarizability is 
the same for the two components, a*=0.06, but the frequencies are dif- 
ferent, wt =oc, os= 1.20,. The solid curve is the simulation result and 
the bold curve is the MSA result. 
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FIG. 4. The same plot as Fig. 7 except for ot=oe and or,= 1.50~. 

Notice that the MSA predicts the correct bandwidths but 
fails to give the detailed shape of the spectrum. In both the 
simulation and MSA results the separation between the 
two bands in the mixture is larger than the separation 
between the bands of neat fluids of these two different mol- 
ecules at the same density because of the dipolar interac- 
tion between the two components.“” 

The Pade approximate Eq. (A6) when used with Eq. 
(A5) yieldca cubic equation whose solution gives the ab- 
sorption spectrum of the mixture. In the limit of infinite 
dilution the dilute component can be regarded as an impu- 
rity. It is then found that if the impurity frequency lies 
above the spectral band of the solvent the impurity reso- 
nance is blue shifted whereas if the frequency lies below the 
spectral band -of the solvent the impurity resonance is red 
shifted. This agrees with the analysis of Chandler et al. l7 
Our approach is to take a very small but nonzero impurity 
concentration. We are able to determine the dielectric ab- 
sorption spectrum for the system in which the impurity 
manifests itself as a very narrow band outside the main 
spectral band of the solvent. In the approach taken by 
Chandler et al, the impurity is a single particle in an infi- 
nite solvent. The impurity spectrum is then a delta func- 
tion. 
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APPENDIX A: THE MATRIX THEORY AND 
DiAGRAMMATlCS 

The renormalized polarizability iE defined by Eq. (5.4) 
can be Taylor expanded as 

tl=Q, 

b=a( ( (H-aJY-l)) = nz, an{ (Y’+‘)). (Al) 

This can be represented by diagrams in which white circles 
represent tagged particles, black circles represent particles 
being summed over, the coupling between particles, given 
by the dipolar propagator 7, is represented by a line, an a 
is assigned wherever a line passes through a circle and an 
extra a is assigned to the white circles. In the following we 
give a brief and somewhat cursory description of the dia- 
grammatic analysis. 

The value of each diagram is the product of all the 
elements composing the diagram. This expansion is given 
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FIG. 5. The Taylor expansion of the renormalized polarizability K’ The 
white circle represents the tagged particle, each black circle represents a 
dummy particle being integrated, and lines connecting the circles repre- 
sent dipolar propagator. 

in Fig. 5. Because Z is a trace, the diagrams are closed 
chains or cycles. Each diagram represents an average as, in 
Eq. (Al), and thus contains a many-body correlation 
function. For example, the second diagram in Fig. 5 cor- 
responds to 

( a3 zl r?i) =a3p s 7?2 g(rl,rdb (A21 

whereas the third diagram corresponds to 

where g( rl ,r2) and g( rl ,r2,r3) are the pair and three-body 
correlation functions, respectively, and p is the number 
density. 

Whenever circles connect two or more otherwise sep- 
arated sub-diagrams it is possible to approximate this by 
reducing it to a product of two parts. For example, the 
fourth diagram of Fig. 5 can be approximated by 

.I 
(A4) 

2 . , 

=a p&d rl ,d7f2dr2 1 
and most of the many-body diagram can be decomposed 
into a set of smaller diagrams. This approximation leads to 
a renormalization of the diagrams. A general diagram is 
constructed by summing all possible decorations of each 
circle. The decorations attached to a black circle are equiv- 
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FIG. 7. Further reduction of Fig. 3 which leads to the self-consistent 
equation (A5). 

alent to an Cr expansion series starting and terminating at 
that black circle. One can thus remove these decorations by 
assigning the renormalized Z to each black circle in place 
of the bare a. The results are given in Fig. 6. The set of 
diagrams generated by adding decorations to the white cir- 
cle can be grouped according to the number of decorations 
thus yielding the results given in Fig. 7. Finally, we can 
express this as the self-consistent equation,27 

a 
Ez ) t-45) 

1-z 2(E) 

where Z is the infinite sum of the simply connected dia- 
grams given in Fig. 8. It is a simple matter to show that 
E>a. 

The limit N+ OTJ makes it possible to have an infinite 
number of combinations of diagrams. This allows a topo- 
logical reduction in which a is replaced by Z. In Sec. V E, 
where the absorption spectrum is discussed, it is noted that 
the thermodynamic limit gives a continuous spectrum in- 
stead of discretized absorption lines. 

Except for the first two terms of the Z series, the many- 
body correlation function is difficult to calculate analyti- 

._ 1.2 8 1 I I 1 I 

1 A 

0.8 - 

I 0.6 - 

0.4 - 

FIG. 6. The topological reduction of Fig. 2. Each black circle now rep- FIG. 8. The infinite series of the simple connected diagrams which defines 
resents the summation of diagrams in Fig. 2. Z used in Eq. (A5). 
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tally. Fortunately, a simple argument based on Onsager’s 
saturation property44 allows us to construct a Pade approx- 
imate from the first two terms,3g 

t2 
2=t2+t3+-*-s- 

1 - t3/t2 ’ L46) 

where t2 and t3 are given by Eqs. (A2) and (A3) and can 
be evaluated numerically (see Appendix B). 

The above analysis* is similar to that used in the topo- 
logical reduction in the Green function theory of electronic 
states in solids.27y26 (0 n revising this paper, we noticed that 
much of the diagrammatic expansion used here is very 
close to the work done by Chen et al. ) In solid state the- 
ory, the Green function depends on the crystal structure, in 
liquids, where there is topological disorder of the nuclear 
configurations, it depends on the correlation functions. In 
the equilibrium theory of classical fluids similar methods 
have been employed to derive diagrammatic expansions of 
thermodynamic functions, such as the free energy and 
chemical potentia1.3”36 

PrattI derived a self-consistent equation for the renor- 
malized polarizability based on a Pad& approximation to 
the free energy. This is the same as Eq. (A5) with 2(E) 
given by Eq. (A6). Pratt’s work is based on diagrammatic 
reduction of the free energy of the intramolecular degree of 
freedom, an analysis similar to our procedure. However, in 
order to get the excess chemical potential due to the dipole 
fluctuations, a MSA is applied. This does not effect the first 
two diagrams in Eq. (A5), but the next order diagram in 
our summation has a term with two circles connected by 
four lines, a term ignored in Pratt’s MSA. 

Logan and Winn have applied the similar strategy to a 
calculation of the electronic band structure.‘g~20*45 The den- 
sity of states (DOS) was evaluated for a tight-binding 
Hamiltonian with off-diagonal randomness due to spatial 
disorder. Stratt studied the same problem by adding arti- 
ficial degrees of freedom.2’p28*37J46 Both authors show that 
on the MSA level both theories are identical to the effective 
medium approximation proposed by Ruth.47 Therefore the 
methods and results here are similar to what appears in 
previous publications.8,g*‘g and we include this section for 
clarity. 

APPENDIX B: EVALUATION OF THE TWO 
INTEGRALS 

The two integrals in Eq. (A6) are all that is needed in 
the MSA equation. t2 is, 

t2=a2p I tr p 
,-g(r)dr=a2p 

2 
s -;adrMr, (Bl) 

where g(r) is the pair correlation function. If g( r) is taken 
as a step function (the dilute hard-sphere gas phase limit) 
t2 becomes 

8, 
t2=a2p g 

in which d is hard sphere diameter. 
The second integral is 

032) 

t3=a3p2 
s r(rl --r2).-%-2--r3j 

x~(r3-rl)g3(r1,r2’2,r3)dr2dr3, (B3) 

where g3 is the three-body correlation function. In the su- 
perposition approximation g3 is the product of three two- 
body pair correlation function, 

g3h,r2,r3) =g(rl,r2)g(rz,r3)g(r3,rl). (B4) 

Thus the integrand of Eq. (B3) can be written as the prod- 
uct of the tensor 

~.-k(il-r2)~(rl--r2) Z(r,,) L9, 
r12 

where g is the second order tensor given by Eq. (5.10). 
Performing a Fourier transform of the integral, gives 

2 
t3 =a3p2 m  I G3a Gw 

in which the factor 2 comes from tr g3/3 and @  is the 
scalar part of the Fourier transformation of the tensor 7g 

~. given by 

8=- I jz(kr) g$dr, (B7) 

where j, is the second order spherical Bessel function. 
Again, we can calculate the integral explicitly for the 

case of the step-function dilute hard-sphere gas correlation 
function, 

cos(kd) sin(kd) -- 
cm3 * 1 WI 

Substitution of Eq. (B8) into Eq. (B6) yields 

573 
t3 = -3 p2a3. (B9) 

In general, t2t3 can be evaluated numerically according 
to Eqs. (Bl ) and (B6) if the pair correlation function is 
given. 

APPENDIX c: SCREENING FUNCTION OF A CHARGE 
AND A DIPOLE 

Equation (5.19) is a general expression of the field 
induced by an electrostatic charge in a polarizable fluid. 

First we introduce a general Fourier transformation. 
Any function can be expanded in the spherical harmonic 
functions, 

4(r) = C qdr) Yh(@,$). (Cl) 

Each qlm transforms according to 

h,kk) = C-i)’ s qdr)jdkr)dr, (C2) 

where jl(kr) is the Ith order spherical Bessel function. 
Thus the full transformation of q(r) is 
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4(k) = 2 &n(k) Yr, 

and the inverse Fourier transformation is 

(C3) 

G>’ 
h(r) =(2n>3 s dWdk)jAkr). (C4) 

We have made use of the transformation given by Fq. 
(B7). 

Consider a point charge. The bare field is 

E”=;, 

where n is the unit vector. The convolution integral in Eq. 
(5.19) can be evaluated by Fourier transformation. First 
the function f t can be expressed as 

g(r) 
41=yz- 

which transforms as a vector, 

&=(-i) qljl(kr)dr. 
s 

cc71 

Also the dipole pair correlation function transforms as 

32=h^*x+h”&% ((3) 

where h* transforms as a scalar and hD transforms as a 
tensor. Then, Eq. (5.19) reads as 

n i p 
E=~+~~ 4^ln,@jIW*. 

s 
cc91 

As n9=2n, we finally arrive at the expression for the 
screening function of a point charge, 

i 3p 
f(r)=l+,m J41tiA+2h^D)dk. (ClO) 

A similar analysis leads to the screening function for a 
point dipole which has been discussed by Pratt. 
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